
1 
 

Incorporating Risk into Climate Adaptation: 
Decision Analysis for Crop Switching in a Changing Climate 

 
William R. Travis1 

Adam D. McCurdy 
 

Western Water Assessment 
Cooperative Institute for Research in Environmental Sciences 

Department of Geography 

University of Colorado 

Boulder, CO 80309-0260 USA 
 

Abstract 

Decision analysis informs a question common to all enterprise strategies: under changing 

conditions when does it make sense to change operations? Risk and decision analytic approaches 

would seem useful to the problem of adapting to a changing climate, and are increasingly called 

for by assessments of the problem. Formal decision analysis is founded on a set of economic and 

management principles applied to a decision-maker’s realistic structure of options and outcomes 

under uncertainty, and can inculcate a mixed-methods approach of both prescriptive and 

diagnostic instruments including goals ranging from optimizing to satisficing.  We test a suite of 

decision analysis criteria and methods, including expected utility, regret analysis, risk aversion, 

sensitivity analysis and the value of obtaining more information, for the case of a potential 

change in crops in the Northern Great Plains, where the warming climate already appears to have 

created opportunities for increased production via crop switching, from spring to winter wheat. 

Results indicate that warming climate over recent decades has brought winter wheat almost to 
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parity with traditional spring wheat on average, but with larger downside risks of complete crop 

failure exacerbated by financial vulnerability due to lack of insurance. Even weak expectations 

of future insurance availability encourages switching, and the benefits of winter wheat in most 

years support switching and self-insuring. 

Key Words: Decision analysis, climate risk, adaptation, wheat production 

 

1 Introduction 

The growing need for adaptation to climate change has brought calls for analysis of the 

adaptation decision process (Melillo et al. 2014), and for decision support to improve climate 

risk management (Moss et al. 2014); both approaches invoke, implicitly or explicitly, the 

methods of formal risk and decision analysis. A “risk approach” is increasingly invoked in 

discussions of climate change, along with a turn toward decision analysis and decision support. 

Risk and decision analysis were mentioned prominently in NRC’s America’s Climate Choices, 

IPCC AR5, and the third U.S. National Climate Assessment, yet these reports lacked details on 

how to apply risk and decision theory and methods to climate adaptation. Recent reviews lay out 

decision analysis approaches that can contribute theoretical and diagnostic insights to the larger 

project of understanding, predicting, and improving adaptation (Dow et al., 2013; Jones and 

Preston, 2011; Kunreuther et al., 2013). Decision analysis can improve treatment of adaption in 

impact studies and the conceptual foundations and tools are in place (Heal and Millner, 2014), 

but decision processes remain implicit in most adaptation studies. Here we explicate those 

methods in application to a realistic case of adaptation. 
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2 Decision Analysis of Climate Adaptation 

Decision analysis, codified by Raiffa (1968), Howard (1988) and others, and intersected 

with risk analysis to improve handling of uncertainty in decisions and policies (Morgan and 

Henrion, 1990), provides an axiomatic yet flexible tool kit for analyzing the adaptation process. 

While some economists have explored decision analysis frameworks even for global climate 

policy (Drouet et al., 2015; Heal and Millner, 2014; Smith, 2010), decision analysis seems most 

“appropriate for studies at the local scale where climate predictions are the least 

informative…..and where location-specific policies are often needed.” (Heal and Millner, 2014, 

p. 131). Such “decision-centered approaches” (Schneider et al. 2000; Wise et al. 2014) can 

complement top-down and integrated modelling with greater consideration of “individual 

behaviour, decision-making and adaptive learning” (Arneth et al. 2014, p. 511).  

