

Colorado River Basin Climate and Hydrology

State of the Science

April 2020

Editors and Lead Authors

Jeff Lukas, University of Colorado Boulder (CU Boulder), Cooperative Institute for Research in Environmental Sciences (CIRES), Western Water Assessment (WWA)

Elizabeth Payton, CU Boulder, CIRES, WWA

Authors

Stephanie McAfee, University of Nevada, Reno

Andy Wood, National Center for Atmospheric Research (NCAR) Research Applications Lab (RAL)

Connie Woodhouse, University of Arizona, Climate Assessment for the Southwest (CLIMAS) Ben Harding, Lynker

Lineke Woelders, CU Boulder, CIRES, WWA

Rebecca Smith, Bureau of Reclamation, Lower Colorado Basin Region

Ethan Gutmann, NCAR RAL

Flavio Lehner, NCAR Climate & Global Dynamics Lab, and ETH Zürich

Joseph Barsugli, CU Boulder, CIRES, WWA

Klaus Wolter, CU Boulder, CIRES

Imtiaz Rangwala, CU Boulder, CIRES, WWA, and North Central Climate Adaptation Science Center

Benét Duncan, CU Boulder, CIRES, WWA

Jeff Deems, CU Boulder, CIRES, WWA, and National Snow and Ice Data Center (NSIDC)

Carly Jerla, Bureau of Reclamation, Lower Colorado Basin Region

James Prairie, Bureau of Reclamation, Upper Colorado Basin Region

Available online at https://wwa.colorado.edu/CRBReport

© 2020 University of Colorado. All rights reserved.

Citation: Lukas, Jeff, and Elizabeth Payton, eds. 2020. *Colorado River Basin Climate and Hydrology: State of the Science*. Western Water Assessment, University of Colorado Boulder.

DOI: https://doi.org/10.25810/3hcv-w477.

Acknowledgements

Sponsors

The authors are grateful for the generous funding, collaboration, and guidance from the water resource managers of the following organizations: the Arizona Department of Water Resources, Bureau of Reclamation, California's Six Agency Committee, Central Arizona Water Conservation District, Colorado River Water Conservation District, Colorado Water Conservation Board, Denver Water, Metropolitan Water District of Southern California, New Mexico Interstate Stream Commission, Southern Nevada Water Authority, Utah Division of Water Resources, and the Wyoming State Engineer's Office. This group of water resource managers is working to advance scientific understanding to improve the accuracy of hydrologic forecasts and projections, to enhance the performance of predictive tools, and to better understand the uncertainty related to future supply and demand conditions in the Colorado River Basin.

— BUREAU OF — RECLAMATION

Department of Natural Resources

DENVER WATER

Reviewers

We would also like to thank the people who shared their time and expertise reviewing the first draft of this report:

Sponsor reviewers

Representatives of the sponsoring agencies named above

Technical reviewers

Chapter 2

Michael Crimmins, University of Arizona, CLIMAS Russ Schumacher, Colorado State University, Colorado Climate Center Brad Udall, Colorado State University, Colorado Water Center

Chapter 3

Cameron Bracken, Bonneville Power Authority Kevin Wheeler, Water Balance Consulting

Chapter 4

Andrew Newman, NCAR Research Applications Lab Nancy Selover, Arizona State University, Arizona State Climate Office

Chapter 5

Kat Bormann, Jet Propulsion Laboratory, Caltech and NASA David Clow, USGS Colorado Water Science Center Mark Landers, USGS National Streamgage Network Coordinator

Chapter 6

Ben Livneh, CU Boulder, CIRES, WWA and Civil Engineering Mark Raleigh, CU Boulder, CIRES, NSIDC Peter Troch, University of Arizona

Chapter 7

Emily Becker, University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS)

Kathy Pegion, George Mason University Tom Hamill, NOAA ESRL Physical Sciences Division

Chapter 8

Guotao Cui, University of California, Merced Kevin Werner, NOAA Northwest Fisheries Science Center

Chapter 9

Upmanu Lall, Columbia University, Columbia Water Center David Tarboton, Utah State University, Utah Water Research Laboratory

Chapter 10

Toby Ault, Cornell University Greg Pederson, USGS Northern Rocky Mountain Science Center

Chapter 11

David Pierce, Scripps Institution of Oceanography and California-Nevada Climate Applications Program (CNAP)

Julie Vano, Aspen Global Change Institute

Other contributors

The authors appreciate the following individuals for contributions to one or more sections of the report:

Genevieve Allan, Bureau of Reclamation, Lower Colorado Region Sarah Baker, CU Boulder, CADSWES and Bureau of Reclamation Dan Bunk, Bureau of Reclamation, Lower Colorado Region Alan Butler, Bureau of Reclamation, Lower Colorado Region Marty Hoerling, NOAA ESRL Physical Sciences Division John Lhotak, NOAA NWS Colorado Basin River Forecast Center (CBRFC) Scott McGettigan, Utah Division of Water Resources Matt Miller, USGS Earth Systems Modeling Branch Paul Miller, NOAA NWS CBRFC Naoki Mizukami, NCAR RAL Balaji Rajagopalan, CU Boulder, CIRES and Civil Engineering Michelle Stokes, NOAA NWS CBRFC Sonya Vasquez, USGS Karl Wetlaufer, NRCS Colorado Snow Survey

Special thanks

We are especially grateful to Ethan Knight, WWA's talented student intern, whose contributions to the report have been enormous and essential. And we deeply appreciate the project coordinating efforts of Seth Shanahan of the Southern Nevada Water Authority and Rebecca Smith of the Bureau of Reclamation, whose responsiveness and good judgment kept us on target. Lisa Dilling, WWA director and CU associate professor of Environmental Studies, also deserves special mention for her support and encouragement throughout the project duration.

Credits

Design and graphics: Ami Nacu-Schmidt, CU Boulder, CIRES, Center for Science and Technology Policy Research

WWA maps of the Colorado River Basin: Lineke Woelders, CU Boulder, CIRES, WWA

Report cover photo: NASA Sally Ride EarthKAM Image Gallery, April 2017 Mission, IMAGE_136343, http://images.earthkam.org/main.php?g2_itemId=762965

Cover page photos for Chapters 1, 2, 5, 8 and 11: Adobe stock

Chapter 3 cover page photo: <u>Clay Banks</u> on <u>Unsplash</u>

Chapter 4 cover page photo: Robert Murray on Unsplash

Chapter 6 cover page photo: Sheelah Brennan on Unsplash

Chapter 7 cover page photo: <u>John Price</u> on <u>Unsplash</u>

Chapter 9 cover page photo: Rainer Krienke on Unsplash

Chapter 10 cover page photo: Grand Canyon National Park, Wikimedia Commons, https://www.flickr.com/photos/grand-canyon-nps/12199509204/

Volume III

Short-term and Mid-term—Informing the 1-Month to 5-Year Time Horizon

Chapter 7. Weather and Climate Forecasting

Chapter 8. Streamflow Forecasting

Volume III of the Colorado River Basin State of the Science report focuses on models and methods for forecasting weather, climate, and streamflow at the short- to mid-term time scale. Forecasts at this time scale are critical to water managers ensuring supply to their customers, farmers making planting decisions, ski areas planning staffing needs, utility operators making purchasing decisions, and retailers trying to plan inventory, among many others.

The two chapters in Volume III offer comprehensive descriptions and assessments of the state of short-to-mid-term forecasting methods, their skill, the data they require, their applications, and their tradeoffs. Results from weather and climate forecasting models feed into streamflow forecasting models to generate forecasted inflows for Reclamation's three primary models.

Chapter 7 describes the methods used to forecast weather and climate. The chapter is organized around the three forecast time frames: weather, 1-14 days; sub-seasonal, 14 days to 3 months; and seasonal, 3 months to 1 year. Weather forecasts are the most skillful of the three, and demonstrate steady, if small, improvements. The most challenging of these time frames is the sub-seasonal time frame; this chapter describes why this is so, and addresses the constraints on future improvements to forecasts on this time frame. Seasonal forecasts perform in the middle—they currently lack skill, particularly for precipitation, but judicious use of these forecasts, at times and places of good predictability, could be beneficial. Accordingly, the bulk of the chapter provides background on the tools and techniques that are behind seasonal forecasts and provides a good reference on the operational seasonal forecast products. The chapter concludes by describing the implications of the current state of seasonal forecasting for the basin, particularly the Upper Basin, and describes

initiatives to improve seasonal forecasts. Finally, it surveys the challenges and opportunities for forecasting across all three time frames.

Chapter 8 describes the concepts, approaches and tools used to forecast streamflow. This chapter focuses mainly on techniques and models that are relevant to Reclamation operations and planning activities—the monthly to seasonal ensemble forecasts that provide critical input to Reclamation's 24-Month Study (24MS) and Mid-term Operations Probabilistic Model (MTOM), which are used to generate system operations projections (monthly reservoir releases and storages) up to 5 years out (Chapter 3). The chapter explains the sources of predictability, in order to provide a basis for forming priorities for improvement of forecasts. It describes three types of forecast models, dynamical, statistical, and hybrid; two types of forecasts, single-value and ensemble; and two forecasting paradigms, in-the-loop and over-the-loop. It provides detailed descriptions of operational forecast systems and experimental products across three time frames: short-range (days), mid-range (months) and interannual to decadal (Year 2 and beyond). Then, the use of midrange streamflow forecasts—the only operational use of streamflow forecasts by Reclamation in the basin-in the 24MS and MTOM is described. Reclamation has considerable immediate interest in improving operational forecasts for Year 2, but decadal climate prediction currently exhibits poor skill, and NWS has not yet made investments toward improving Year 2 predictions. Chapter 8 describes Reclamation's own initiative toward improved Year 2 forecasts, the Colorado River Basin Streamflow Forecast Testbed, intended to provide an objective approach to compare current and experimental streamflow forecasting methods. Finally, Chapter 8 provides a comprehensive review of the benefits, limitations, and challenges of a broad array of potential scientific and technological improvements to the existing operational streamflow forecast systems.

