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Earth is experiencing widespread ecological transformation in terrestrial, freshwater, and marine ecosystems that is attributable to directional 
environmental changes, especially intensifying climate change. To better steward ecosystems facing unprecedented and lasting change, a new 
management paradigm is forming, supported by a decision-oriented framework that presents three distinct management choices: resist, accept, 
or direct the ecological trajectory. To make these choices strategically, managers seek to understand the nature of the transformation that could 
occur if change is accepted while identifying opportunities to intervene to resist or direct change. In this article, we seek to inspire a research 
agenda for transformation science that is focused on ecological and social science and based on five central questions that align with the resist–
accept–direct (RAD) framework. Development of transformation science is needed to apply the RAD framework and support natural resource 
management and conservation on our rapidly changing planet.
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Directional environmental changes, especially   
 intensifying climate change, are fundamentally trans-

forming Earth’s ecosystems through persistent changes 
in ecological composition, structure, and function within 
management-relevant time frames (years to decades; Steffen 
et  al. 2018, NAS 2019, Coop et  al. 2020, Williams et  al. 
2020). Natural resource managers around the world under-
stand that the rates and magnitudes of modern global 
change challenge the viability of longstanding management 
philosophies, cultures, and mandates built on the assump-
tion that the climate of the future—and therefore what 
is ecologically possible in a given place—will reflect the 
past (e.g., US Forest Service’s 2012 Forest Planning Rule, 
US Fish and Wildlife Service policies on habitat manage-
ment in wildlife refuges, USFWS 2002; as was discussed in 
Schuurman et al. 2021; see also Millar et al. 2007). Managers 
of systems as divergent as water supplies, rangelands, and 
marine fisheries are now contemplating a broader spectrum 
of responses to rapid directional change and are gravitat-
ing toward forward-looking management approaches that 
reckon with nonstationarity (e.g., Milly et  al. 2008, Brown 
et  al. 2017, Ingeman et  al. 2019). While a new paradigm 
to guide and support twenty-first-century natural resource 

stewardship slowly forms, a three-part decision-oriented 
framework has emerged through a broad collaborative 
effort among multiple US federal and state agencies, non-
governmental organizations, academics, and international 
partner organizations (Schuurman et al. 2021). This frame-
work aims to inform natural resource managers’ decisions 
in a nonstationary world to strategically resist, accept, or 
direct ecological trajectories. Resisting change means sus-
taining existing conditions or, where change has occurred, 
restoring historical or “natural” characteristics via actions 
including increasing or maintaining ecological resistance 
and resilience (Connell and Ghedini 2015, Crist et al. 2019). 
Accepting change accommodates new suites of species and 
ecological conditions in a site without intervening. Directing 
change involves intervening to guide the trajectory toward 
preferred ecological outcomes that differ from historical 
or current conditions. Such states would ideally be sustain-
able, at least for a while, under ongoing climate change 
and other directional stressors. This three-part concept of 
deciding to resist, accept, or direct ecological transforma-
tion (box 1) is the resist–accept–direct (RAD) framework for 
natural resource management (Schuurman et al. 2020, 2021, 
Thompson et al. 2021, Lynch et al. 2021a). This framework 
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is a simple, flexible decision-making structure that focuses 
on manager intent, identifies manager actions, and encom-
passes the entire decision space for stewarding ecological 
trajectories. The RAD framework could also apply to single-
species management, but in the present article, we focus on 
its application in transforming systems.

Even before natural resource management began to grapple 
with nonstationarity, a nascent science was developing across 
diverse ecosystems including forest, grassland, freshwater, and 
marine systems to characterize and conceptualize ecological 
transformation (box 1; e.g., Davis 1969, Holling 1973, Berryman 
and Millstein 1989, Anderson and Piatt 1999, Gunderson and 
Holling 2002, Bestelmeyer et  al. 2011, Biggs et  al. 2018), as 
well as to anticipate it (e.g., Bestelmeyer et al. 2003, Carpenter 
and Brock 2006, Parks et al. 2019). Social scientists also began 
documenting the social consequences of climate-related eco-
logical change and investigating the capacity of individuals and 
institutions to adapt and transform (e.g., Gunderson et al. 1995, 
Adger 2006, Wilby and Dessai 2010, Pelling 2011). Most nota-
bly, the development of the novel ecosystem concept (Hobbs 
et al. 2009) and the increasing recognition of the challenge of 
maintaining “natural” conditions (Cole and Yung 2010) sug-
gested that ecological transformation will demand revision of 
conservation norms that are based on historical baselines. Now 
that conservation norms are beginning to shift away from a 
strong basis in historical baselines, managers will increasingly 
encounter a new set of challenging scientific questions.

We aim to inspire new science to support the full breadth 
of potential decisions in the RAD framework. We describe an 
agenda for transformation science that aligns with the RAD 
framework and is based on five central questions: Is trans-
formation a threat; how effective and durable are resistance 
strategies; what are the plausible ecological futures; what are 
the consequences of the choice to resist, accept, or direct 
change; and how do managers and society choose among 
options to resist, accept, or direct change (figure 1)? We orga-
nize these five questions and our article around the stages in a 
generalized decision-making process (e.g., Brest and Krieger 
2010). These decision-making stages are similar to those in 
adaptive management (Allen et al. 2011), structured decision-
making (Gregory et  al. 2012), climate-smart conservation 
(Stein et  al. 2014) and related frameworks, which all derive 
from cognitive and psychological decision-making research. 
We use a generalized model of decision-making in this article 
to emphasize that the RAD framework and the science to 
support its application are not tied to any particular resource 
management decision-making process or set of steps. Any 
decision-making process begins by defining the problem and 
stating specific objectives. The first question assesses whether 
ecological transformation or the prospect thereof necessitates 
a new management approach in a given location. The sec-
ond and third questions seek to identify plausible ecological 
futures, clarify the range of available management alterna-
tives, and understand their associated uncertainties when 

Box 1. What is ecological transformation?