Various forms of decision analysis have been applied to climate change, including expected 

utility (Kunreuther et al), decision-scaling, a form of sensitivity analysis (Brown et al., 2012), , 

robust decision-making (Lempert and Groves, 2010).  In contrast to general equilibrium 

econometric studies also applied to agricultural responses to climate change (Antle et al., 2004), 

decision analysis tends to focus on the decision agent (Schneider et al., 2000), and thus is not 

generalizable to equilibrium outcomes across an industry sector or region. An important 

capability of decision analysis is to make transparent and available to the decision-maker the role 

of singular events and extremes, and to illustrate the difference between expected value 

outcomes based on mean vs. extremes; this allows both the decision-maker and the decision 

modeler to include the effect of extremes/singular events or not, based on the decision structure 

and the decision-maker’s risk and regret functions. 
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Decision analysis can enhance attention to risk and risk-taking behavior, making it useful at this 

stage of climate change analysis. The importance of stochastic variability, and extremes, in 

adaptation studies, projections, and, in theory, in adaptation itself (Sexton and Harris, 2015), is 

being more recognized as the literature [methodology, approach, epistemology] shifts toward a 

risk framework, as described earlier. This is important in this study because we wish to test the 

effect of occasional complete crop loss, that is discreet loss events whose probability is changing 

over time. Time-transgressive studies are especially needed to allow for slow change and 

learning by the adaptive agents, and some decision tools, especially those taught in business 

schools like risk registers and options analysis (Clemen and Reilly, 2013), deal explicitly with 

changing conditions and decisions over time, as we do in this study.  

Here we apply decision analysis to farmer adaptation behavior, with focus on the role of 

risk and risk aversion in crop choices. The question is: When does it make sense to switch 

production systems as their relative advantages and risks change with changing climate? It is 

important to note that in decision analysis the notion of a choice that “makes sense” is defined as 

part of the decision structure, and may be based on criteria that range from maximizing, to 

optimizing, to satisficing. We pursue this in a case where climate change appears to be creating 

opportunities for increased production via crop switching, from spring to winter wheat, in the 

northern Great Plains. 

3 Adaptation in Agricultural Studies 

A large literature explores adaptation, innovation, technology adoption, and risk 

management in agriculture, and these instruments have been directed to climate impacts and 

adaptation in agriculture for decades (Kaiser et al., 1993). Climate adaptation can be 

incorporated into agricultural studies as incremental adjustments in crop management (Antle et 
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al. 2004; Easterling et al. 2003; Porter et al. 2014), and crop models can be used with various 

production choices (e.g., planting date) to evaluate whether adaptation can compensate for 

climate-induced yield reductions. A recent meta-analysis of cereal crop adaptation studies for the 

IPCC’s fifth assessment (Porter et al. 2014) showed that incremental adaptations such as changes 

in planting dates could increase yields 15-18% above the climate-decremented trend (see also: 

Challinor et al. 2014). But the assessment also noted that more fundamental changes, like type of 

crop or expansion into regions previously too cold, were not readily included in crop models.  

Efforts are increasing to simulate adaptation in Crop impact studies, like the Agricultural 

Model Intercomparison and Improvement Project (Rosenzweig et al. 2013), are putting more 

effort into simulating adaptation  (Challinor et al. 2014; Rotter 2014).  

Howden et al. (2007) argued that “practices at the management unit level will be a key 

component in adapting agriculture to climate change,” echoing the agent-centered approaches by 

Schneider et al. (2000).  It is also in farmer choices that risks are clearly manifest, and a large, 

decades-deep literature addresses risk in farmer decision-making (Great Plains Council 1955; 

Just 2003), its role in innovation (Marra et al. 2003), and the prima facie salience of risk 

management in farmer response to climate change. Decision analysis lends itself to analyzing 

farm level adaptation (Just 2003; United States Department of Agriculture 2012) and the effect 

of extreme events on decisions (Antón et al. 2013; Travis and Huisenga 2013). Other approaches 

to simulating farmer choices, including innovation adoption cohorts (Ruttan, xxxx; Chhetri et al. 

2010), represenattive agricultural pathways (Antle et al. 2014), and the growing stable of risk 

modeling tools (Hoag 2010; see also http://www.rightrisk.org/ ), can be applied for both research 

and decision-support.  

http://www.rightrisk.org/
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We draw on these approaches, applying farm-level risk and decision analysis to crop 

switching adaptation.  