Chapter 8 Streamflow Forecasting

Authors

Lead:

Andy Wood (NCAR Research Applications Lab)

Contributing:

Lineke Woelders (CU Boulder, CIRES, WWA)

Jeff Lukas (CU Boulder, CIRES, WWA)

Chapter citation:

Wood, Andy, Lineke Woelders, and Jeff Lukas. 2020. "Streamflow Forecasting." Chap. 8 in Colorado River Basin Climate and Hydrology: State of the Science, edited by J. Lukas and E. Payton, 287-333. Western Water Assessment, University of Colorado Boulder.

Key points

- Streamflow forecasts from the CBRFC are widely used by water managers in the basin and are critical inputs for Reclamation's operational models, including seasonal forecasts for use in 24MS and MTOM.
- Streamflow predictability at seasonal timescales in the Colorado River Basin arises primarily from the initial watershed moisture conditions, i.e., snowpack and soil moisture.
- While using different methods, the CBRFC and NRCS operational forecasts both effectively capitalize on this predictability, with relatively high skill for forecasts issued in late winter and spring for the coming runoff season.
- To improve streamflow forecasts within the current frameworks there
 are two main pathways: 1) improve estimates of initial watershed
 moisture conditions, and 2) improve basin-scale weather and climate
 forecasts and how they are used in streamflow forecasts.
- Improvements in quantifying watershed conditions can come through better meteorological analyses, more in situ observations of snowpack and soil moisture, increased use of remotely sensed observations, advances in calibration strategies, and advances in data assimilation techniques.
- Improvements in sub-seasonal and seasonal climate forecasts are being
 actively pursued by national modeling centers and the broader research
 community; targeted post-processing of climate forecasts can better
 leverage their current skill to inform seasonal streamflow forecasts.
- Skill in streamflow forecasts for year 2 and beyond is entirely dependent on skill in decadal climate forecasts, which exists to some degree for temperature but not for precipitation.
- Alternative forecast frameworks in which tasks are fully automated permit the use of a greater range of advanced methods and data. These frameworks have not yet been shown, however, to outperform the current operational forecasts.
- Many potential forecast improvement elements have been demonstrated in a research context; systematic testing to benchmark and combine multiple elements could add up to significant overall improvements in operational forecasts.

8.1 Introduction

Operational streamflow forecasting provides invaluable information regarding the expected quantity and timing of streamflow throughout both managed and unmanaged river systems, supporting decision making for a myriad of stakeholder needs. In the western U.S., these include water allocation for agriculture and municipal and industrial supply, flood control,

hydropower, recreation, navigation, and instream environmental uses. The time scale of forecasts supporting operations and management decisions spans hours to years, depending on each managing entity's system capacity and purposes, and the hydrometeorological variability of the streamflow source. In flashy, small catchments where intense convective rainfall can drive flash floods, operational hours-to-days forecasts are common, whereas for the largest reservoirs in the U.S., such as Lake Powell, forecasts extending to 2-5 years are routinely used.

In the Colorado River Basin, the operational streamflow forecasts used by Reclamation and many other basin stakeholders are produced by the NOAA NWS Colorado Basin River Forecast Center (CBRFC). CBRFC forecasts support the flood watch and warning programs of the NWS Weather Forecast Offices (WFOs) and emergency and water management by local and state agencies, tribes, water districts, and Reclamation, which depends on the forecasts to manage the basin's primary reservoirs to meet daily, seasonal, and long-range operating criteria.

This chapter focuses mainly on forecast techniques and models that are relevant to Reclamation operations and planning activities at seasonal and longer time scales, although the same techniques and models are also used for short-range (0–10 day) prediction. Monthly to seasonal ensemble forecasts provide critical input to Reclamation's 24–Month Study (24MS) and Mid-term Probabilistic Operations Model (MTOM), which are used to generate system operations projections up to 5 years out, informing decisions that affect water allocations for stakeholders throughout the seven basin states. As described in Chapter 3, major operational decisions such as the annual release from Lake Powell to Lake Mead depend on storage projections derived using the monthly-to-interannual (mid-range) CBRFC ensemble forecasts. This release, in turn, impacts the operational decisions of stakeholders who must ensure cost-effective and reliable water supplies for their own management domain, hence the forecast impacts cascade through multiple linked levels of decision making.

The CBRFC produces peak-flow, short-range, seasonal, and longer forecast products. The short-range and peak-flow forecasts directly influence daily operations at Reclamation and other reservoir managers, particularly during high-impact weather events (e.g., flood risk) and during snowmelt periods in the spring. In some cases, the short-range forecast can directly determine a reservoir release, whereas in other cases, it may form one of multiple informational inputs that are used more qualitatively to determine a release schedule. The operational watershed models, described in Chapter 6, are initialized each day to generate deterministic, or single value, short-range forecasts for nearly 600 points across the basin.

In addition to the CBRFC, the Natural Resource Conservation Service (NRCS) National Water and Climate Center also produces seasonal water supply forecasts (WSFs) for stakeholders in the basin, but using different methods, as described later. The working relationship of the NRCS forecasts to the CBRFC forecasts has changed over the last few decades (Pagano et al. 2014) as the practice of ensemble forecasting has expanded, but the NRCS forecasts are still widely used to inform water management in the basin. Across the basin, stakeholders consult CBRFC seasonal forecasts, or NRCS seasonal forecasts, or both (Lukas et al. 2016).

This chapter describes the state of the practice for the basin, and what is known about seasonal and spatial variations in predictability and the most promising opportunities for improvement. There is a great deal of literature that documents this topic, and a balance is drawn here between including relevant information about forecast use already documented in sources such as Raff et al. (2013), Mantua et al. (2008), or the recent draft interagency report of the Forecast and Reservoir Operation Modeling Uncertainty Scoping team (Reclamation and Colorado Basin River Forecast Center in preparation), and not re-stating available material. This report covers both short-range and mid-range (seasonal and longer) forecasting approaches because both are critical to the management of reservoirs and water resources in the basin, and the same models are used for both ranges.

8.2 Overview of streamflow forecasting approaches

To understand why different approaches to streamflow forecasting produce more skillful forecasts, and the rationale and suitability of potential pathways for improving forecasts, it is important to understand real-world sources of predictability. This can help gage whether and where potential improvements may have merit, and how much benefit to expect from them.

Sources of predictability and predictability attribution studies

Streamflow fluctuations are driven both by runoff discharging from water already stored within the watershed—soil moisture, groundwater, snowpack, and the channel network itself—and by meteorological processes (i.e., precipitation and evapotranspiration) in the watershed. Streamflow forecasts are thus ideally driven by two major inputs: 1) the watershed's initial moisture conditions, and 2) forecasts of future weather and climate for the watershed. In practice, in snowmelt-dominated basins in the western U.S. such as the Colorado River Basin, seasonal streamflow prediction skill comes almost entirely from initial moisture conditions, with the level of skill varying by season, from low in the late summer and fall to very high in the spring. Additional skill attributable to weather and climate

forecasts is relatively low at present, and only weather forecasts out to 5–10 days are currently incorporated into CBRFC forecasts (see Chapter 7 and Wood and Schaake 2008; Wood et al. 2016).

The highest predictability at seasonal scales is associated with accumulated winter snow, and to a lesser extent, soil moisture anomalies. The processes through which snowmelt raises soil moisture, generates runoff, and routes runoff through a stream network to produce streamflow is relatively slow, providing useful forecast accuracy at lead times of up to six months (Harrison and Bales 2015; Wood, Kumar, and Lettenmaier 2005). The lowest seasonal streamflow predictability is for forecasts issued after the snowmelt period and preceding significant snowpack accumulations (i.e., from late summer into fall), such that the initial watershed moisture conditions provide little contribution to future flows relative to future weather and climate inputs.

Why is predictability relevant? Operational centers are confronted with a broad variety of potential research and researchers describing upgrades to improve forecasts, yet these may have limited potential for improving any given forecast at important times of year or locations. Upgrading a snow analysis may be a more effective pathway to improved streamflow forecasts for some locations, rather than improving climate forecasts from two weeks to a year in the future, while the reverse may be true in other locations.

Types of streamflow forecasting approaches

Forecasting approaches can be distinguished by several characteristics. These characteristics are discussed below to help provide context on how the current operational forecasts for the Colorado River Basin fit into the overall forecasting landscape. The forecasts to which basin stakeholders have been exposed in recent decades are largely of one type and tradition, yet across the operational centers of the globe there is significant variation in how the same challenges are addressed and in the datasets that are available. It is possible that the range of techniques worth considering may be broader than the perspective available in any one part of the U.S. alone.

Dynamical, statistical, and hybrid methods

Seasonal streamflow forecasting methods are often categorized as dynamical, statistical, hybrid, or a combination. Such approaches span different degrees of complexity and information requirements.