Ecological transformation has been characterized in multiple ways and has been approached from many perspectives. Transformation 
of a system is a concept that is both theoretically and empirically grounded, from chemistry to climate to economics to politics, and 
in ecology is variously described as state shift (Barnosky et al. 2012), regime shift (Francis and Hare 1994, Biggs et al. 2018), state 
change (Stringham et al. 2003), type conversion (Jacobsen and Pratt 2018), tipping point (Selkoe et al. 2015), abrupt change in eco-
logical systems (Turner et al. 2020), ecological threshold (Groffman et al. 2006), social–ecological transformation (Olsson et al. 2004), 
social–ecological collapse (Cumming and Peterson 2017), ecosystem collapse (Lindenmayer et al. 2016), ecosystem transformation 
(Huntington et al. 2020), or ecosystem shift (Warszawski et al. 2013), among other terms. Each term has a different focus, based on 
the particular drivers, rates of change, or hierarchical levels of ecosystems it uses as indicators. Because ecological transformation is a 
pervasive phenomenon that manifests in myriad ways (Lindenmayer et al. 2016), and at different rates (Hughes et al. 2013, Williams 
et al. 2020), we take a broad view of this widespread phenomenon. We encompass all the multiple terms above by defining ecological 
transformation to mean “the dramatic and irreversible shift in multiple ecological characteristics of an ecosystem, the basis of which is 
a high degree of turnover in ecological communities.” Species composition of ecological communities is a key characteristic of ecosys-
tems that relates to structure, function, and provision of services. Species turnover, or the number of different species eliminated and 
replaced over time, is a key commonality for ecological transformation, which is generally exemplified by a shift in dominance among 
organisms with different life forms (Scheffer et al. 2001). Species are also highly valued by people and remain the most common and 
clear management target for natural resource managers. Species also tend to be the focus of mandates for natural resource managers 
(e.g., Migratory Bird Treaty Act of 1918, 16 USC 703–712, Endangered Species Act, 16 USC §1531 et seq., Environment Protection and 
Biodiversity Conservation Act 1999 (Cth) s 178 (Austl.), Wildlife and Countryside Act 1981, c. 69 (UK), Species at Risk Act, S.C. 2002, 
c. 29 (Can.)), and many management levers include manipulating species composition and abundance (e.g., setting harvest levels, 
removing invasive species, restoring apex predators, thinning tree species, reseeding after fire). Climate change is altering the distribu-
tion and abundance of many of Earth’s species and increasing species turnover rates (Parmesan and Yohe 2003, Foden et al. 2008, Chen 
et al. 2011, Staudinger et al. 2013, Pecl et al. 2017, Bonebrake et al. 2018, Stanke et al. 2021). With ongoing climate change, natural 
resource managers perceive, quantify, and anticipate changes in species composition in the areas they manage, including  colonization, 
extirpation, and high species turnover rates (e.g., Wu et al. 2018). Grounding transformation science in species turnover and ecological 
trajectories can readily connect science to RAD management decisions.
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following decisions to resist, accept, or direct change. The 
fourth question examines the social consequences expected 
to result from each alternative. Finally, the last question 
addresses decision-making itself, including how to choose 
whether to resist, accept, or direct, as well as higher-order 
questions about how to learn from past decisions and how to 
structure decision-making processes to provide desired and 
fair outcomes for stakeholders and society at large. Social and 
ecological transformations are highly coupled and interac-
tive, making it challenging to disentangle societal actions, 
ecological change, and social consequences. We purposefully 
compartmentalize a complex phenomenon and focus on one 
aspect at a time to present a clear set of science questions and 
encourage advances within disciplines that will push the field 
of transformation science forward.

Question 1. Is transformation a threat?
A starting point in a decision-making process based on 
the RAD framework is to anticipate whether transforma-
tion is a near-term threat, thereby setting the stage for the 
decision to resist, accept, or direct change. Paleoecological 
data suggest that transformation is a widespread and real 
prospect with ongoing climate change, on the basis of past 
pervasive ecological transformations in response to rapid 

climate change, as in the dramatic compositional and struc-
tural transformation in terrestrial vegetation from the Last 
Glacial Maximum to the Holocene, roughly 12,000 years ago 
(Nolan et  al. 2018, Williams et  al. 2020). Ecological trans-
formations can be anticipated on the basis of knowledge of 
natural history and landscape dynamics or mechanistic or 
statistical modeling (e.g., Bestelmeyer et al. 2003, Carpenter 
and Brock 2006). Knowing that transformation is a threat 
can be as simple as observing it unfold in adjacent areas. 
Observational approaches are being developed to remotely 
sense ecological transformation—for example, with spatial 
imaging and screening for vegetation transitions common to 
rangelands: desertification, woody encroachment, and non-
native grass invasion (Uden et al. 2019). So far, more than 
300 case studies of contemporary ecological transformation 
have been documented in terrestrial, freshwater, and marine 
systems (Biggs et  al. 2018), with a wide range of triggers, 
processes, and system attributes that lead to transformation 
(Biggs et al. 2018, Harris et al. 2018, Ratajczak et al. 2018). 
Given this complexity, a mechanistic understanding of the 
nature and rate of change in different ecological systems may 
provide a way to recognize the potential triggers and signs 
of transformation in and across systems. Key needs include 
better understanding the role of amplifying and dampening 
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Figure 1. The stages of a generalized decision-making process, and how the five major questions that form the basis for a 
transformation science agenda fit in. Source: The decision-making stages are adapted from Brest and Krieger (2010).
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mechanisms that determine whether transformation will 
occur and better anticipating rates of transformation.

Amplifying and dampening mechanisms. Feedback loops are the 
basis for resilience or transformation among alternative 
stable states under a given set of environmental conditions 
(Clements and Ozgul 2018). Negative feedback loops are 
dampening mechanisms that stabilize systems following per-
turbations but positive feedback loops are amplifying mecha-
nisms that can hasten system change. Feedback loops can 
affect the physical environment, as when submerged vegeta-
tion reinforces water clarity in the clear state of a shallow lake 
system (Scheffer et al. 2001), or act via trophic interactions, as 
in an urchin barren in which overgrazing limits kelp growth 
(Rasher et al. 2020). Our understanding of feedback loops in 
some systems has grown, but translating this understanding 
into improved predictions remains challenging. For example, 
systems with positive feedback loops and alternative stable 
states may have statistical early warning indicators of impend-
ing transformations (Scheffer et al. 2015), but actual applica-
tions of this insight in marine and freshwater ecosystems 
reveal a discouraging success rate, with high false positives 
(Burthe et al. 2016, Clements and Ozgul 2018).

Fire–vegetation feedback loops, whereby fire affects veg-
etation flammability and fuel amount (which, in turn, affects 
fire probability), highlight the need to critically examine 
the direction, strength, and role of specific feedback loops 
within a system in order to anticipate ecological transforma-
tion (Tepley et al. 2018, McLauchlan et al. 2020). When fire 
regimes are altered, new fire–vegetation feedback loops can 
dampen or amplify system change. Recent modeling shows 
that as burning rates intensify with climate change, forested 
systems with negative feedback loops (through which fire 
promotes less flammable vegetation and therefore decreases 
fire probability) initially resisted forest loss. However, inten-
sifying burning rates ultimately overwhelm these negative 
feedback loops and across the landscape this dynamic leads 
to slow incremental forest loss (Tepley et al. 2018, Whitman 
et al. 2019). In contrast, forested systems with positive fire–
vegetation feedback loops exhibited threshold behavior and 
transformed more rapidly into nonforested systems (Tepley 
et al. 2018), and this feedback can also be seen in shrublands 
converting to grassland ecosystems (Syphard et  al. 2019). 
These fire–vegetation feedback loops can act across land-
scape scales and initiate patterns that persist for millennia, 
on the basis of the presence and configuration of fuel breaks 
(Lynch et al. 2014, Calder et al. 2019). Fire is a fundamental 
component of many terrestrial ecosystems and the push to 
understand where positive or negative fire–vegetation feed-
back loops will occur illustrates how understanding specific 
feedback loops is an important science need.

Another important dampening mechanism is demographic 
compensation, a phenomenon whereby declines in some 
demographic rates are offset by increases in others (Doak 
and Morris 2010). For example, demographic compensation 
prevents or delays population declines when mortality rates 

increase with climate change, but survival, growth, recruit-
ment, or reproduction are differentially affected by climate 
change (Doak and Morris 2010, Lloret et al. 2012). However, 
these stabilizing mechanisms may be insufficient to maintain 
positive population growth (Sheth and Angert 2018) or may 
be altogether absent, as for tree species in the western United 
States, where recruitment failures accompany large-scale mor-
tality events and result in widespread changes in composition 
and structure (Stanke et al. 2021). Identifying potential ampli-
fying and dampening mechanisms, including feedback loops 
and demographic compensation, helps determine whether 
systems are at risk of transformational change, and may hint 
at how quickly systems might transform.