4 Crop switching in the northern Great Plains 

Limited empirical data, and farmer and extension agent testimonies, suggest that winter 

wheat is making inroads into the long-standing dominance of spring wheat in North Dakota, 

especially over the last 20 years (Knutson 2011; Swenson 2006a). This may be the early stages 

of adaptation to a warming climate in the northern Great Plains, as suggested by Porter et al. 

(2014) and in media stories (Ydstie 2014).  

Adaptation in this case takes advantage of conditions that create opportunities for higher 

pay-off crops. The switch from spring to winter wheat offers several benefits, but also entails 

residual risk of total crop loss due to winterkill. Winterkill risk has traditionally been so large 

that winter wheat was rarely grown, and is not eligible for crop insurance, in North Dakota. So 

this analysis addresses the changing advantages of cropping systems in which residual climate 

risk adheres to an increasingly attractive alternative. 

4.1 Production patterns 

The general pattern of Great Plains wheat production was established over a century ago. 

Farmers chose winter wheat (sown in the fall, dormant over the winter, and maturing in early 

summer) in the southern and central Plains because it could be harvested before the hottest part 

of the summer (Malin 1944). Colder winters further north did not support the over-wintering 

crop, and spring wheat (sown in spring and harvested in late-summer or early fall), came to 

dominate the northern Great Plains. Spring wheat is susceptible to occasional drought and mid-

summer heat, delayed or prevented planting due to wet spring conditions, and some risk of loss 

to early frosts, but it evades winterkill.  
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4.2 Winter wheat expansion 

Winter wheat in this setting mostly avoids drought and heat hazards. The crop is already 

in the fields during spring, taking advantage of early moisture and warmth, and is harvested 

before peak summer heat. The net effect of winter wheat’s phenology is 20% or more yield over 

spring wheat (Alberta Wheat Commission 2013). By tracking the few farmers who grow at least 

some winter wheat, Swenson (2006a) finds that the crop provides up to 30% more yield and 10% 

better net economic returns in some districts, rough values also supported by the representative 

crop production budgets on which we based the simulations below. Swenson (2006b) noted that 

winter wheat abandonment was declining, especially since the mid-1990s, to around 20% 

through 2005, and that more farmers are growing at least some winter wheat. 

This crop trend may be associated with the region’s warming trend over the last half-

century (Romero-Lankao et al., 2014); the northern Plains having especially warmed, in all 

seasons, over the past three decades (Ballard et al. 2014; Walsh et al. 2014). The instrumental 

record shows winter warming for North Dakota’s central climate division (Fig. 1), the focus of 

this study. The warming has been noted by farmers (Ydstie 2014), documented in plant 

flowering phenology (Dunnell and Travers, 2011) and wildlife studies (Ballard et al. 2014), and 

shows up in some agronomic studies (Hu et al. 2005).  Ballard et al. (2014) noted the “post-

1980s winter warming” as the “most striking” trend in the region’s climate over the past century. 

Warming has not obviated the chance of extremely cold winters (Fig. 1), and the limited 

data available on winterkill suggest occasional extensive winter loss, with widespread crop 

abandonment in the coldest winters shown in Fig. 1, as evident in this agricultural news report 

from spring, 2014:  
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"Winterkill in this area is severe!" reports a farmer from Ward County, N.D. "I have 

never seen such a large complete loss due to winterkill before. Winterkill is around 100% 

damage in all fields in this area. Stubble cover and maturity of the plants did not make a 

difference." (Shafer, 2014) 

The northern Great Plains experienced an extremely cold winter in 2013-14 (Fig. 1), indicating 

that crop-damaging cold spells can be part of even a warming climate, and must be factored into 

adaptation choices.  