Dynamical methods for seasonal hydrologic forecasting use hydrologic models, ranging from more conceptual models to more physically explicit and process-oriented models to represent hydrologic processes and states in the past, near-term, and into the future (Chapter 6). Model-based seasonal forecasts take a current estimate of watershed conditions and evolve it into the future using either historical observed weather conditions

as proxies for the (unknown) future weather and climate conditions, or inputs derived from seasonal climate forecasts (Wood, Kumar, and Lettenmaier 2005; Beckers et al. 2016). Dynamical methods permit ensemble streamflow prediction, or ESP (Day 1985), as described below.

In contrast, statistical methods rely on statistical relationships (e.g., linear regression) between previous years' observations of seasonal streamflow volumes and several predictors. These predictors include in situ watershed observations, such as NRCS's snow telemetry (SNOTEL) snow water equivalent (SWE) data, and in some cases indicators of large-scale climate patterns such as ENSO. Several statistical approaches can be found in the literature, encompassing different degrees of complexity (Garen 1992; Piechota et al. 1998; Grantz et al. 2005; Tootle et al. 2007; Pagano et al. 2009; Wang, Robertson, and Chiew 2009; Moradkhani and Meier 2010).

Hybrid methods strive to combine the strengths from both dynamical and statistical techniques. For instance, uncertainties in dynamical predictions indicate that dynamical forecasts can benefit from statistical post-processing (Wood and Schaake 2008; Wood, Arumugam, and Mendoza 2018). One line of research has examined the potential benefits of using simulated watershed state variables—either from hydrologic or land surface models—as predictors for statistical models (Rosenberg, Wood, and Steinemann 2011; Robertson, Pokhrel, and Wang 2013). Another popular technique consists of incorporating climate information within ensemble streamflow prediction frameworks (Werner et al. 2005; Wood and Lettenmaier 2006; Luo and Wood 2008; Gobena and Gan 2010; Yuan et al. 2013). Finally, the combination of outputs from different models has also been shown to benefit seasonal hydroclimatic forecasting (Hagedorn, Doblas-Reyes, and Palmer 2005; Najafi and Moradkhani 2015; Mendoza et al. 2017).

Statistical streamflow forecasting has been, for most of the last century, the standard approach, but the use of dynamical methods and ESP has been on the rise (Cloke and Pappenberger 2009; Pagano et al. 2014). Dynamical and ESP-based methods are motivated in part by concerns that regression-based approaches may be unsuitable in the face of non-stationarities associated with climate change and variability (Cayan et al. 2001; Pagano and Garen 2005; Hamlet et al. 2005; Mote et al. 2005; Beckers et al. 2016). Incorporating physically consistent relationships may help better assess hydrologic responses in novel climate situations, as opposed to the fixed, historically trained relationships of statistical methods.

A rapidly emerging perspective is that inaccurate representation of model bounds (i.e., physics) in hydrological models is unavoidable, and machinelearning models have the potential to identify and represent hydroclimate relationships with more fidelity than some process-oriented models (Best et al. 2015; Nearing et al. 2018). Like traditional statistical models, machine-learning models are trained on observed datasets, and do not include any explicit representation of physical processes such as infiltration, soil moisture storage, evaporation, etc. But machine-learning algorithms (e.g., neural networks) have much greater flexibility to capture non-linearities in the input data and identify relationships in the data that impart predictive skill (Yaseen et al. 2015; Shen 2018). NRCS is actively pursuing the incorporation of machine-learning methods into their seasonal streamflow forecasting approach; Fleming and Goodbody (2019) showed that a multi-model machine-learning ensemble outperformed the current NRCS statistical forecasting approach in three test watersheds, including the Gila River.

Deterministic (single-value) and ensemble (probabilistic) methods

For many applications, dynamical or statistical approaches for streamflow prediction are used to generate deterministic (also called single-value) forecasts. The forecasts are deterministic in the sense that the meteorological inputs and the model's configuration and parameter specification entirely determine the forecast. The forecasts contain a single value at each time-step of the forecast horizon, and if the forecast model were re-run, the outcome would not change—there is no random or stochastic element in the process that would cause a different outcome.

Ensemble streamflow forecasts (e.g., ESP) involve running the model with a collection of variations in one of the factors influencing the forecasts. Typically, this factor is the meteorological forecast input, in which case a number of variations on this input are sampled from the recent historical record, or taken from a weather or climate forecast model that has been run in an ensemble mode, or some combination. Other potential sources of variation to generate a streamflow forecast ensemble include multiple parameter variations, multiple models, multiple configurations of a single model, or multiple meteorological forcing inputs, which lead to multiple initial states for the forecast. A combination of these could be used, with each set of variations attempting to quantify or estimate a source of uncertainty impacting the forecast—e.g., initial condition uncertainty, future weather and climate uncertainty, or model parameter uncertainty. The resulting ensemble forecasts provide a depiction of the uncertainty as represented by the spread of the forecast ensemble values.

The spread of ensemble values can be used to estimate the probabilities of different outcomes; hence an ensemble forecast is also a probabilistic forecast. Yet the reverse is not necessarily true: Probabilistic predictions generated by statistical techniques that yield only a probability distribution must be subjected to an additional procedure (such as sampling) to generate a matching streamflow ensemble. Example forecasts from the two

approaches, deterministic, single value forecasting and probabilistic, ensemble-based forecasting are shown in Figure 8.1.

Figure 8.1

Deterministic single-value forecast (left) and probabilistic ensemble forecast (right) for the same stream gage (Little Wabash River, IL) and same 5-day period (March 12th–17th, 2020). The probabilistic forecast is based on an ensemble of streamflow forecasts that use different weather-forecast inputs. (Source: left: NOAA NWS AHPS; right: NOAA NWS OHRFC)

In the context of seasonal forecasting, including in the Colorado River Basin, deterministic single-value forecasts are rare because it has long been recognized that futures at seasonal and longer timescales are uncertain. Specialized, single-value forecasts can be found for applications requiring a single trace input (e.g., reservoir models that cannot process an ensemble easily).

Uncoupled vs. coupled forecast systems

Most dynamical forecasting systems are *uncoupled*, that is, the land surface or hydrology model is not run as part of a more comprehensive *coupled* Earth system or numerical weather prediction model. However, a coupled system can be used for seasonal and longer prediction of a hydrologic variable. A recent example is described in Kapnick et al. (2018), in which winter SWE predictions in the southwestern U.S., using a coupled climate model forecast initialized in the prior July, were assessed (see Chapter 7).

Forecasting paradigms

Another important characteristic of forecast approaches that is separate from the types of data and model elements applied is the forecasting paradigm. The forecasting paradigm determines what strategies for advancement may be possible. For decades, a traditional *in-the-loop* paradigm for flood forecasting and seasonal model-based streamflow forecasting has been the norm in the U.S. and internationally, but this is changing as a variety of *over-the-loop* systems are being deployed. In-the-loop systems are those in which the system operation depends on the intervention of human forecasters to adjust components, make inputs or trigger workflows. Over-the-loop systems are those in which the system is fully automated, running without need for intervention from a human forecaster, though the forecasters monitor and interpret output. The forecaster can be considered a critical part of the overall system, enabling it to run through its operational loop.

To understand what these paradigms mean in practice, it is helpful to review the elements of a forecast system (Figure 8.2). Meteorological forcings are model input sequences that support model implementation and calibration, and that are updated in real-time and used to initialize (to "warm up") model states for forecasting. Weather and climate forecasts are meteorological input sequences derived from numerical weather predictions and other sources, typically extending 3 to 15 days for flood forecasting systems and out to 9 months to a year for seasonal forecasting systems (Chapter 7). Hydrologic, hydraulic, and water resources models are the core of the system. But there are other essential supporting elements, the meteorological forcings and forecast processors and the hydrologic postprocessor, as well as the land data assimilator, that make critical adjustments to data as it flows into and out of the model, and to the model states, in real-time. These methods almost always must be applied in some fashion to produce high-quality forecasts, and they are handled differently in in-the-loop versus over-the-loop systems.

In-the-loop forecasting

Traditional in-the-loop flood and seasonal forecasting typically involves a semi-manual process of updating calibrated, conceptual, hydrological models that are run on local computing resources. These efforts generate streamflow predictions at river locations—typically gaged—where forecasts are needed by stakeholders and emergency managers. This forecast paradigm, which is the primary source of short-range forecasts and supports mid-range forecasts at the NWS River Forecast Centers (RFCs) such as the CBRFC, requires expert forecasters to make real-time adjustments to elements of the forecast system described above.

Schematic of a model-based streamflow forecasting system. (Source: adapted from NWS online materials: https://www.nws.noaa.gov/oh/hrl/hsmb/hydrologic_ensembles/index.html)

Through this effort, they address the numerous technical and scientific challenges of forecasting, essentially performing pre- and post-processing and data assimilation. Forecaster interventions include the real-time adjustment of hydrologic model inputs, parameters, states, and outputs. This in-the-loop workflow is motivated by the need to overcome—in real time and at times under significant pressure—longstanding challenges in hydrologic forecasting, including ever-present inadequacies in data streams, modeling, system reliability, and interactions with water management systems. It empowers expert forecasters to fix discrepancies between model simulations and forecasts and observed or expected behavior for watersheds with which they may have long experience.

Although this operational practice has changed over time, the semi-manual integration of elements has not. Major changes include upgrading the software for running a forecast, or switching to a new version of a weather forecast model for forecast input, or accessing satellite-based imagery operationally, yet these changes leave the traditional in-the-loop forecast paradigm intact. Notably, in the U.S., including the Colorado River Basin, the in-the-loop paradigm has not yet been outperformed by a different paradigm, and still produces forecasts that inform the management of billions of dollars' worth of water across multiple sectors.