Rates of change. Ecological systems differ in their key cli-
matic drivers and in the form of the relationships between 
key climatic drivers and ecological states (Jackson et  al. 
2009, Ratajczak et  al. 2018). Rates of climate-driven eco-
logical change have been categorized as slow, fast, or abrupt 
(Williams et  al. 2020) and can be visualized in species 
turnover rates. Slow ecological responses with low species 
turnover rates occur when lags create mismatches between 
climatic and ecological states. Lags arise because of limited 
dispersal, mismatched cues, and long-lived species and can 
affect population demography and reshuffle communities as 
species ranges shift at different rates (Visser and Both 2005, 
Bertrand et  al. 2011). Fast ecological response is approxi-
mately linearly related to changes in climate, as has been 
seen in alpine communities in which increases in species 
richness are accelerating in tight correlation with accelerat-
ing rate of climate change (Steinbauer et  al. 2018). Abrupt 
ecological responses have been defined as nonlinear with 
respect to their climatic drivers because of thresholds or 
feedback loops (Williams et al. 2020); for example, systems 
heavily influenced by ice and snow are subject to the physi-
cal threshold at 0 degrees Celsius (Littel et al. 2018). Abrupt 
transformations can also be triggered by pulse disturbances 
or climate extremes (Turner et  al. 2020), and analyses that 
include ecological resilience in response to extreme events 
are critical for better understanding whether transformation 
is a prospect (Smith 2011, Crausbay et al. 2017).

Contemporary climate change-driven transformations 
often conform to a press–pulse framework, in which grad-
ual, directional climate change sets the stage for a different 
ecological trajectory, but an acute, mortality-inducing event 
often triggers transformation. Mortality-inducing events 
such as heat waves, floods, wildfires, or droughts have trig-
gered ecological transformations across terrestrial, riverine, 
and marine systems (Lloret et al. 2012, Crausbay et al. 2017, 
Harris et al. 2018, Parks et al. 2019, Coop et al. 2020). Modern 
climate change drives more extreme weather and climate 
events, intensifies disturbance regimes, and promotes the 
combination of multiple hazards, known as compound events 
(Seneviratne et al. 2012). Understanding how extreme events 
or compound events might facilitate ecological transforma-
tion can guide management expectations of rapid change 
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(Leonard et al. 2014, Zscheischler et al. 2018, Turner et al. 
2020). For example, standard modeling approaches using 
mean climate variables to map species vulnerability did not 
capture the reality of giant sequoia (Sequoiadendron gigan-
teum) foliage dieback during California’s 2012–2016 hotter 
drought (Stephenson et al. 2018), emphasizing the need to 
consider acute weather or disturbance events in addition to 
longer climatic trends. Identifying and understanding the 
drivers of foundational species’ demography and of focal 
ecological processes is needed to understand the likelihood 
of abrupt ecological transformation (Turner et al. 2020).

Question 2. How effective and durable are resistance 
strategies?
Resistance actions work against the ecological trajectory and 
seek to ensure the continued existence of, or limited change 
to, current or historical ecological conditions (Schuurman 
et  al. 2021). Resisting human-driven trajectories has tradi-
tionally been resource managers’ default response and his-
tory is replete with successful examples, particularly where 
local effects could be mitigated and root causes addressed 
(e.g., Grennfelt et al. 2020). However, the rapid, persistent, 
and directional nature of intensifying global change requires 
that managers examine—or reexamine—the efficacy and 
durability of standard resistance actions. Currently, resis-
tance actions in many ecosystems require constant interven-
tion and their success may be temporary and increasingly 
expensive (Millar et al. 2007). In addition, resistance actions 
are becoming increasingly “heroic” with climate change. For 
example, fish rescue programs that transfer juvenile salmo-
nids to rearing facilities during extreme drought are prolif-
erating, but fish rescue’s efficacy at reducing extinction risk 
is poorly understood (Beebe et  al. 2021). Transformation 
science will be essential to help managers understand the 
efficacy of new resistance techniques and where resistance 
is economical, feasible, and durable, given ongoing climate 
change and other directional stressors (Hobbs et al. 2011).

Research is also needed to characterize important oppor-
tunity costs of resistance (Millar et  al. 2007, Lynch et  al. 
2021b). Reflexive (i.e., unexamined) resistance may miss 
important opportunities to conserve biodiversity and main-
tain ecosystem services (i.e., the many types of benefits 
people receive from ecosystems; Leemans and De Groot 
2003) by easing transitions instead of resisting them. For 
example, rather than replanting prefire species on a postfire 
landscape on public or private land, managers could direct 
impending forest change by lowering planting density to 
reduce competition for water and simultaneously favor spe-
cies adapted to emerging and projected conditions (Millar 
and Stephenson 2015). In addition, financial resources are 
almost always limited, and a choice to act in one place or 
for one resource often means a choice not to act elsewhere. 
Resisting change in a portion of the range of an ecosystem 
type may use resources that could be applied in another area 
in which resistance may be more efficacious. For example, 
researchers are helping state managers focus specifically on 

those lakes in the midwestern United States where resistance 
to warming and nutrient enrichment is likely to retain a 
keystone prey fish (the cisco, Coregonus artedi), the loss of 
which would likely constitute a transformation (Thompson 
et al. 2021). Such research is needed to help managers make 
clear and justifiable decisions about where (and where not) 
to prioritize their resistance efforts (Jacobson et al. 2013).

Resistance approaches are expected to be viable longer 
in areas with lower climate velocity or variability (Trumbo 
et  al. 2014, Krawchuk et  al. 2020). For example, resistance 
efforts may be more readily justified at higher-elevation 
sites in which forests are likely to persist in the near future, 
as opposed to the lowest-elevation, hottest forest types of 
western North America that are likely to transform because 
of high climate velocity plus large wildfires (Stralberg et al. 
2018, Parks et  al. 2019). In addition to focusing on areas 
unlikely to soon cross critical ecological thresholds for a 
given region, a manager could also focus on any areas in 
which rates of changes are simply very low. Climate change 
refugia—areas relatively buffered from contemporary cli-
mate change over time (Morelli et  al. 2016)—represent 
specific areas in which resistance actions may be viable 
longer and in which intervention may not even be imme-
diately necessary (because of low rates of ecological change, 
Schuurman et al. 2021). Headwater stream communities in 
mountainous environments are an example in which low 
climate velocities exist because of strong topographically 
controlled temperature gradients (Isaak et al. 2016).

Strategically resisting directional change in a nonstation-
ary world, however, requires a deeper understanding of 
low-change areas and their shelf life. For example, working 
to preserve relict populations (i.e., populations that have 
persisted in place for a long time) to maintain seed diversity 
for long-lived species may be a viable resistance strategy only 
temporarily if compounding changes in disturbance regimes 
and climate ultimately render these habitats inhospitable 
(Harvey et al. 2016, Turner et al. 2019). Effectively predicting 
where resistance is viable likely requires considering changing 
climate extremes and compound events, not just trends in 
climate. Climate change refugia are diverse in their attributes; 
some are maintained by inherent topographic or physio-
graphic factors that protect an area from burning (Wilkin 
et  al. 2016, Stralberg et  al. 2020), whereas others involve 
constant inputs such as groundwater supply in freshwater 
ecosystems (Briggs et  al. 2018). A refugium maintained via 
an ecological property of the system may disappear if that 
ecological property is susceptible to change. For example, loss 
of a shade-producing canopy could remove the buffering ele-
ment that maintains cool stream temperatures (Stralberg et al. 
2020). Understanding the shelf life, risks and the vulnerabili-
ties of strategies to resist transformation is a key science need.