Thus, the crux challenge for winter wheat in the north is potential winterkill from freeze 

damage (Cox et al. 1986; Fowler 2012; Graybosch and Peterson 2010; Skinner and Bellinger 

2010). Little research is available that dis-entangles the effects of cultivar hardiness, 

management, and weather and climate in the spread of winter wheat, and winter loss is a 

complex phenomenon affected by diurnal and seasonal temperatures, snow cover, wind, crop 

residue, and soil moisture (Alberta Wheat Commission 2013; Cox et al. 1986; Skinner and 

Bellinger, 2010).  Laboratory studies indicate that temporary warmth followed by cold late in the 

winter is especially damaging, but plants exposed to a freeze-thaw cycle early in the winter can 

better tolerate subsequent freezing (Skinner and Bellinger 2010).  

Such technical uncertainties notwithstanding, the advantages of winter wheat, along with 

a warming climate, appear to be enticing more North Dakota farmers to switch (Swenson 2006a). 

The capital investment in switching is small, so the key decision factors are comparative returns 

and uncertainty about future yields. Also important to many farmers is that crop insurance is 

unavailable for winter wheat in North Dakota, reflecting the past threat of winterkill. 
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5 Modeling the decision to switch crops 

Our main approach to climate adaptation modeling is to adopt and modify extant, in-use 

decision tools, and to simulate them over time with scenarios of climate change and, in this case, 

the potential for extremes that cause total loss, while applying alternative decision criteria. The 

extant decision tools applied here are farm budget spreadsheets developed by university 

extension economists for farmers in the region (Swenson and Haugen 2013), and the risk 

assessment and management templates provided to producers in the region by a consortium of 

agricultural researchers and advisors through the “Risk Navigator” (     ) and “AgSurvivor” (   ) 

programs, and documented in Hoag (2xxx). We implemented a suite of expected utility decision 

models for North Dakota wheat production using @Risk, a business risk and decision analysis 

software (see: http://www.palisade.com/ ) that maintains a spreadsheet frontend that will be 

familiar to most producers while allowing for more sophisticated simulation analysis. The 

models are available from the corresponding author and an archival website  

(http://wwa.colorado.edu/resources/tools/decision_models/index.html), and detailed in the 

Electronic Supplementary Material. Here we briefly describe model development and key 

simulation parameters. 

5.1 Decision structuring 

A standard first step of decision analysis is decision-structuring: defining the choices, 

uncertainties, and outcomes for a given decision problem. Farmers make short-term, often 

repetitive, as well as long-term decisions, affected by the environment, technology, markets, 

policy, and personal preferences. Minor adjustments in production and marketing account for 

many of the decisions, while choices like what crop to plant are made more rarely. The switch 

from spring to winter wheat, while not transformative, does require change in seasonal allocation 

http://www.palisade.com/
http://wwa.colorado.edu/resources/tools/decision_models/index.html
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of labor, production costs, and marketing, and subjects the farmer to new production and 

financial risks.  

The model simulates the crop switch decision as a choice between expected value of 

crops:            

(1) 

𝐸𝑉 = (𝑦𝑖𝑒𝑙𝑑 ∗ 𝑝𝑟𝑖𝑐𝑒) − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 

Detailed annual farm budget spreadsheets (Supplementary Table 1) developed by North Dakota 

State University (NDSU) extension service (see: http://www.ag.ndsu.edu/farmmanagement/crop-

budget-archive; Swenson and Haugen 2013) are applied to a typical 2,000 acre dryland wheat 

farm in North Dakota’s south central district, as in a previous study (Travis and Huisenga 2013) 

and similar to a farm analyzed in Hoag (2010). We follow the practice of farm finance analysts 

(Hoag 2010; Swenson and Haugen 2013) and modify the farm budgets in order to focus on the 

crop enterprise, omitting indirect costs, like land rent and machinery debt servicing, to calculate 

a net return to operating costs, mainly inputs like seed and fertilizer. Most farm income comes 

from crop production, and maximizing return from the crop enterprise remains the main strategy 

for farming success (Hoag 2010; Swenson 2010; Taylor et al. 2011), making it a logical target 

for expected value decision analysis. 