Over-the-loop forecasting

Remarkable scientific and technical advances have been made during the last two decades in many areas supporting hydrologic prediction. Technological upgrades in super-computing, data storage, connectivity, and standardization of data protocols and other forecast system elements provide a foundation for transforming the computational aspects of streamflow prediction. High potential reward research can now be found in several key areas: remote sensing; physically oriented, distributed watershed process modeling and Earth system process modeling; parameter estimation; data assimilation; verification; statistical postprocessing; multi-model synthesis; and uncertainty estimation. Numerical weather forecasting in particular has seen steady advances in the skill and abundance of accessible, operational forecasts as well as hindcasts—i.e., datasets of consistent retrospective forecasts (Chapter 7). These advances have spurred the implementation of centralized, automated, forecaster over-the-loop (i.e., no human intervention) systems for short-range and mid-range forecasting in the U.S. and abroad. These over-the-loop systems, such as the National Water Model (NWM; Chapter 6) are now mostly run in parallel to in-the-loop systems and have not replaced them in traditional forecasting for water management.

Over-the-loop systems have made greater inroads in the area of emergency management, such as regional flooding. Forecaster effort is then focused on editing and interpreting automated model output to create products that support decisions in hazard and resource management, and to developing the forecast system.

There are two types of over-the-loop systems—coupled and uncoupled. As described earlier in this chapter, in the uncoupled systems, a land surface or hydrology model is run with meteorological inputs derived from a forcing analysis and weather or climate forecasts, whereas in the coupled systems, runoff from the land surface component of a weather or climate forecast model is routed through a channel routing model to generate streamflow.

Pros and cons of the paradigms

The traditional in-the-loop paradigm results in a highly labor-intensive workflow that limits the ability to use high-resolution datasets and models, apply ensemble techniques, conduct verification and benchmarking for development, and use automated data assimilation approaches that employ reproducible and consistent modeling operations. Changing the forecast paradigm from in-the-loop to over-the-loop therefore sounds attractive, but would require major changes in what a forecaster does and what skill sets they might need to do their jobs. In addition, few effective, fully automated (i.e., over-the-loop) alternatives have been successfully demonstrated in operational contexts for critical parts of the current inthe-loop forecast process, including hydrologic data assimilation, postprocessing, and meteorological forecast pre-processing. Furthermore, the traditional approach involves forecasters working hand-in-hand with water system operators to incorporate management operations that affect streamflows. There is as yet no universal solution for doing this in a fully automated way, especially in extreme situations where the managers' and forecasters' decision making may depart from routine practice.

As a result, the forecast outputs of over-the-loop systems such as the NWM, which is relatively uncalibrated, are generally found to be far inferior to in-the-loop systems; where traditional alternatives exist, such as the CBRFC's current models, they are preferred. Some other systems like the uncoupled European Flood Awareness System (EFAS), which has been calibrated, have been more successful and adopted more widely for specific products such as short-range (out to 15-day) forecasts. Another key factor in EFAS's success is that human forecasters oversee and approve EFAS alerts, which are qualitative—providing for operational review of over-the-loop system outputs.

8.3 Short-range (1-10-day) streamflow forecasts

NWS official short-range forecasts

The CBRFC official short-range streamflow forecasts (1-10 days) are single-value predictions for gaged locations, generated each morning, or more frequently during a rapidly evolving flood situation. Forecast locations are coordinated with weather forecast offices, emergency management, or water management agencies to assess risk and inform decisions and actions to mitigate the dangers posed by floods and droughts. Forecasts are made available in a variety of ways, including from the NWS Advanced Hydrologic Prediction Services (AHPS) web page and directly from the CBRFC website.

The Community Hydrologic Prediction System, or CHPS, is an interactive software platform that specifies models and workflows to run traditional

flood forecasts and long-range ESP forecasts. See Chapter 6 for a more detailed description of the CHPS platform and the forecast models used within CHPS, most importantly the Sacramento-Soil Moisture Accounting (Sac-SMA) rainfall-runoff model, and the SNOW-17 snow model.

In the Upper Basin, the forecast models in CHPS typically have a 6-hour time step, while in the Lower Basin, a 1-hour time step is used because of the generally more rapid response of watersheds to precipitation events there. Throughout the basin, the forecasts have a 10-day outlook, with some 15-day forecasts available. Short-range forecasts incorporate forecasted precipitation amounts (QPF) and forecasted temperature (QTF), which is used for precipitation typing and snow modeling (see Chapter 7).

Inputs for the SNOW-17, Sac-SMA, and other forecast models in CHPS, which estimate real-time current watershed conditions, are derived from in situ observations for temperature and precipitation, atmospheric model outputs for freezing level, and remotely sensed estimations (both radar and satellite) for precipitation. Snow-water equivalent, reservoir releases, flow diversions (where known), and streamflow observations are also obtained, and all measured observations are quality-controlled at the beginning of the forecast cycle.

Using workflows specified in CHPS, the models are run beginning with an initial model state (called a warm state) 10 days prior to the forecast date (the date a forecast applies to). A warm state is a model state created during a prior operational cycle in which the model moisture contents have been "spun-up" by simulation over a long enough period (e.g., at least a year) for the states to accurately reflect observed conditions. A cold state, in contrast, has prescribed or default moisture settings that may not match current conditions. Adjustments are then made to model inputs, parameters, and states to obtain streamflow and snow simulations that are consistent with observations over the 10 days leading up to the forecast date. Typically, the most recent day or two is of the most interest to avoid overwriting modifications applied on prior days.

Meteorological forcings

As described in Chapters 5 and 6, the CBRFC forecast model system requires values for temperature and precipitation that are area-averaged for each forecast zone (an elevation band within a catchment) represented in the model. The real-time meteorological forcings are generally produced daily to match the typical forecast production frequency (Figure 8.3), but may be updated more often during a rapidly evolving flood situation.

For the Upper Basin watersheds, which are generally snowmelt-dominated, real-time temperature and precipitation observations—the vast majority from SNOTEL stations—are used to directly produce the areal averages for forecast zones using station weightings determined through model

calibration. The stations that are used have been pre-screened and vetted during the calibration process. Automated procedures identify potentially erroneous station values, which can be then manually corrected by forecasters; manual quality control is also done. Freezing-level data from Rapid Refresh, NOAA's hourly operational weather reanalysis, is used to run the SNOW-17 model which types the precipitation as rain or snow.

Figure 8.3

A recent CBRFC forecast model sequence illustrating how daily precipitation observations (center) are used in the daily updates of the modeled snow conditions. In the 24 hours ending on the morning of March 19, 2020, there was widespread and often intense precipitation across the Lower Basin, as captured by station observations and radar-based estimates that were integrated into 4-km gridded precipitation values using the Multi-sensor Precipitation Estimate software (MPE; center). The gridded precipitation was used to compute area-averaged precipitation for each forecast zone, which then was used to update the SWE in each forecast zone in the CBRFC snow model (the precipitation was also classified into snow vs. rain using other meteorological data in the snow model). After updating on March 19th, the modeled snow across the Lower Basin (right) showed much higher SWE as a % of average than the previous day (left). (Maps: NOAA CBRFC; precipitation (https://www.cbrfc.noaa.gov/gmap/gridgeo/gridmap/obgrids.php); modeled snow (https://www.cbrfc.noaa.gov/rmap/grid800/index.php)

For the Lower Basin watersheds, which are generally rainfall-dominated, a denser station coverage is employed, with temperature and precipitation observations from multiple station networks, and then augmented by radar-based precipitation estimates to generate the real-time data (Figure 8.3). The radar data are most useful during the warm season when there is a larger radius of accurate information from the radar, due to radar reflection differences between rain and snow.

The observations from all available stations are used, with no prior screening of stations, to create the highest possible station density. But the station temperature and precipitation values themselves are quality-controlled as in the Upper Basin. As in the Upper Basin, freezing-level data and SNOW-17 are used to type the precipitation into rain and snow. The real-time precipitation observations and radar precipitation estimates are transferred to a 4-km grid using an interpolation algorithm in the Multisensor Precipitation Estimate (MPE) software (Figure 8.3), the temperature observations are likewise transferred to a 4-km grid, and then the grid cells within each forecast zone are then averaged to create the MAT and MAP data.

In recent years, the CBRFC has collaborated with NASA to leverage their Moderate Resolution Imaging Spectroradiometer (MODIS) observations to use remotely sensed fractional snow covered area (MODIS Snow Covered Area and Grain, or MODSCAG product) and dust radiative forcing (MODIS Dust Radiative Forcing in Snow, or MODDRFS product; Figure 8.4 and Chapter 5). These estimates provide qualitative corroboration of the model-simulated snow covered area and insight into the potential rapidity of snowmelt due to dust-enhancement, which can then be used to inform real-time forecaster adjustments to the snow model melt factor parameter (Bryant et al. 2013). The watershed moisture conditions resulting from these changes are then used to initialize both the flood forecasts and seasonal water supply forecasts.