Question 3. What are the plausible ecological futures?
Where transformation is a threat, the RAD framework relies 
heavily on the ability to characterize the range of plau-
sible ecological trajectories toward new communities and 
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ecological conditions. Ecology has a rich history covering 
more than a century of describing community assembly and 
coexistence. But a predictive science remains elusive because 
of myriad complex mechanisms behind assembly and coexis-
tence, including environmental filtering, biotic interactions, 
and neutral processes, as well as stochastic drivers and abun-
dant contingencies (Götzenberger et  al. 2012, Jackson and 
Blois 2015, D’Amen et al. 2017, Lasky et al. 2020). Moreover, 
the redistribution of foundational species critical to habitat 
formation or maintenance can have cascading effects through 
trophic levels (Hoegh-Guldberg and Bruno 2010, Wernberg 
et  al. 2016), whereas theory on species coexistence focuses 
primarily on how environmental filtering and competition 
act within a trophic level (Chesson 2000). This complexity 
of interacting processes and trophic levels, and the diversity 
of possible dynamics, leads to multiple potential ecological 
trajectories and plausible futures (Blonder et al. 2017). A key 
science need is to characterize the range of plausible ecologi-
cal futures for RAD planning processes (Magness et al. 2021).

Novelty, stochasticity, and diverse processes. Understanding the 
range of plausible ecological futures is challenging for three 
reasons: abiotic and biotic novelty, the roles of stochasticity 
and contingency, and the complex set of processes underly-
ing community assembly.

First, climate change is leading to novel climate condi-
tions, which has resulted in novel ecological communities in 
the past and reduces our ability to forecast ecological condi-
tions of the future (Fitzpatrick et al. 2018). Approaches for 
considering biotic novelty include using measures of species 
turnover—for example, to assess the current rate of novelty 
and identify the environmental drivers of novelty in a large 
marine system (Ammar et al. 2021) or ensemble species dis-
tribution modeling to map and quantify novel communities 
in the future—for example, in Ecuadorian hummingbird 
communities by 2070 (Graham et al. 2017). Models focused 
on species traits (e.g., leaf economic traits) hold promise 
because traits shape species distributions (Brown et  al. 
2014, Ovaskainen et al. 2017, Vesk et al. 2021) and under-
lie community assembly and coexistence (Chesson 2000, 
Laughlin et al. 2012) and thereby shape ecosystem function 
(Violle et  al. 2014, Funk et  al. 2017, Lee et  al. 2017). For 
example, plant traits can predict plant community response 
to precipitation changes in a semiarid grassland (Wilcox 
et al. 2021). The effects of species traits on population and 
community processes will be context dependent (Yang et al. 
2018), and although traits will not be a panacea, they are a 
promising approach to predicting biotic novelty. Another 
approach involves mapping features of climate change that 
are expected to lead to novel communities: the emergence 
of novel climate states and rapid climate changes (Ordonez 
et  al. 2016, Burke et  al. 2019). A fundamental scientific 
challenge is to continue developing ways to anticipate novel 
ecological communities composed of range-shifting native 
species or encroaching nonnative species (Chen et al. 2011, 
Hobbs et al. 2018, Wu et al. 2018).

Second, ecological trajectories are strongly influenced by 
stochastic weather and demographic events (Chase 2003, 
Jackson et al. 2009, Chisholm et al. 2014, Groves et al. 2020, 
Werner et al. 2020). Episodic climatic events interact with sto-
chastic demographic and colonization events in contingent 
ways that serve as idiosyncratic drivers of ecological trajec-
tories (Jackson et al. 2009). For example, recent work shows 
the critical importance of weather-dependent regeneration in 
determining the long-term consequences of drought-induced 
or wildfire-driven mortality events (Martínez-Vilalta and 
Lloret 2016, Davis et al. 2019, Coop et al. 2020, Davis et al. 
2020). Understanding the dynamics of supporting processes 
(e.g., hydrology, soil water retention, soil fertility, pollina-
tion) with stochastic weather events and how these dynam-
ics control ecological trajectories is increasingly important. 
A promising new framework for generating and applying 
quantitative climate stress-test scenarios provides one way to 
address this issue (Albano et al. 2021). Incorporating differ-
ent forms of demographic and environmental stochasticity 
into modeling approaches can strengthen the understanding 
of links between population and community levels and lead 
to predictable community-level outcomes (Shoemaker et al. 
2020). Developing approaches that consider stochastic events 
and contingencies in ecological trajectories is an important 
component of transformation science.

Third, the complex milieu of processes that drive ecologi-
cal trajectories and structure communities is a challenge to 
integrate, and ecologists are grappling with how to realisti-
cally model and understand the future dynamics of popula-
tions and communities. Lasky and colleagues (2020) make 
an ambitious call for a hierarchical integration of genetic, 
phenotypic, and demographic data and processes along 
environmental gradients, which provides a path to improved 
forecasting under novel conditions for intensively studied 
foundational species. Similarly, recent convergence of com-
munity ecology and macroecology presents an organizing 
framework to iteratively focus on one of Vellend’s (2010) 
high-level processes of community assembly at a time 
(e.g., dispersal) and then integrate another (e.g., selection; 
Rapacciuolo and Blois 2019). Still other new approaches rec-
ommend a major shift to focusing on ecological trajectories 
themselves, rather than static endpoints of different ecologi-
cal communities (De Cáceres et al. 2019). Trajectory analysis 
provides a generalized way to characterize and compare 
ecological trajectories. These kinds of approaches that are 
explicit about the pathway between one ecosystem state and 
another can be particularly useful for supporting decisions 
under the RAD framework because they illuminate pos-
sible management intervention points to direct ecological 
trajectories. Strong science–manager partnerships will help 
teams identify the most important ecological processes and 
ways to effectively integrate them into management-relevant 
ecological scenarios (box 2). This process can illustrate the 
range of what accepting an ecological trajectory might look 
like, and spark ideas for directing ecological trajectories on a 
preferred course (box 2).
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Box 2. Ecological scenarios.

Characterizing the range of potential ecological outcomes is necessary to help managers avoid surprises, understand what accept-
ing ecological transformation looks like, and determine whether intervention (either to resist or direct the ecological trajectory) is 
warranted. Some potential ecological outcomes might be more desirable and offer ideas for how to direct the ecological trajectory. 
Decisions to resist, accept, or direct ecological trajectories and transformations (i.e., RAD decisions) must be made despite incomplete 
information and substantial uncertainty. Much of this uncertainty is irreducible. The complexities and contingencies of how ecological 
trajectories play out preclude a science that can precisely describe what accepting transformation would look like. This reality suggests 
that considering a broad range of plausible ecological trajectories and outcomes is important.
As managers try to visualize and plan for unprecedented change, a structured approach that uses a set of science-based narratives or 
storylines to characterize and work with uncertainty can help (Star et al. 2016b). Scenarios can provide such storylines and support 
decision-making in situations of consequential and irreducible uncertainty (Peterson et al. 2003). Use of scenarios is well developed 
in natural resource management, generally as part of a scenario planning process, to address the challenges of understanding and 
managing resources under a diverse set of possible climate change outcomes (Rowland et al. 2014, Gross et al. 2016, Star et al. 2016b, 
Miller et al. 2017, Symstad et al. 2017, Runyon et al. 2020, USNPS 2021). Guidance about how to craft scenarios to support resource 
management planning processes is proliferating, and typically focuses on selecting and using downscaled climate model projections 
and other climate data to develop divergent and plausible climate futures (figure 2; Runyon et al. 2020, Albano et al. 2021, Lawrence 
et al. 2021). As a result, climate futures that underlie natural resource management decisions are increasingly sophisticated.