As with the crop cost or risk calculators that farmers use, we apply statistical distributions 

to yield and price. Crop yields in the model are a skewed distribution based on 2003-2013 data 

for the South Central district.  Prices, which are notoriously difficult to predict and range widely 

for a variety of reasons, are set at 2014 values or treated as a uniform distribution bounded by the 

lowest and highest prices in the 2006-2014 series of NDSU crop budgets (Supplementary Table 

1). 

http://www.ag.ndsu.edu/farmmanagement/crop-budget-archive
http://www.ag.ndsu.edu/farmmanagement/crop-budget-archive
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Crop switching represents a move from one crop budget and yield distribution to another. 

In the base runs we hold production parameters at 2014 levels and vary the rate of winterkill and 

availability of insurance for winter wheat in 5,000 Monte Carlo simulations to compare EV of 

spring and winter wheat. Next we developed 30-year “Representative Agricultural Pathways” 

(RAPs) similar to the approach applied in AgMIP (Antle et al. 2014). Returns vary over these 

time series as yields, insurance costs, and the probability of crop loss change. For the base run 

we decremented winter-kill probability from .3 to .05 (to match the spring wheat loss rate) 

assuming that warming continues linearly over the 30 years, and imputed an insurance 

instrument in the simulations after different thresholds of loss rate were reached (e.g., .2 or .1, 

which occur roughly 8 and 16 years into the simulation, respectively). We plot annual net crop 

income as well as calculate a net present value (NPV) of future years as: 

           (2) 

𝑁𝑃𝑉 = ∑
𝑥𝑖

(1 + 𝑟)𝑖

𝑛

𝑖=0

 

The discount rate r is set at 3%. To create a time series of NPVs, n is reset each year to the 

remaining annual steps, making each year the start of a shorter planning horizon that eventually 

reduces to zero years. This is akin to the risk-adjusted NPV (rNPV) used in financial analysis, 

and is especially useful in climate impact studies because the crop loss risk is explicitly 

calculated, not assumed to be reflected in the discount rate. A time series of NPVs allows 

comparison among different NPV trajectories, for example with or without insurance becoming 

available at some time in the simulation. 

With these three approaches (base, annual EV, and NPV) we simulate a farmer making 

choices on recent outcomes, as well as a forward-looking farmer weighing a stream of expected 

returns as described in Hoag et al. (2010). The main questions are whether the farmer should 
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switch crops given the difference, when would this occur, and how do different levels of risk 

tolerance and risk transference affect the decision. The simplest decision criterion trips the crop 

switch when EV from winter wheat exceeds spring wheat, as with Trade-Off Analysis (TOA) 

applied to farmer choices by Antle et al. (2014). The switch makes increasing sense as the 

differential, or opportunity cost, between the adaptive (switching) and non-adaptive (non-

switching) farm increases (Antle et al., 2014; see also Travis and Huisenga, 2013).  

The continued (though slowly reducing) likelihood of extremely cold winter conditions 

makes the crop switch decision risky, as does the lack of insurance for winter wheat. Agricultural 

extension reports from North Dakota (Swenson, 2006a; Swenson, 2006b) estimate that winter 

wheat abandonment has varied around 18% in recent years. Rather than simply comparing the 

average efficiency of cropping systems, farmers considering the switch to winter wheat know 

that they are taking on the risk of total crop loss due to winterkill, a risk not present in the 

traditional spring wheat system. The model simulates total crop loss via a “risk register” 

(Donnelly et al., 2012) that inserts a bivariate distribution of zero yield into the production 

simulation at a given probability, illustrated in Supplementary Fig. 1. If winter wheat is 

becoming less subject to total loss, the crop budgets indicate that its production and cost benefits 

will eventually surpass spring wheat and make switching worthwhile. Improving performance 

might eventually warrant insurance coverage for winter wheat, and thus the RAPs include an 

emergent hypothetical insurance instrument. The opportunity cost at which the switch occurs is 

sensitive to the difference between mean conditions and the rate of crop failure, thus invoking 

also the decision-maker’s risk tolerance. 
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5.2 Risk tolerance 

Decision modeling at the farm scale offers the potential to reflect farmers’ tolerance for 

risk, also known as risk aversion (Holt and Laury, 2002; Pratt, 1964). In decision analysis, risk 

aversion is assessed by translating monetary values into utilities via a function whose shape 

reflects the risk-reward relationship. Choice of risk tolerance parameters remains something of 

an art, approached in different styles: laboratory and field elicitation (Holt and Laury, 2002) and 

rule-of-thumb approximations from analysis of past decisions (Howard, 1988; Pratt, 1964).  