Figure 8.4

NASA JPL remote sensing of snow. Left: MODIS Snow Covered Area and Grain size (MODSCAG), right: MODIS Dust Radiative Forcing in Snow (MODDRFS). (Source: https://arset.gsfc.nasa.gov/sites/default/files/water/Snow/JPL SnowTraining w1.pdf)

Hydrologic Ensemble Forecast Service-based forecasts and alternatives

Recent initiatives in the RFCs to roll out ensemble forecasts at the short-range led to development of the Hydrologic Ensemble Forecast Service, or HEFS (Demargne et al. 2014), spearheaded by what is now the NOAA Office of Water Prediction. HEFS was a response to sustained interest in probabilistic river forecasts for short-range flood forecasting and water resources. HEFS uses the models and workflows already used in the traditional forecasting process in CHPS, but adds meteorological ensemble inputs in place of the single-value precipitation and temperature forecasts (QPF and QTF, see Chapter 7), as well as an automated form of streamflow post-processing. It is still largely an in-the-loop workflow that uses the states generated by the official forecast workflow, but the ensemble forecast inputs and post-processing are automated.

Over the last five or six years, HEFS has been steadily deployed for river basins across the U.S., after being run experimentally since 2012 at a few of the RFCs. The goal of HEFS is to produce ensemble short-range streamflow forecasts that seamlessly span lead times from an hour up to several years and that are spatially and temporally consistent, probabilistically calibrated (i.e., unbiased with an accurate spread), and verified. A few forecast centers, such as the California-Nevada River Forecast Center (CNRFC), now present the ensemble forecasts on their web pages in parallel with their official forecasts.

The components of HEFS are shown in Figure 8.5. The most important part of HEFS is the meteorological ensemble forecasts, which are derived via a statistical technique from up to four meteorological forecast inputs. The statistical technique, termed Meteorological Ensemble Forecast Processor, or MEFP, can generate ensembles that seamlessly blend these inputs, with their impact depending on their skill (Wu et al. 2011).

Each RFC uses different models and routines, but almost all of their operations center on the lumped implementation of the Sac-SMA and SNOW-17 models. Like the forecast data from the official forecast process, graphical outputs are also typically available from the forecast centers, so that users can use the data directly in local decision support models.

Around the same period that HEFS was developed, an RFC-led effort created the Met-Model Ensemble Forecast System, or MMEFS (Adams III and Dymond 2018). MMEFS provides short-range (out to 15-day) ensemble forecasts. It differs notably from HEFS in the use of gridded numerical weather prediction ensembles, rather than those generated statistically from NWP ensemble mean forecasts. Both approaches make use of the initial states generated by the in-the-loop official forecast workflow, however.

Figure 8.5

Components of the U.S. Hydrologic Ensemble Forecast System. (Source: adapted from Emerton et al. 2016)

8.4 Mid-range (seasonal and longer) streamflow forecasts and water supply forecasts

In the Colorado River Basin and elsewhere, the major methods for operational, seasonal-to-interannual forecasts have been statistical water supply forecasting and dynamical ESP forecasting. Both of these methods are designed to exploit predictability arising from initial watershed moisture conditions (i.e., SWE and soil moisture). The most widely used output derived from these methods is the probabilistic runoff inflow volume forecast (the water supply forecast) for several standard multimonth periods, e.g., April-July or April-September, depending on location. Water supply forecasts have long been expressed in terms of at least three quantiles— 10^{th} , 50^{th} (most probable), and 90^{th} —although other quantiles such as the 30^{th} and 70^{th} are also produced for some locations.

Statistical water supply forecasts are generated operationally by the NRCS National Water and Climate Center (NWCC) using principal components regression. The NRCS provides statistical water supply forecasts for approximately 1000 points across the West, overlapping in many locations with RFC forecast points. The CBRFC also develops statistical water supply forecasts (which it calls SWS forecasts) by essentially the same method, but these are only used for internal guidance comparisons with the dynamical ESP forecasts and are not publicly released. Statistical forecasts are described in detail later in this chapter.

Operational dynamical water supply forecasts are produced only by the CBRFC, using ESP methods. For decades, the CBRFC and NRCS coordinated their water supply forecasts for their overlapping forecast points (e.g., Lake Powell inflows) to provide a single official water supply forecast once a month, a process that focused first on reconciling the median forecast and then the 10th and 90th percentile forecasts, so that the two agencies released identical forecasts for those points. In the Colorado River Basin, that explicit coordination ended in 2012, when the CBRFC began providing daily water supply forecast updates using ESP methods. The respective official forecast values from the CBRFC and NRCS for their overlapping forecast points now often differ by up to 10–15% at some locations, particularly for early-season forecasts.

The sub-sections that follow describe in more detail the current practices for developing the CBRFC ESP and official water supply forecasts in the Colorado River Basin, as well as new developments, including a testbed for evaluating mid-range forecasts and their use in reservoir management, and relevant efforts by external groups. The NRCS forecasts are also described in some detail due to their widespread use.

CBRFC operational seasonal forecasts

Ensemble streamflow prediction (ESP) forecasts (daily, mid-December-July)

The ESP approach first simulates the hydrologic state of the watershed during a model spin-up period ending on the forecast start date (Figure 6). The meteorological forcing data for the spin-up period are produced daily by the same procedures as described in the section on short-range forecasts. The initial hydrologic state forms the starting point of an ensemble of forecast simulations that are driven by historical sequences of temperature and precipitation as model inputs (Figure 8.6).

Figure 8.6

Illustration of an ESP forecast with embedded short-range meteorological forecast, and extension into a water supply forecast period for which the runoff volume percentiles are calculated. IHC=initial hydrologic conditions, WSF=water supply forecast, QPF and QTF=quantitative precipitation and temperature forecasts, respectively. (Source: A. Wood)

The start and end dates for historical input sequences for the CBRFC have generally followed the most recent 30-year World Meteorological Organization climate normal period, which is updated every 10 years, hence the most recent normal is 1981–2010. So that their forecast inputs would incorporate the latest information, including recent dry years, in 2016 the CBRFC extended the period of their historical input sequences to 2015, or 35 years (1981–2015). Although the CBRFC uses a 35-year period of record for forecasting, statistics such as percent of average are calculated using the 1981–2010 period. The 30-year climate normal period will be updated after 2020 to the 1991–2020 period; the CBRFC plans to continue adding

years used to generate the ensemble, and will likely use a 40-year period of record (1981–2020) after the climate normal period is updated.

For mid-range forecasts at the CBRFC and other RFCs, the general ESP strategy of using a suite of historical sequences to represent the uncertainty in future climate over the next several months is slightly modified by inserting single-value precipitation and temperature forecasts for the first 5–10 days for QPF and 10 days for QTF (Figure 8.6). This imparts the high skill of short-range weather forecasts to the streamflow forecast, but leaves intact the assumption that the weather beyond 5–10 days is best defined by the historical climatology. Historically, the QPF and QTF were developed by forecasters by merging national gridded predictions from a number of sources, including the Weather Prediction Center and the Weather Forecast Offices, and CHPS then maps these to the watershed model zones.

The CBRFC QPF input source for the first 24 hours of the forecast period is the QPF from the National Blend of Models, and for days 2 through 7 of the forecast period, it is the QPF from the NWS Weather Prediction Center. The forecasters still have the ability to make changes to QPF and QTF before that data gets fed into CHPS, but this should only happen on rare occasions. In such cases, QPF and QTF may be further modified on a model zone-by-zone basis (e.g., the lower, middle, and upper zones of each watershed, see Chapter 6). ESP forecasts both with and without QPF and QTF are produced.

Currently, the ESP workflow is run every day, after the short-range forecast is completed. At key times during the water supply forecasting period, senior forecasters and the forecasters who are assigned to specific river basins (e.g., the Colorado headwaters, the Green River Basin, the San Juan River Basin) review and may adjust model parameters when physically justified to better simulate streamflow. The soil moisture states are adjusted in fall before the snow accumulation season begins, during which soil moisture conditions tend to remain in quasi-stasis until the snowmelt period begins. As the snow melts in the spring, soil moisture conditions that have persisted from the previous fall influence the runoff efficiency, an effect that is thought to make up to a 10% difference in expected runoff volumes (P. Miller, pers. comm.).

The CBRFC produces daily ESP forecasts of both unregulated and regulated streamflows (Chapter 5). Unregulated ESPs represent natural flow in the sense that measured upstream activities (e.g., reservoir operations or measured diversions) are estimated and their impacts on flow are reversed or backed out. In the regulated ESPs, the effects of reservoir operations that are modeled within CHPS as well as known or estimated consumptive uses and water transfers are included in the ESP. CHPS models reservoirs

NOAA National Blend of Models QPFs

Link:
https://sats.nws.noaa.g
ov/~nbm/nbm_graphic
s

NOAA Weather Prediction Center QPFs

Link: https://www.wpc.ncep. noaa.gov/qpf/day1-7.shtml

with a routine that allows for prescribed releases and fill and spill operations following reservoir rule curves and downstream release constraints and targets. The regulated ESP forecasts are coordinated by forecasters with Reclamation, who provide release guidance for CRSP reservoirs, which also informs the official, regulated water supply forecasts.

The CBRFC produces a range of products from the ESP beyond the summary percentile forecast values (10th, 50th, 90th, etc.). Most notably, the forecast evolution plot tracks the current ESP forecast from early December, once the appropriate adjustments to soil moisture parameters have been completed, along with accumulated forecast period runoff, annotated with thresholds for climatological means and medians (Figure 8.7).

Another product is a comparative cumulative distribution function (CDF) plot, which compares the climatological CDF to the conditional CDF, the conditional CDF being the expected range of water supply forecast outcomes given current watershed conditions.