Figure 2. (a) Hypothetical set of climate projections (after Lawrence et al. 2021) showing change in average annual 
mean temperature and average annual total precipitation for 2080 (2065–2095) relative to the 1950–2000 historical 
period. Two projections are selected to represent a “warm wet” climate future and a “hot dry” climate future. Each 
of these climate futures may have its own set of ecological futures. (b) Hypothetical set of two scenarios for species 
turnover and ecological trajectories under warm wet conditions, where trajectories play out relatively slowly, and (c) 
a hypothetical set of three scenarios for species turnover and ecological trajectories under hot dry conditions, where 
trajectories play out abruptly. The y-axis in (b) and (c) could be depicted by various measures of species turnover—
for example, multivariate distance measures between the baseline ecological community and subsequent ecological 
communities. Plant images:  IAN Image Library, https://ian.umces.edu/imagelibrary.
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Directing toward preferred futures. Managers may intervene to 
shape and change the emerging ecological trajectory when 
the outcome of accepting change is undesirable (box 3). 
Directing ecological trajectories toward a preferred future 
requires a vision of the target ecological composition and 
information about how and when management actions 
could facilitate particular ecological trajectories, including 
the series of interventions needed. A vision of the target 
starts with an examination of the range of plausible eco-
logical futures. Targets can include novel communities, 
particularly if ecologists and managers believe those com-
munities will be resilient or resistant in future climates, or 
will maintain priority ecosystem functions or services (e.g., 
Ostertag et al. 2015).

Understanding both how and when to intervene to direct 
ecological trajectories is a bold and exciting but daunting 
critical new science need. Managers can draw from experi-
ences with ecological restoration and similar management 
actions aimed at achieving particular ecological communi-
ties and functions. However, directing ecological trajectories 
under a continually changing climate differs from traditional 
restoration because it is premised on understanding a mov-
ing target and knowing what prevents a particular ecologi-
cal trajectory as climate changes (e.g., dispersal, moisture 
availability). A nascent science is forming around how to 
steer community assembly to attain a particular target or 
trajectory—for example, by including ecosystem engineers 
or manipulating processes that reduce dominance or facili-
tate new arrivals (Baer et al. 2016, Yeakel et al. 2020). New 
practices, such as translocating entire species assemblages 
or loading the systems with species to increase adaptive 
potential at the community level, need development via 
well-designed experimentation (Thomas 2020). Identifying 
intervention points or windows of opportunity for manipu-
lating a trajectory, such as immediately before or after major 
disturbances such as fires, storms, or pest outbreaks, or dur-
ing a certain climatic event, is a key research need (Chapin 
et al. 2009, Bradford et al. 2018). These windows of oppor-
tunity may rely on key supporting conditions (e.g., abundant 

soil moisture) that can broadly maintain species. Particular 
methods and practices to accelerate change, enhance an 
emerging novel system, or reinforce an ecological function 
can link to specific intervention points to develop manage-
ment pathways, by which we mean the sequence, timing, and 
methods of interventions necessary to achieve a preferred 
future condition. Developing these pathways is a major 
challenge for directing change (Magness et  al. 2021). Pilot 
studies and experiments are needed to better understand 
management pathways, explore unintended consequences, 
and test intervention efficacy (Lynch et al. 2021b).

Question 4. What are the consequences of the 
choice to resist, accept, or direct transformation?
Our fourth question is key to evaluating different RAD 
strategies and to creating operational models for adaptation. 
Although climate change impacts and adaptation are a robust 
research area (Field et  al. 2014), ecological transformation 
may yield different character, scope, and scale of social 
consequences than climate change writ large. The impacts 
of ecological transformation are an emerging field of study 
(Chaffin et al. 2016, Barnes et al. 2017, Roy-Basu et al. 2020) 
and foundational research is needed to understand how eco-
logical transformation affects society and is in turn shaped 
by human activities. Climate change impacts and adapta-
tion literature provide a guide to these questions: climate 
change affects economics and livelihoods, emotional and 
psychological well-being, cultural and spiritual values and 
practices, human health, and risk and hazards (Clifford et al. 
2021). But how, or whether, the social consequences of eco-
logical transformation differ from the impacts of other types 
of environmental change is unknown. Transformation can 
offer opportunities to imagine more just futures (Inderberg 
et  al. 2014, Castree 2015, Hulme 2015), but can also drive 
novel or increased risks of inequitable or unsustainable path-
ways (Blythe et al. 2018). We identify four broad categories 
of the social consequences of ecological transformation that 
deserve greater focus in order to help natural resource man-
agers decide among RAD options. These categories include 

Box 2. Continued.

We suggest that planning processes making RAD decisions consider multiple ecological storylines or scenarios within each individual 
climate future (figure 2). This suggestion differs from norms of ecological modeling by explicitly seeking to develop divergent ecolog-
ical responses. Intentionally developing divergent scenarios is unlike typical sensitivity analyses based on parameter uncertainty or 
variation among statistical algorithms. Developing divergent ecological scenarios is also distinct from work that simply shows a range 
of uncertainty or that varies additional drivers, such as management practices, within a single climate future (e.g., Miller et al. 2017).
Operationalizing ecological scenarios within climate futures is not trivial because of constraints on the number of scenarios that 
scientists and managers can realistically use for decision-making. A potentially useful first step is to use ecological theory to classify 
ecosystems and contexts likely to have many potential ecological futures (e.g., biodiverse ecosystems with high productivity; Chase 
2003). Developing and delivering useful ecological scenarios will rely on both strong scientist–manager partnerships and a scientific 
team that is more interdisciplinary than usual (Meadow et al. 2015). For example, participatory approaches to model development 
that integrate local knowledge can help to clarify the most relevant processes and scales of change (Clifford et al. 2020a).

071-090-biab102.indd   78 16-12-2021   04:10:55 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article/72/1/71/6429753 by U

niversity of C
olorado user on 10 January 2022



Special Section on the Resist–Accept–Direct FrameworkSpecial Section on the Resist–Accept–Direct Framework

https://academic.oup.com/bioscience  January 2022 / Vol. 72 No. 1 • BioScience   79   

Box 3. Science for RAD decisions in Acadia National Park.