We implement risk aversion in the model, both to make the decision point more realistic 

and to estimate a hypothetical winter wheat crop insurance premium, via the mixed methods 

approach taken in the agricultural risk literature (Hoag and Keske, 2010). From the literature we 

know that the risk utility function will be at least slightly concave (e.g., risk-averse rather than 

risk-seeking), but modern production systems like those simulated here tend to exhibit only mild 

risk aversion, especially in the context of subsidized crop insurance (Parsons and Hoag, 2010).  

Our goal in specifying risk aversion in the simulation is to estimate an efficient premium for 

winter wheat insurance that might emerge in the future. We do this by translating EV of winter 

wheat production into utilities (as described by Clemen and Reilly 2013, 637-657):  

(3) 

𝑈(𝑥) = 1 − 𝑒−𝑥/𝑅 

x is the expected value of net crop income 
e is the constant 2.71828 (base of the natural logarithm) 
R is the risk tolerance, and sets the concavity of the utility curve. 

 
We estimate R by the Pratt Approximation (Pratt, 1964), roughly 1.25 times net income, and by 

the risk tolerance elicited for a 2,000 acre dryland wheat farm analyzed in Hoag and Keske 



14 
 

(2010). R is in dollars, and defines the certainty equivalent (CE), the value of the enterprise 

minus risk, which allows calculation of a risk premium: 

(4) 

𝑅𝑃 = 𝐸𝑉𝑟 − 𝐶𝐸 

EVr is the expected value with risk, and RP is the amount the farmer is willing to pay to 

eliminate the risk for a given risk aversion, thus it is equivalent to an efficient insurance 

premium. 

4.3 Crop insurance module 

Availability and structure of insurance is an important element of crop choices among 

farmers (Antón et al., 2013). Yield and revenue insurance is widely used in the U.S., especially 

for dryland crops, but winter wheat insurance is not available in North Dakota (Diersen, 2012; 

Swenson, 2006a). Presumably, if winter wheat expands as the climate warms, then a winter 

wheat-specific insurance program will be fashioned by the USDA’s Risk Management Agency, 

since its goal is to provide insurance where actuarially feasible  (see: 

http://www.rma.usda.gov/help/faq/basics.html). Thus, a realistic RAP must allow for an 

insurance instrument to emerge.  

Our hypothetical insurance policy is structured along the lines of “Yield Protection” 

policies offered in South Dakota, where more winter wheat is grown and insured (Diersen, 

2012); it is described in detail in the supplementary material. We cannot know what risk-priced 

winter wheat insurance would cost in North Dakota’s climate future, so we estimated premium 

prices first as multiples (up to 3) of the spring wheat premium to reflect the difference in risk, 

and next by a premium calculated via the econometric method based on risk aversion, as 

described above. 

http://www.rma.usda.gov/help/faq/basics.html
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6 Results 

Results include simulations comparing spring and winter wheat outcomes based on 2014 

production budgets for different rates of winterkill, 30-year simulations to test the pace of 

adaptation, and sensitivity runs to test insurance instruments and the role of risk aversion in 

adaptation decisions. 

6.1 Base runs 

Winter wheat abandonment has ranged from roughly 10 to 30%, two to six times larger 

than spring wheat. So winterkill is simulated via the risk register to force total crop loss into the 

simulations based on a bivariate sampling between .3 and .1 probability of zero yield, with spring 

wheat’s catastrophic loss set at its recent rate of .05. Winter wheat in the initial runs is produced 

without insurance protection such that if the risk register calls for complete loss then no yield and 

no income accrue.  