Figure 8.7

A forecast evolution plot showing the changing values of the April-July water supply forecast for inflow to Lake Powell in 2017. Daily updating ESP volume forecasts (blue line shows the median forecast) and the monthly official forecasts (pink squares) are shown, along with the accumulated observed inflow beginning in April and the climatological mean and median inflows for the period. (Source: CBRFC. Water Supply Forecast,

https://www.cbrfc.noaa.gov/wsup/graph/front/espplot_dg.html?year=2020&id=GLDA3)

CBRFC official water supply forecasts (monthly, January-July)

During the water supply forecast season from January through July, the CBRFC produces monthly official seasonal water supply forecasts. While these are current for the 1st of the month, they are not released until several days later, with that lag reflecting the forecasters' consideration of multiple guidance sources for the official forecasts. As noted above, the CBRFC increasingly relies on the daily ESP to set the official forecasts, as can be seen in the very close correspondence between the median ESP and Official 50th percentile forecasts in Figure 8.7. Another source of guidance in the development of the official forecast is statistical water supply forecasts, both the SWS that the CBRFC still produces in-house and the NRCS monthly forecasts described below.

Historically, the skill of the CBRFC ESP and SWS forecasts had been comparable, but more recently the ESP forecasts have shown greater skill at most forecast points. The CBRFC provides a verification page on their website. An example of the Green River at Green River, UT forecast verification, provided in Figure 8.8, shows the ESP forecast is generally more skillful than the SWS forecast. The greater skill of ESP forecasts shown in Figure 8.8 is generally representative of the vast majority of the CBRFC forecast points (P. Miller, pers. comm.).

Historical Water Supply Verification

https://www.cbrfc.noaa

.gov/arc/verif/verif.php

Figure 8.8

Comparison of seasonal (April–July) forecast skill between CBRFC ESP (dynamical) and SWS (statistical) methods at various lead times as indicated on the x-axis for the Green River at Green River, UT forecast point (GRVU1). Skill scores were calculated from reforecasts for the 1981-2010 period. (Source: CBRFC; https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=20 17&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&shownm=1&showhvol=0&mode=reverif)

The statistical forecasts are trained to be statistically reliable, meaning that they have uncertainty bounds that verify against the observed error, whereas the bounds of the ESP forecasts become increasingly unreliable ("underdispersive") as the water year progresses toward the annual snow

peak. This is because the single initial condition used in ESP does not reflect the model uncertainty, which has its greatest impact when the contributions to spring runoff are strongly contained within the model snow and soil moisture storages rather than in the future climate, as is the case early in the season. This issue was detailed in Wood and Schaake (2008) along with a post-processing approach to correct for it. The CBRFC evolution plot (Figure 8.7) shows both a daily updated ESP and a periodically updated official forecast. Although the raw SWS is not shown on the plot, a merging between ESP and SWS may be apparent later in the season, as the more statistically reliable and wider SWS bounds extend the official forecast range beyond the narrower ESP bounds.

Applications of CBRFC forecasts in the basin

The daily ESP forecasts serve many water management clients. Utilities such as Denver Water and the Metropolitan Water District of Southern California use them as input for reservoir system models. Most notably, the ESP median trace makes up the most skillful part of the 24-Month Study (24MS) for Reclamation's management of Lakes Mead and Powell. The specific forecast products that are used as inputs into 24MS, depending on lead time and season, are shown in Figure 8.9 and explained in detail in Chapter 3. As noted in the following section describing the Upper Colorado Forecast Testbed, alternatives for various inputs to 24MS are being evaluated. The full ESP ensemble is used in MTOM, which provides an alternative projection (out to 5 years) of Lakes Mead and Powell management.

Conditional ESP input generation approaches

As noted earlier, the primary operational methods for seasonal forecasting do not generally incorporate climate information specific to the forecast period, and instead rely on the initial hydrologic condition signal. For this reason, throughout most of the history of seasonal forecasting, operational predictions were only issued after the start of the snow accumulation period (e.g., starting January 1) due to the initial hydrologic conditions signal provided by SWE and similar information. Yet, a number of studies have shown a benefit from using climate information (Wood and Lettenmaier 2006; Mendoza et al. 2017; Wetterhall and Di Giuseppe 2018). Climate information can come in the form of an expected tendency (e.g., wet and cool) based on historical relationships with the observed climate system state (e.g., El Niño), or from a model-based climate forecast (Chapter 7). As noted previously, the HEFS that is part of CHPS is an important effort toward providing a mechanism for including climate forecasts in seasonal and longer ensembles, which would fill a longrecognized potential gap.

	Year 1												Year 2											
Month Issued	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Oct	RFC	RFC	RFC	ESP Oct	ESP Oct	ESP Oct	ESP Oct	ESP Oct	ESP Oct	ESP Oct	ESP Oct	ESP Oct	inter- polate	inter- polate	30-yr Avg									
Nov		RFC	RFC	RFC	ESP Nov	ESP Nov	ESP Nov	ESP Nov	ESP Nov	ESP Nov	ESP Nov	ESP Nov	inter- polate	inter- polate	30-yr Avg									
Dec			RFC	RFC	RFC	ESP Dec	ESP Dec	ESP Dec	ESP Dec	ESP Dec	ESP Dec	ESP Dec	inter- polate	inter- polate	30-yr Avg									
Jan				RFC	RFC	RFC	Official A-J	Official A-J	Official A-J	Official A-J	ESP Jan	ESP Jan	inter- polate	inter- polate	30-yr Avg									
Feb					RFC	RFC	RFC	Official A-J	Official A-J	Official A-J	ESP Feb	ESP Feb	inter- polate	inter- polate	30-yr Avg									
Mar						RFC	RFC	RFC	Official A-J	Official A-J	ESP Mar	ESP Mar	inter- polate	inter- polate	30-yr Avg									
Apr							RFC	RFC	RFC	Official A-J	ESP Apr	ESP Apr	inter- polate	inter- polate	30-yr Avg									
May								RFC	RFC	RFC	ESP May	ESP May	inter- polate	inter- polate	30-yr Avg									
Jun									RFC	RFC	RFC	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun	ESP Jun
Jul										RFC	RFC	RFC	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul	ESP Jul
Aug											RFC	RFC	RFC	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug	ESP Aug
Sep												RFC	RFC	RFC	ESP Sep									

Figure 8.9

The specific forecast products that go into Reclamation's 24-Month Study. Greater detail and explanation for this figure is provided in Chapter 3. (Source: Reclamation)

ESP post-processing and trace weighting

Ensemble trace weighting is one of the most common approaches for post-processing ESP forecasts to incorporate a climate signal. Hamlet and Lettenmaier (1999) used the current ENSO index to select ESP traces from ensemble members from years with similar ENSO conditions, while discarding other traces, which improved seasonal streamflow prediction skill for rivers in the Pacific Northwest.

A simple category selection technique was generalized by Werner et al. (2004) to allow a local weighting of ESP members based on similarity to current climate conditions. For instance, in an El Niño year, historical input sequences from El Niño years in the past would have high weight, while those from La Niña years would still be included but with a very low weight. Similarity can be defined by any hydroclimate factor deemed relevant or likely to add skill, though Werner et al. (2004) used climate indices. More recently, Bradley, Habib, and Schwartz (2015) further demonstrated that ESP trace-weighting can improve forecast skill, assuming that informative covariates (i.e., predictors like ENSO state in the Pacific Northwest), are available for the basin of interest (Beckers et al. 2016).

The trace-weighting technique is more straightforward to implement than methods that require the pre-generation of conditional forcings (Wood and Lettenmaier 2006; Verdin et al. 2018; or the MEFP approach). It is important

to recognize, however, that trace-weighting can only reshape the distribution of an ESP forecast within its original distributional bounds (Mendoza et al. 2017). This potentially limits the impact of trace-weighting if the ESP forecasts are biased, in contrast to techniques that are unconstrained in harnessing climate-based predictability.

Several forecast centers have experimented with trace-weighting or postweighting in the past, in particular using the NOAA Climate Prediction Center's official climate forecasts (Chapter 7) as a conditioning factor, or using popular climate indices, such as Niño 3.4 for ENSO. During several past strong ENSO events, the CBRFC has weighted the historical years for their ensemble streamflow forecasts for Lower Basin forecast points to account for historical ENSO influences on Lower Basin winter and spring precipitation: during an El Niño event, the historical La Niña years (based on Niño 3.4) were removed from the ensemble, with the reverse for La Niña events. The CBRFC would also "nudge" the official forecasts according to this "ENSO ESP" output. However, there has been no formal verification showing that the ENSO ESP is more skillful than the normal ESP that includes all years; the Lower Basin forecast errors in spring 2016 were especially large because the expected influence from the very strong El Niño event that year was not realized (P. Miller, pers. comm.) The CBRFC plans to develop more rigorous verification and a revised method for incorporating ENSO influences into Lower Basin water supply forecasts.

Independent of whether or not trace-weighting is incorporated into official NWS forecast products, users can apply trace-weighting to the ESP forecasts generated by the RFCs. Reclamation is currently investigating whether new climate forecast products from the National Multi-model Ensemble (NMME) may be useful for enhancing the skill of statistical and ESP based forecasts. In the Upper Colorado River Basin, Baker (2019) used an ESP trace weighting scheme—the K-nearest neighbors (K-NN; Gangopadhyay et al. 2009) analog identification technique—to weight traces based on NMME 1-month and 3-month temperature and precipitation forecasts, and also the preceding 3-month average observed streamflow. This analysis was conducted to guide further analyses and modeling within the Colorado River Basin Streamflow Forecast Testbed (see section 8.6). Each predictor used in analog selection were prescribed an importance weight. Weights were calculated separately for four subbasins (the Gunnison, the Green, the San Juan, and the Colorado mainstem, including the headwaters), and the flows from each were recombined into a new, larger ensemble of Lake Powell unregulated inflow forecasts. Analysis of the runoff season unregulated Lake Powell inflow showed that the 4basin K-NN method is more accurate, as measured by the root mean squared error (RMSE), than basin-wide K-NN or the standard ESP through all leads (Figure 8.10).