Acadia National Park’s application of the RAD framework illustrates the need for diverse transformation science. Managers recognize 
that transformation of the park’s forest is inevitable under a range of plausible climate futures, exacerbated by other global change 
factors, including the increasing abundance of nonnative invasive species (Star et al. 2016a). Sixteen percent of the park’s flora has 
been lost over the past 125 years, likely because of climate change and invasive species (Greene et al. 2005, McDonough MacKenzie 
et al. 2019). Nine of the park’s ten most common tree species are expected to lose climatically suitable habitat over the next 80 years, 
including red spruce (Picea rubens), which makes up 40% of the park’s tree stems (Fisichelli 2013). Red spruce is still recruiting in the 
forest understory (Wheeler et al. 2015), and therefore the timing and spatial pattern of forest transition is uncertain. However, abrupt 
and widespread declines in red spruce could be triggered by the combination of drought and an insect, pathogen, or parasite outbreak. 
For example, nearly all the park’s red pine (Pinus resinosa) died recently with a simultaneous outbreak of nonnative red pine scale and 
two native fungi, exacerbated by drought. Interactions such as these are intensifying with climate change and are increasingly likely to 
initiate abrupt transformations (e.g., Crausbay et al. 2020).
With the knowledge that ecological transformation of the park’s forests is inevitable, concerns center on how to manage this anticipated 
transition. Climate envelope modeling suggests that one plausible ecological trajectory leads to a temperate deciduous hardwood for-
est, constituting a dramatic change that would alter ecological processes, wildlife habitat, and ecosystem services. However, drought-
triggered dieback of boreal forest creates another plausible ecological trajectory: rapid colonization and expansion of invasive shrubs 
and vines that prevent recruitment of both longstanding indigenous species and regionally native species undergoing range shifts, 
leading to a nonnative, nonforested state (Miller and McGill 2019, Miller et al. 2021). This second plausible ecological outcome is 
unacceptable for many park managers and stakeholders, increasing openness to intervention and unconventional approaches despite 
uncertainty. Managers have engaged extensively with park staff, stakeholders, and local communities to discuss management options, 
and they have worked with the media to communicate the issues, science, and decision-making process (e.g., Abel 2014, Ostrander 
2018). This engagement is essential because of the novelty of this challenge and the role of human values in identifying preferred future 
conditions (Clifford et al. 2021, Magness et al. 2021).
Managers at Acadia now have a spatial portfolio that integrates decisions to resist, accept, and direct ecological transformation (figure 3). 
To understand the spatial opportunities to most easily resist change, researchers mapped potential climate change refugia for priority spe-
cies (Smetzer and Morelli 2019) and are evaluating the stability of high-elevation refugia using paleoecological analyses. Across the entire 
landscape, managers are resisting the ecological trajectory that leads to a nonnative, nonforested system (figure 3e) by prioritizing aggres-
sive management of invasive plants. Invasive plant control supports maintenance of historical forest communities (resist) or creation of 
novel assemblages of regionally native species (direct), and therefore keeps options open. Meanwhile, park managers are innovating strate-
gies to direct ecological trajectories, including testing the establishment of more southerly deciduous hardwoods better suited to emerging 
climatic conditions (McDonough MacKenzie et al. 2018, Fisichelli et al. 2019). This experimental approach helps evaluate translocation 
techniques, assess viability under current climate conditions, and identify species that show invasive characteristics.

Figure 3. A diagrammatic outline of the RAD decision-making process regarding red spruce (Picea rubens) forests in 
Acadia National Park showing (a) the distribution of red spruce in the park, (b) current healthy spruce forest conditions, 
and (c) likely future conditions depicting forest dieback, as well as potential futures depending on the management strategy: 
(d) resist to keep healthy spruce forests in climate change refugia, (e) accept and allow invasive species, such as glossy 
buckthorn (Frangula alnus), to choke forest regeneration and create shrublands, or (f) direct forest transition to temperate 
hardwood forest. Images: USNPS (a, f), Schoodic Institute at Acadia National Park (b, d, e); McNulty et al. (2013) (c).
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resource use (market and nonmarket), nonmaterial impacts 
(emotional, psychological, and cultural), hazards and risk, 
and equity and justice.

Material interactions. Changing ecosystems alter how people 
materially interact with the environment. Human com-
munities rely on ecosystems for diverse resource needs. 
Documented shifts in harvesting patterns (Moerlein and 
Carothers 2012) and resources disappearing from certain 
locations, seasons, regions, or even globally (McNeeley 
and Shulski 2011, Herman-Mercer et  al. 2019) show that 
resource use is already shifting in many areas as the cli-
mate changes. Research characterizing how ecological shifts 
interact with changes in resource use and other material, 
human–environmental relationships remains a key gap in 
many locations, especially those just beginning to experi-
ence transformation. A related question is the extent to 
which these shifts provide opportunities for new ways of 
using resources (versus simply causing the disappearance 
of valued uses). Furthermore, it is important to understand 
how transformation will affect other ecosystem services on 
which resource use indirectly depends, such as water qual-
ity or pollination necessary for crop production (MA 2005, 
Butler and Kosura 2006).

Emotional, psychological, and cultural implications of 
transformation. The many salient nonmaterial interactions 
between people and ecosystems (e.g., Adger et  al. 2011, 
Overland and Sovacool 2020, Clifford et  al. 2021) include 
a second category of consequences: the emotional, psy-
chological, and cultural implications of transformation. 
Scholars studying protected areas and resource management 
have long recognized that people form strong emotional 
attachments to places through subsistence use (Rearden 
and Fienup-Riordan 2016), work such as ranching (e.g., 
Sayre 2005), recreational uses such as fishing or surfing 
(e.g., Reineman and Ardoin 2018), and sometimes even 
without physically interacting with a place because its exis-
tence holds cultural value (e.g., Richardson et al. 2017). For 
example, rising sea levels threaten Small Island Developing 
States with inundation, which will not only reshape ecologi-
cal communities but also result in social and cultural losses 
arising from impacts on communities’ social structures and 
capacity for self-governance (Zellentin 2015). More recent 
work documents that climate-induced changes can lead to 
climate grief, an emerging term describing the multifaceted 
loss from the disappearance of, or unrecognizable change 
in, important places (Randall 2009, Cunsolo and Ellis 2018). 
For indigenous communities, specific places are linked to 
community continuity, spirituality, sovereignty, and cul-
tural knowledge, which means that climate-driven loss or 
change of ecosystems and associated traditional practices 
can have deleterious cultural consequences (Voggesser et al. 
2013, Bark et  al. 2015, Maldonado et  al. 2016). Therefore, 
an important set of questions relate to understanding 
the emotional, psychological, or cultural consequences of 

transformation in particular locations, and teasing out the 
specific impacts of changing ecosystems from wider climatic 
and societal shifts.

New hazards. Environmental systems also pose threats or 
represent hazards, a third important type of consequence 
of ecological transformation. Projections and empirical 
observations show how climate change alters, intensifies, 
or accelerates hazards and extremes (Westerling et al. 2006, 
Field et al. 2014, Cutter 2020). Similarly, the scope and scale 
of transformative ecological change will likely bring new and 
greater threats. For example, an ecological transformation 
that alters the fire regime and increases fire recurrence will 
increase risk to society. Many environmental changes pose 
critical threats to public health, such as increased wildfire 
smoke (McKenzie et  al. 2014) and dust storms, as in the 
1930s Dust Bowl in the United States (Cook et  al. 2009, 
Romm 2011, Tong et  al. 2017), which reduce air quality. 
Importantly, the intensity of an extreme event (e.g., a wild-
fire) does not always correlate with the intensity of human 
impact (Cutter 2016), because social vulnerability arises 
from social, historical, political, and economic processes—
all nonenvironmental factors that manifest in structural 
inequalities and marginalization (Wisner et al. 2004, Adger 
2006, Wisner 2016). Cascading hazards are another impor-
tant focus because they affect human well-being and can 
entrain multiple and interacting impacts throughout social 
systems, especially in more tightly coupled human–natural 
systems (Cutter 2018, 2020). Although robust research exists 
on hazards, vulnerability, and adaptation, further questions 
arise in the context of ecological transformation. Will novel 
ecosystems include the potential of new hazards? How might 
ecological transformation alter the intensity and frequency 
of existing hazards, and confidence in hazard forecasting? 
What are the changing health risks that result from eco-
logical transformation? How will ecological transformation 
affect vulnerability of individuals or communities (i.e., the 
characteristics that influence capacity for human commu-
nities “to anticipate, cope with, resist or recover from the 
impact of a natural hazard” Wisner et al. 2004, p.11)?