6.2 With and without winter wheat insurance 

Base runs, using 2014 NDSU crop budgets and the yield distributions as specified above 

and in the supplementary material, are shown in Fig. 2. Results for spring wheat and three rates 

of winter wheat failure with and without hypothetical insurance (Fig. 2a), show that winter wheat 

outcomes range widely compared to spring wheat, due to higher probability of complete crop 

loss and lack of insurance.  A 30% chance of winterkill without insurance creates a large 

downside risk that comports with the historical fact that winter wheat was rarely grown in North 

Dakota. Winter wheat very slightly out-performing spring wheat only at low (e.g., .1 to .2) 

probabilities of winterkill and only if insurance were available. In only about 40% of the time 

could winter wheat under these conditions be expected to equal or exceed the returns of spring 

wheat (Fig. 2b). Winter wheat with only a .1 probability of winterkill out-performs spring wheat 
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70% of the time, and offers almost a 35% chance of netting over $200K, while spring wheat 

might net $200K only 20% of the time. 

A less risk-averse farmer might try winter wheat at .1 probability of winterkill even 

without insurance to enjoy the higher mean and maximum outcomes (half of the crops ought to 

outperform spring wheat), while bearing the lower tail in which perhaps 1-in-5 crops would 

result in a negative crop income. 

A crop insurance scheme is likely to emerge if winter wheat becomes more viable. We 

simulate insurance that covers 75% of expected revenue if the winter wheat is abandoned, at 

various probabilities of winterkill and premiums that are multiples of the spring wheat premium. 

The right-hand plots in Fig 2a show results for the 2014 base budget with this insurance costing 

1.5 times the spring wheat premium. Insurance truncates large losses, but also slightly depresses 

the top income because the premium increases operating costs. Under these conditions winter 

wheat provides similar or slightly better returns than spring wheat at .2 and .1 winterkill 

probabilities. Somewhere between .2 and .1 probability of winterkill, winter wheat and spring 

wheat produce similar net return prospects, supporting the suggestion by Swenson and others 

that winter wheat might perform better than spring wheat right now, at just under 20% 

abandonment rates.  

6.3 What price for insurance? 

Risk aversion analysis (Table 1) points to an efficient premium price for spring and 

winter wheat insurance. Spring wheat at its recent .05 probability of crop loss requires a risk 

premium (calculated by equations 3 and 4) of $16.89, close to the actual $15.40 cost of an all-

peril policy in 2014. An equivalent policy for winter wheat, were one available, should cost 

$32.30 at .3 probability of winterkill, and $10.21 at .2 winterkill probability. If the rate of 
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winterkill were to decrease further, the risk premium becomes negative, meaning the farmer 

should not be willing to pay anything for insurance, and could efficiently self-insure. 

6.4 Sensitivity analysis 

Sensitivity analysis, variously termed stress testing, bottom-up analysis, or decision 

scaling, can reveal the effect of different choices in decision analysis (Morgan and Henrion, 

1990, chapter 8). Standard sensitivity analysis of the base runs gives expected results: returns are 

most sensitive to prices, which vary widely, and to yields. The decision scaling method described 

by Brown et al. (2012), reveals the relationship between the yield benefit from winter wheat 

compared to spring wheat (Fig 3a), and tolerance for cost of hypothetical winter wheat insurance 

(Fig 3b). Across the range of winterkill probabilities, the winter-to-spring wheat yield ratio need 

only reside around 1.2 to allow winter wheat to statistically dominate spring wheat in expected 

value even at .3 likelihood of winterkill. At the current yield premium, winter wheat producers 

should be willing to pay a premium for insurance coverage up to 2 times the spring wheat cost 

(Fig 3b), keeping in mind that insurance is only about 10% of production costs. This sensitivity 

analysis also suggests that the winter wheat production frontier is theoretically quite close to, and 

perhaps already overlaps with, spring wheat in North Dakota, suggesting why recent warming 

has apparently elicited increasing winter wheat production (Swenson, 2006b). 