Niño 3.4 Region Equatorial Pacific Sea Surface Temperatures

Link: https://www.ncdc.noaa. gov/teleconnections/en so/indicators/sst/

Figure 8.10

Skill scores averaged over a multi-year hindcast for Apr-July Lake Powell unregulated inflow. The streamflow forecasts generated by "standard" ESP, a basin-wide K-NN trace-weighted ESP, and 4-basin K-NN trace-weighted ESP are compared at leads of 12 months (left side of each plot) to 1 month (right side of each plot). The plot on the left shows the Continuous Ranked Probability Skill Score (CRPSS), in which a higher value is better; the plot on the right shows the Root Mean Squared Error (RMSE), in which a lower value is better. (Source: Baker 2019).

A probabilistic skill score, the Continuous Ranked Probability Skill Score (CRPSS) shows median improvements in December–February but a broader spread, with some forecasts ending up worse than ESP. The CRPSS accounts for both mean and spread errors, thus the fact that the K-NN-weighted ESPs tend to be under-dispersive may suffer when assessed by this score. In any case, this work is exploratory and other variations on this approach will need to be investigated. In particular, the use of more skillful, shorter-range weather and climate predictions (1-3 week) and data-driven approaches to predictor selection could be worthwhile.

NRCS operational (statistical) water supply forecasts

As described above, statistical methods are used to produce operational seasonal water supply forecasts (Garen 1992; Pagano, Garen, and Sorooshian 2004; Pagano et al. 2014), and have a history extending at least to the 1940s (Helms, Phillips, and Reich 2008). Based originally on manual snow course observations taken near the first day of each month, these regression-based water supply forecasts were the main motivation for the deployment of the automated SNOTEL network, which currently supplies the SWE and precipitation inputs for the NRCS statistical forecasts. In the early 1990s, NRCS switched to principal components regression (PCR) models from stepwise multiple linear regression to avoid the multicollinearity problem of interrelated predictors, an issue because SNOTEL

stations in the same basin will depict similar precipitation and SWE anomalies. For daily updating automated (but not official) water supply forecasts, the NRCS also uses a variant on the statistical forecast method called Z-score regression (Pagano et al. 2009).

The most typical streamflow predictors for forecasts in the Colorado River Basin are point-based observations at the SNOTEL stations: water-year-todate accumulated precipitation, and current snow-water equivalent. In other basins, antecedent streamflow may be used as predictors, as well as ENSO indices. For downstream locations, forecasted flow volumes for the upstream locations are routed downstream, and become key predictors in the regression equations. Recent research by Harpold et al. (2017), funded by NRCS, explored the value of including soil moisture (from in situ observations) as predictors in NRCS equations, finding that they have potential to improve skill. Earlier, Rosenberg, Wood, and Steinemann (2011) showed that the inclusion of modeled estimates of basin SWE and soil moisture in the PCR framework could outperform the use of in situ observations alone. Lehner et al. (2017) showed gains of up to 5% in forecast skill by including temperature predictions from the Climate Prediction Center's North American Multi-Model Ensemble, or NMME, as predictors in the NRCS water supply forecast, a strategy that was then evaluated internally by NRCS. These experimental findings illustrate that the statistical framework provides flexibility to incorporate new types of predictors, whether from observations or models, should they be found to provide increases in forecast skill.

To facilitate forecast equation development, NRCS uses a Microsoft Excelbased tool called VIPER (Garen and Pagano 2007). This tool allows the NRCS to quickly evaluate different predictor combinations with diagnostics on performance and predictor coverage.

Seasonal hydrologic prediction from global forecasting initiatives

Two international operational forecasting centers, the ECMWF and SMHI, are now producing naturalized seasonal hydrologic runoff forecasts for the entire globe (Figure 8.11). Although these efforts are in the initial stages, it is worth mentioning them as possible harbingers of future development. Both systems are based on the ECMWF System 5 seasonal meteorological/climate ensemble forecasts, which are widely regarded as the most skillful in the world. However, to date, their skill has not been specifically evaluated over the Colorado River Basin.

Figure 8.11

GLOFAS based seasonal predictions over western South America. (a) forecast map showing points and anomalies; (b) predicted flow over 4 months with uncertainty bounds; (c-d) probabilities of being significantly below and above normal in future forecast months. (Source: Emerton et al. 2018. © Authors 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Link to license: https://creativecommons.org/licenses/by/4.0/legalcode. Link to work: https://www.geoscimodel-dev.net/11/3327/2018)

Forecast verification

Verification is the practice of assessing the multi-faceted quality of forecasts in terms of commonly understood metrics of accuracy, reliability and skill. Verification is widely recognized as a critical aspect of the forecast process—essential for identifying and diagnosing weaknesses in the forecast approach, objectively benchmarking new developments against an existing system, and communicating forecast usability to stakeholders (Welles et al. 2007; Demargne et al. 2009; Welles and Sorooshian 2009). It has long been a standard practice in meteorological forecasting centers, which track year-over-year progress on "headline scores" such as the anomaly correlation (AC) of the 500-millibar height field.

In contrast, hydrologic forecasts undergo verification less systematically, and the verification that is performed is rarely made public or published in an organized fashion, with one notable exception described below. There are no comparable, widely used headline scores for hydrologic predictions, either short-range or seasonal. For developers, it can be difficult or impossible to gage whether a new forecasting approach is better than the existing, official forecasting approach because no consistent (i.e.,

reproducible) operational forecast dataset exists, and metrics for the forecast track record are not readily available. Real-time operations tend to upgrade and evolve steadily, thus the track record of real-time forecasts over time is not consistent with the current system in operations.

Both the NWS RFCs and NRCS have made greater efforts recently to produce and make public verification metrics. Notably, the CBRFC offers more online verification than nearly all other RFCs. For short-range forecasts, the CBRFC shows visual displays of recent forecasts and also of past years' forecasts versus observations, together with a number of statistics for the year. However, long-term verification metrics such as bias, error, correlation, and various indices of reliability are not calculated. For mid-range forecasts, the CBRFC website offers extensive verification plots for each forecast point, accessed via the forecast evolution plot for that point. These verification plots show the skill and error of the actual official seasonal forecasts vs. observations over the past 30 years or so, and also of the retrospective hindcasts (i.e., reforecasts) that are produced using the current forecast procedures. Also available are maps that show the % error of the official seasonal forecasts, by month of issuance, for the years from 2014 to present, as well as a map of the average absolute % error across a longer record of official forecasts (Figure 8.12).

The latest version of the NRCS Interactive Map (5.0) allows users to generate similar maps of forecast errors for the NRCS monthly official seasonal streamflow forecasts, by month of issuance, for any year back to the 1940s, though most forecast points have been active since the 1970s.

8.5 Interannual to decadal hydrologic prediction (year 2 and beyond)

Most operational mid-range predictions focus on lead times of up to one year, but the large storage capacity on the Colorado River drives the need for even longer lead forecasting to support management, as exemplified by Reclamation's 24MS operations model, which requires inflow forecasts extending to two years (Chapter 3). The predictive value of the initial watershed moisture conditions (snowpack and soil moisture)—which is so critical to seasonal streamflow forecasting (i.e., year 1)—is essentially non-existent by the beginning of year 2, let alone further out. Thus, predictive skill for streamflow forecasting at year 2 and beyond can only come from skillful prediction of climate conditions that far out—which falls into the realm of decadal climate prediction (years 2–10).

Figure 8.12

Water supply forecast verification map showing the average % error (difference between forecasted and observed streamflow) of the April 1st official forecasts of April-July streamflow for forecast points in the Upper Basin and adjacent portions of the CBRFC forecast domain. Most forecast points have had a forecast error between 10-25%. The period for most gages is 1991-2019. Note that the forecast process has evolved over time, and the historic skill may differ from the current forecast skill. (Source: CBRFC Water Supply Verification 2019); explanation available at https://www.cbrfc.noaa.gov/arc/verif/verify.year.web.pdf)

Decadal climate prediction is a rapidly evolving field that has recently been boosted by the increasing availability of initialized climate model runs that have been performed to assess whether climate predictability exists at decadal time scales. These decadal predictions use the same climate models (i.e., global climate models; GCMs) and prescribed greenhouse gas forcings as their better-known counterparts, the multi-decadal climate change projections (Chapter 11). However, the decadal predictions have one key difference, which is that the climate model runs are initialized with observed or reanalyzed current conditions, at least to the limited extent that they can be comprehensively estimated, in a manner similar to the initialization of weather forecast models (Chapter 7). For instance, deep ocean variables (which are not included in weather models) cannot be directly observed, although they are known, based on model simulations, to

strongly influence decadal climate. Although experimental, these decadal predictions are being investigated for their potential to provide skillful forecasts for sectoral applications, such as water resources management.

Because of the high computational cost of running the decadal predictions, most performed thus far use only small (10-member) ensembles, which is likely too small to extract a reliable forecast signal given the noise of natural variability that is present at interannual to decadal time scales. An initialized, large ensemble of decadal predictions using NCAR's Community Earth System Model (CESM) was released in 2018 (Yeager et al. 2018). This ensemble includes 40 members. NCAR also has a corresponding uninitialized 40-member large climate projection ensemble from CESM that uses the exact same model configuration and forcings and can be used for an "apples-to-apples" comparison of model performance over the historical period (Kay et al. 2015).