Equity and justice. Ecological transformation will interact 
with, and possibly exacerbate, existing inequalities and 
reorganize existing power relations with two possibilities. 
Transformation may usher in new, more radical and just 
futures (Bennett et al. 2019) or it may worsen or introduce 
new environmental injustices, structural inequalities and 
uneven distribution of harms (Blythe et  al. 2018). The 
range of consequences described above will not be uni-
formly distributed. The impacts will be unequal, and each 
management decision and corresponding set of ecological 
conditions will produce winners and losers. For example, 
resources relied on for subsistence are particularly important 
in many rural or indigenous communities (Lynn et al. 2013) 
and changes in these resources may impose disproportion-
ate harm (see Lynch et al. 2021b). In other words, managing 
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transforming ecosystems and making RAD decisions is, in 
part, a justice issue (Sayre et al. 2013, Adams and Charnley 
2020). For example, wildfire management and response are 
known to be unequally available along lines of class and race 
(Lynn and Gerlitz 2006, Adams and Charnley 2020) and new 
conditions from transformation may only exacerbate these 
patterns. Therefore, a key research gap is investigating how 
losses (and likely to a lesser extent, gains) from ecological 
transformation and changes in resource use are distributed 
and highlighting the power relations that reinforce inequity 
(Blythe et  al. 2018). Will particular groups bear dispro-
portionate burdens (or realize benefits)? How do the con-
sequences of RAD decisions differ for diverse stakeholder 
groups? Furthermore, it is not only important to examine 
the outcomes of transformation, but also to engage larger 
questions of climate justice, including considering which 
parties contributed most to the climate changes driving 
transformation (Harlan et al. 2015).

Question 5. How do managers and society 
make choices about the threat of ecological 
transformation?
The fifth question we highlight is decision-making itself, 
including questions about how and by whom choices about 
responding to ecological transformation are made, the pro-
cesses that are used to choose, and how best to weigh and 
evaluate trade-offs in the face of the consequential uncer-
tainties described above. For the sake of clarity, we present 
consequences and decision-making in separate sections, but 
we note that they are intertwined and in practice happen 
iteratively.

Describing ecological transformation decision-making. Although 
natural resource managers have long responded to anthro-
pogenic change (e.g., Loomis 2002, Allen et al. 2011, Wilson 
2020), managing climate change-driven ecological transfor-
mation is still relatively new or yet to come in many loca-
tions (e.g., Clifford et  al. 2020b). As individual managers 
and agencies implement new approaches (box 3; Lynch et al. 
2021b), empirical social science that documents their expe-
riences will be vital to ensure wider learning about what con-
stitutes successful management and decision-making in a 
transforming world (Chaffin and Gosnell 2015). A key need 
is describing decision-making processes and their efficacy 
across varying contexts. Evaluating effectiveness requires 
linking outcomes to decision-making processes (Thomas 
and Koontz 2011, Ulibarri 2015), which will be important 
for understanding results of particular decisions and how 
outcomes can be influenced by factors such as spatial or 
jurisdictional scale, agency culture, individual manager 
background, regulatory context, stakeholder participation, 
and other social and institutional aspects (Clifford et  al. 
2021). These factors highlight a range of variables that 
potentially interact with decision-making processes and out-
comes, suggesting the need for comparative studies across 
ecological systems, rates of ecological transformation (i.e., 

fast, slow, or abrupt; Williams et al. 2020), agency type, and 
particular RAD strategy.

Examining how managers make decisions about transfor-
mation can help improve future management (see Clifford 
et al. 2021). Choosing between alternative ecological futures 
when selecting a RAD strategy will involve difficult trade-
offs and weighing different groups’ values, preferences, and 
potentially losses (Bliss and Fischer 2011, Hirsch 2020). For 
example, although government and industry forest manag-
ers in British Columbia, Canada view managed relocation as 
important for helping forests adapt to climate change (Pelai 
et  al. 2021), public opinion in the same region is mixed 
(St-Laurent et al. 2018), leaving managers to weigh impor-
tant ecological and social trade-offs when considering strat-
egies that direct ecological trajectories. It remains unclear 
whether new methods for weighing trade-offs will have to 
be developed, or whether existing methods are adequate for 
a management future that requires more frequent and more 
difficult trade-offs. Another question relates to information 
for making these decisions. Will RAD decisions be based on 
the “best available science” as is currently the norm (Murphy 
and Weiland 2016), or are there other ways of knowing that 
might need to be incorporated—for example, the experien-
tial knowledge of stakeholders (Knapp et al. 2013) or tradi-
tional ecological knowledge (Berkes et al. 1994)? Similarly, 
what role do cognitive biases or heuristics play in RAD deci-
sions (Kahneman 2011)?

Balancing preferences of diverse communities and ensuring mean-
ingful participation. Ecological transformation also raises 
normative or human-value-based questions about how 
RAD decisions can and should be made to ensure accept-
able, inclusive, and equitable choices and outcomes (e.g., 
O’Donnell and Talbot-Jones 2018). These types of norma-
tive questions are the focus of research on the design of 
stakeholder engagement processes, public participation, 
procedural justice, and related topics (e.g., Fiorino 1990, 
Davidson 1998, Wondolleck and Yaffee 2000, Cosens 2013, 
Reed et al. 2018), and this expertise may aid those designing 
processes for making transformation decisions. Individuals 
view the RAD strategies differently (Clifford et  al. 2020b), 
and decision processes influence trust (Molden et al. 2017). 
For example, indigenous knowledge systems question core 
assumptions of western management paradigms and offer 
new perspectives about ecological transformation (Whyte 
2018) or human connection to natural systems (Berkes 2008, 
Chapin et  al. 2013, Schuurman et  al. 2021). Ensuring the 
legitimacy of decisions requires that those affected have seats 
at the table (i.e., a role in decision-making) and the capacity 
to meaningfully participate (Cosens 2013), raising questions 
about the optimal design of stakeholder engagement. To 
what extent do all relevant stakeholders have both roles in 
decision-making and the capacity to participate, particularly 
marginalized groups and those that will live with the bur-
dens from proposed strategies? By whom will the success of 
RAD decisions be evaluated and in what forums?
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Individual and organizational adaptation. Managing ecological 
transformations over time requires human adaptive capac-
ity, whereby diverse factors support people’s confidence in 
and ability to make RAD decisions (Engle 2011, Whitney 
et al. 2017). The factors that influence individual and orga-
nizational adaptive capacity are not completely understood, 
although much recent attention has focused on human adap-
tive capacity in the context of social–ecological transforma-
tion (Cinner et  al. 2018, Cinner and Barnes 2019), and in 
particular, identifying the governance mechanisms needed 
to navigate such change (e.g., Chaffin et al. 2016, Garmestani 
et  al. 2019). Scholars have found that organizational cul-
tures, specifically those that support government resource 
managers, are often slow to change, lack general creativity, 
and reinforce status quo power relations (Gunderson and 
Light 2006, Gunderson et al. 2018), reflecting what is often 
a dominant discourse of risk aversion and protection of cur-
rent resources and dynamics. Such scholarship suggests that 
individual RAD decision-makers will need support from a 
culture of change, and raises questions about how to foster 
organizational learning.