6.5 Value of adaptation as climate changes 

The final set of model runs simulate a 30-year RAP in which the probability of winterkill 

starts at .3 and declines due to climate warming to roughly the rate of spring wheat, and in which 

crop insurance emerges at different loss probabilities and with different premium rates.  The first 

RAP simulations (Fig. 4a) look for the point where winter wheat begins to offer better net return 

than spring wheat based on insurance scenarios. The RAP starts with a .3 probability of 
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winterkill and insurance that emerges when the probability declines to .2, at a premium that is 

1.5 times the spring wheat cost, a value that comports with the risk tolerance found above. 

Insurance offered at .2 probability of failure, even with premium rates 1.5 times current spring 

wheat rates, would advance the switch almost a decade. Insurance that emerges only when winter 

wheat risk declines to something close to spring wheat (.1 to .05) has little effect on crop 

switching, and farmers would benefit from the switch even without insurance. 

 When might a forward-looking farmer, observing successful experimentation with 

winter wheat but also recent set-backs like the 2014 crop loss, decide it is worth switching? 

Assuming that the relative advantages of production and price continue, the key factors in this 

decision are expected rates of crop loss and the potential emergence of winter wheat insurance. A 

forward-looking decision-maker would key on the net present value (NPV) of a choice, so we 

plot NPVs (at a 3% discount rate) for different RAPs (Fig 4b). Spring wheat exhibits the largest 

NPV at the start of all scenarios (first pointer in Fig 4b), given the .3 probability of winter wheat 

loss, but winter wheat NPV begins to exceed spring wheat in about 5 years (second pointer in Fig 

4b) if insurance is offered at a .2 loss rate, and in about 12 years if insurance emerges at a .1 

probability of winterkill. Farmers might ride these waves of improved NPV as they move 

through time, switching crops when winter wheat starts to dominate the NPV curve.  

7 Conclusions 

Warming climate in the Northern Great Plains has brought winter wheat almost to parity 

with more traditional spring wheat, but farmers making the switch face residual risks of 

occasional winter kill and financial vulnerability due to lack of insurance. A slight further 

reduction in winter kill risk, and insurance priced even at 1.5 times the spring wheat premium, 

would make winter wheat an attractive adaptation in the warming climate. 
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Crop Prob. of loss Risk premium 

Spring wheat .05 $16.89 

Winter wheat .3 $32.30 

Winter wheat .2 $10.21 

Winter wheat .1 $-36.32 

 

Table 1 Risk premiums for spring and winter wheat calculated for a moderately risk-averse 

farmer. Current spring wheat insurance in the study area costs about $15.00. Winter wheat at .1 

probability of failure performs so well that the farmer is better off without paying for insurance. 

 

Figure Captions 

Fig. 1 Average temperatures and average monthly minima, December-January-

February, North Dakota central climate division. From NOAA’s National Climate 

Data Center at: http://www.ncdc.noaa.gov/cag/time-series/us 

Fig. 2 (a) Cumulative distributions of net crop income for a simulated 2,000 acre 

dryland farm, south central crop district of North Dakota, 2014 crop budgets: winter 

wheat (WW) at .3, .2 and .1 probability of total crop failure (without insurance) 

compared to spring wheat (all spring wheat simulations include insurance and .05 

probability of crop loss). (b) Distribution of spring wheat and winter wheat at .3, .2, 

.1 and .05 probability of total crop failure, without and with crop insurance. Boxes 

http://www.ncdc.noaa.gov/cag/time-series/us
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are 25th to 75th percentiles, whiskers extend to 1% and 99% percentiles, central line is 

the mean. 

Fig 3 Strategy regions where either winter or spring wheat stochastically dominate 

the optimal choice based on expected value: (a) the yield improvement that winter 

wheat must show over spring wheat to dominate the optimal choice at different rates 

of winter wheat failure, and (b) where winter wheat is a good choice based on its 

additional insurance premium cost (from 1 to 3 times the rate for spring wheat).  

Fig. 4 Simulated time series of (a) net income and (b) net present value for spring vs. 

winter wheat at different rates of changing winter wheat failure and with winter 

wheat insurance emerging at different times. 
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