Institutions to manage ecological transformation. Institutions 
(i.e., laws, policies, rules, and social norms) are dynamic, 
and the ways they develop, adapt, and evolve over time 
have been extensively studied (e.g., Mahoney and Thelen 
2009, Micelotta et al. 2017). Natural resource management 
decisions have always had ramifications for social systems 
that depend on both decisions and the resources them-
selves (Ostrom 1990, Young 2002). Choices about how to 
respond to challenges such as ecological transformation, 
in turn, influence the creation of institutions that guide 
human interactions with ecosystems (Young et  al. 2008, 
Cleaver 2012). Laws and policies create boundaries to 
action (Fidelman et al. 2019, Clifford et al. 2021) that may 
need to shift to match changing realities, or else manag-
ers will likely need to find creative ways forward despite 
intractable policies (McNeeley 2012, Oakes et  al. 2016, 
Garmestani et  al. 2019). Long-standing goals may also 
need to change (see Lynch et al. 2021b). For instance, many 
environmental policies and regulations use the ambiguous 
term natural as part of directives (Cole and Yung 2010), 
which raises questions of how mandates to manage for 
“natural conditions” will be implemented in transforming 
ecosystems. Institutional change may involve allowed or 
prohibited resource uses, laws and policies, management 
goals, governance processes and structures, and roles of 
decision-makers (Clement and Standish 2018). There is a 
broad and rich diversity of questions at the intersection of 
ecological transformation and institutional change (e.g., 
Knapp et al. 2020). Because the selection of RAD options 
likely influences the scope and viability of sequential RAD 
decisions, the continual interplay between decision-mak-
ing, outcomes, and subsequent institutional change needs 
examination (e.g., Subalusky et  al. 2019, also see Clifford 
et al. 2021).

Conclusions: A transformation science agenda
New science is essential to help managers fully grapple with 
nonstationarity and choose strategically among options to 
resist, accept, or direct ecological trajectories and transfor-
mations. We have laid out a set of five questions that can 
form the basis of a transformation science agenda to sup-
port RAD decisions (table 1). Is transformation a threat? 
How effective and durable are resistance strategies? What 
are the plausible ecological futures? What are the conse-
quences of the choice to resist, accept, or direct transforma-
tion? How do managers and society make choices about the 
threat of ecological transformation? The science needed is 
diverse. It includes greater understanding of amplifying 
and dampening mechanisms, rates of ecological change, 
biotic novelty, and environmental contingencies. It calls 
for conducting science in a new way to develop multiple 
ecological scenarios for a given climate future and identify 
effective pathways for directing ecological change. The sci-
ence needed includes a greater understanding of the wide-
ranging social–ecological consequences of a particular 
choice to resist, accept, or direct ecological change, from 
resource use, to equity and justice. Finally, applying the 
RAD framework requires examining the RAD decision-
making process, and institutions that manage ecosystems 
in the face of ecological transformation. These questions 
form the basis of a broad new transformation science 
agenda for a nonstationary natural world, rooted in man-
ager needs and decisions.

Science to support application of the RAD framework 
requires disciplinary progress within both ecological and 
social science, and it will benefit from a new scien-
tific approach that involves closer partnerships between 
researchers and managers, allows for faster and more con-
textual learning under uncertainty, and considers questions 
across disciplines. These shifts in the practice of science 
can increase usability (Dilling and Lemos 2011), better 
integrate dynamics of scale (Hulme 2010), span barriers to 
provide more synergistic insights (Rice 2013), respond to 
stakeholder experiences of climate change impacts (Knapp 
and Trainor 2013), and ensure that science informs and 
improves decision-making (Enquist et al. 2017). Complex 
and dynamic RAD decisions, made under conditions of 
imperfect knowledge, can be guided by new ways of devel-
oping and delivering scientific information, and by shifts in 
institutional cultures to facilitate risk taking, learning, and 
increased adaptive capacity (Emerson and Gerlak 2014). 
Science in this context may include diverse interdisciplin-
ary teams (e.g., box 4), new experimental approaches (e.g., 
box 3; Lynch et al. 2021b), and advanced development of 
scenarios (e.g., box 2). Coproduction and translational 
ecology have emerged as a strategy for creating useful and 
relevant science that is tailored to applied contexts (Mauser 
et al. 2013, Beier et al. 2017, Enquist et al. 2017, Djenontin 
and Meadow 2018). These science–management partner-
ships may require new types of funding support for applied 
and context-dependent research (Arnott et  al. 2020). The 
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Table 1. A research agenda for transformation science organized around five major questions that arise in a RAD 
decision-making process.
Question Agenda

Question 1. Is transformation a threat? What feedback loops could amplify or dampen change?

Is demographic compensation likely to dampen change?

Will ecological response be slow, fast, or abrupt?

Will ecological transformation conform to a press–pulse framework, and be triggered 
by an acute disturbance event?

Question 2. How effective and durable are resistance 
strategies?

Where and when are resistance strategies economical, feasible, and durable, given 
ongoing climate change and other directional stressors?

What are the opportunity costs of resistance?

What is the shelf life of climate refugia with ongoing climate change and intensifying 
climate extremes and compound events?

Question 3. What are the plausible ecological futures? What is the likelihood and nature of a novel ecological community in the future?

What are the roles of stochasticity and contingencies in driving ecological 
trajectories?

How do multiple complex ecological processes drive ecological trajectories and which 
processes are most essential to integrate in modeling?

What are the divergent and plausible ecological scenarios for a particular climate 
future?

What are the sequence, timing, and methods of interventions that could achieve a 
preferred future ecological condition?

Question 4. What are the consequences of the choice 
to resist, accept, or direct transformation?

How does ecological transformation interact with changes in resource use and other 
material, human–environmental relationships?

What are the emotional, psychological, or cultural consequences of ecological 
transformation?

How will ecological transformation alter existing hazards and vulnerability of 
individuals or communities?

How do the consequences of RAD decisions differ for diverse stakeholders and 
rights-holders and influence equity and justice?

Question 5. How do managers and society make 
choices about the threat of ecological transformation?

What factors influence the effectiveness of RAD decisions across different decision-
making contexts?

How can decision-makers balance preferences of diverse communities?

What factors influence individual and organizational adaptive capacity to manage 
ecological transformation?

What institutional changes would facilitate management of ecological transformation?

Box 4. Coupled social–ecological realities.

Decisions that address ecological transformation—and by extension, coupled social–ecological dynamics—are just one 
of many feedback loops between society and ecosystems in the context of transformative change. Over the past several 
decades, scholars have posited a large and sometimes overwhelming number of theoretical frameworks and analytical 
approaches to achieve cross- and transdisciplinary integration in studies of human–environment interactions (Pulver 
et al. 2018). The term social–ecological system (SES) represents one common characterization of this scholarship, and 
it emphasizes the dynamic connections between human behavior and ecological condition (Gunderson and Holling 
2002, Folke 2016). For ecological transformation, one key insight from an SES perspective is the importance of iden-
tifying thresholds, which can be essential for recognizing potential transformations and making anticipatory decisions 
(Foley et al. 2015, Selkoe et al. 2015). SES perspectives particularly underscore the need to understand social–ecological 
feedback loops to disturbance processes. This kind of focus can reveal how both the consequences and the drivers of 
disturbance may change as the environment changes, altering a system’s vulnerability to ecological transformations (e.g., 
Gaiser et al. 2020). A key area for future interdisciplinary research is therefore the coupling of ecological and social sys-
tems (e.g., Larrosa et al. 2016, Pulver et al. 2018): What are the most important feedback loops between human behavior 
and ecological dynamics in the context of transformations? Which data, metrics, or indices provide information about 
changes in connections in SES systems?
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RAD framework is supporting the development of a new 
management paradigm for our rapidly changing planet 
(Schuurman et  al. 2021). Application of the RAD frame-
work calls for a transformation science agenda, focused 
on ecological and social sciences and centered on the 
questions encountered in a RAD decision-making process, 
to effectively support natural resource management in a 
nonstationary world.
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