Decadal predictions have shown modest skill for temperature (Yeager et al. 2018), but decadal precipitation forecasts have not been skillful. To a large degree, the skill of decadal predictions of temperature results from warming trends that can be prominent at regional scales (Chapter 2). There is some evidence that low frequency (i.e., decadal and longer) ocean temperature variability, in the form of climate indices such as the PDO and AMO can be linked to southwestern U.S. drought (Chapter 2), but skillful precipitation-related predictions for specific regions and individual years beyond year 1 have not yet been conclusively demonstrated.

Towler, PaiMazumder, and Done (2018) evaluated the use of decadal temperature predictions from the Community Climate System Model, version 4 (CCSM4) for watershed-scale applications. Raw predictions were translated to the local scale by several methods that have been used previously in the seasonal forecasting context. In one, the decadal forecast median temperature anomaly (i.e., the difference from climatology) was added to an observed climate variable, e.g., a time series or climatology of daily temperature observations. In another, the climate forecast was translated into tercile probabilities relative to the model climatology (e.g., below normal, normal, and above normal) and the observed watershed climatology was resampled according to the tercile probabilities or weights. A third method was a hybrid of the first two, in which the resampled forecast is shifted so that its median matched the anomaly forecasts. The study evaluated one decadal forecast (for 2011-2015) in two watersheds, one of which is the South Platte River drainage in Colorado, and found that all of the methods improved the temperature forecast at the local scale (which was for much warmer temperatures than the 1981–2010 climatology), with the anomaly and hybrid methods performing best. Because the study did not evaluate multiple forecasts (e.g., to build a sample of performance statistics), as is typical in forecast method

evaluation studies, the results are not statistically robust. They do, however, align with the general expectations for a temperature forecast, which is that due to the strong observed warming trend, more recent years in the record are warmer than any longer-term climatology, and most initialized climate models capture this trend in sign if not always in magnitude. The same cannot be said to be true of decadal precipitation forecasts, unfortunately.

It may be worthwhile to evaluate not only decadal forecasts from other models, and across a larger forecast events sample, but also against more direct benchmarks such as persistence (i.e., taking the distribution of the most recent 5-10 years as a forecast) or extrapolation of the temperature trend, to assess whether climate model decadal forecasts add marginal skill. If they can capture some of the drivers of decadal variability (such as multi-year ENSO), this additional marginal skill may be possible. In general, decadal climate forecast analyses have not shown significant multi-year skill except in certain windows of opportunity, such as the start of the double El Niño in 1990. The coming years may yield greater opportunities to explore their potential for informing hydrology and water management at regional scales, e.g., as the DecadalMIP runs that are part of the CMIP6 effort become available (Chapter 11).

In addition to the model-based decadal prediction activity described above, there is a small body of literature focused on "year 2" climate and hydrology. Some of this work has been sponsored by Reclamation and has used empirical approaches—i.e., statistically linking observations of climate system variables such as sea surface temperatures or other integrative/lagged observations to regional climate. One example is Lamb (2010), in which sea-surface variability in a region off the east coast of Japan was linked to year 2 hydroclimate in the Colorado River Basin. More recently, Wang et al. (2018) characterized a lagged relationship between Great Salt Lake levels, which integrate climate influences over multiple years, and Upper Basin streamflow. Relationships of this type need to be scrutinized carefully and treated with some skepticism, because it is well known that spurious correlations can arise from the analysis of small samples, and analyzing seasonal variability from the relatively short historical record provides only a small sample. DelSole and Shukla (2009) provide an excellent description of the artificial skill that appears if such analyses are not performed with proper cross-validation, showing that patterns that appear informative can result from random noise. Recent interest in a New Zealand Index that appears to have more mid-range predictability for southwestern U.S. rainfall than the long-used ENSO indices may be another example of such a study in which inadequate predictor screening and cross-validation has been applied, and predictability is overstated. See Chapter 2 for more information about

sources of multi-year hydroclimatic variability and efforts to deploy this information for prediction.

In the context of the 24MS, the lack of convincing predictability for year 2 climate and hydrology in the Upper Basin means that the specification of year 2 inflows (as shown in Figure 8.9) is simply the climatology—i.e., the average of historical inflows. As interest has grown in improving the accuracy of the 24MS projected system conditions, Reclamation has constructed a testbed for evaluating two-year inflow projections, and this testbed is described in the following section.

8.6 The Colorado River Basin Streamflow Forecast Testbed

The generation and advancement of seasonal and longer forecasts, out to lead times of one year, is generally viewed as the operational responsibility of the NWS and the RFCs because any advancement in capability that will serve Reclamation water management must be operationalized within a forecast center or other NOAA office. Although experimental research efforts may provide usable products (e.g., the Westwide Hydrologic Forecast System of Wood and Lettenmaier 2006), water managers are often mandated to use official products from government agency sources. As noted in Chapter 7, NWS has invested in development of improved subseasonal and seasonal ensemble climate forecasts, but not in advancing the predictions of year 2 climate. Due to the importance of year 2 conditions for the Colorado River Basin, Reclamation launched an effort in 2016 to assess and compare year 1 and 2 inflow predictions for the basin using the Mid-term Probabilistic Operations Model (MTOM). MTOM simulates operational conditions such as reservoir operations and operating tiers (Chapter 3).

This effort created a testbed, a platform for running MTOM with either the existing operational streamflow forecasts or experimental forecasts, to analyze the impacts on system management. The testbed provides a protocol for evaluating streamflow forecasts and the skill of the resulting hydrologic and operational projections over a 2-year period. Figure 8.13 shows the framework for the Colorado River Basin Streamflow Forecast Testbed. Streamflow forecasts are input and run through MTOM to output operational projections for the basin reservoirs, using a monthly time step to the end of the second water year. Streamflow forecasts are evaluated with metrics that compute the error, skill, spread, and reliability of the Lake Powell annual unregulated inflow. Operational projection metrics assess the errors of MTOM projected pool elevation, storage, outflow, and operating tiers at Lakes Powell and Mead.

Figure 8.13

Colorado Basin Streamflow Forecast Testbed framework. (Source: adapted from Baker 2019)

The testbed framework utilizes the RiverWare Study Manager and Research Tool (RiverSMART). RiverSMART facilitates the execution of RiverWare models such as MTOM, allowing for easy repetition to explore alternatives, e.g., different hydrology scenarios, demand scenarios, and operating policies. The setup of the testbed in RiverSMART is illustrated in Figure 8.14. A combination of Run Range, DMI (Data Management Interface), and MRM (Multiple Run Management) options allow RiverSMART to simulate forecasts with different run lengths, number of traces, and input format. The scenarios use one model, MTOM, and one ruleset, to simulate reservoir operation according to the 2007 Interim Guidelines. The basin-wide conditions and reservoir operations from each simulation are output to CSV files that are read into R scripts to analyze the streamflow forecasts and operational projections for hydrologic and operational skill.

The testbed has been used to evaluate both deterministic and probabilistic streamflow forecasts. The deterministic "most probable" forecast, which is used in the 24MS, was compared to the median ESP trace for the years 2001–2016. In year 2, both forecasts have large errors, with the Median ESP trace performing slightly better at forecasting Powell unregulated inflow during this time. Three ensemble streamflow forecasts—Climatology, ESP, and 4-Basin K-NN—were compared from 1982–2016. (Figure 8.10 shows a related analysis: the skill of the ESP, 4-basin K-NN, and Basin-wide K-NN ensemble streamflow forecasts over year 1.) To support the testbed analyses, the CBRFC provided 30 years of hindcasted ESPs.

Figure 8.14

Testbed application within RiverSMART. Arrows depict the direction of data flow and process. (Source: Baker 2019)

In year 2, all forecasts have good resolution and reliability, but they lack skill (See Chapter 7 for explanations of these terms). The skill of both the ESP and 4-Basin K-NN forecasts increases above climatology in the fall of the out-year, likely due to the knowledge of antecedent basin conditions such as soil moisture. At shorter leads during the runoff season, ESP and 4-Basin K-NN have poor resolution and reliability. The resulting modeled reservoir operations showed that all forecasts produced large errors in projected pool elevation at Lakes Powell and Mead in year 2. These errors in projected pool elevation decrease with shorter leads, especially by April. These findings are detailed in Baker (2019).

The testbed analyses performed so far have already led to changes in how Reclamation produces operational mid-term projections. Reclamation regularly produces, using MTOM, a 5-year table of future basin conditions and reservoir operations in the Colorado River system. This table was originally produced using the natural flow record (1906–2017) run through CRSS to simulate reservoir operations for the full 5-year table. Based on the results of the testbed analyses, Reclamation now uses the ESP streamflow forecast run through MTOM to project reservoir operations for year 1, and then uses CRSS projections for the subsequent 4 years of the table. See Reclamation's webpage for more information on this table.

Colorado River System 5-Year Projected Future Conditions

Link:

https://www.usbr.gov/l c/region/g4000/riverop s/crss-5yearprojections.html

8.7 Challenges and opportunities

Seasonal and longer streamflow forecasts will always contain uncertainty, thus the multi-faceted challenge facing scientists, forecasters and water managers is to identify operationally robust strategies to enhance the skill and reduce the forecast uncertainty, while facilitating further research into improving forecasts. There are three primary pathways toward improving streamflow forecasts. The first is improving predictability arising from initial watershed conditions. The second is improving predictability arising from future climate states. The third is improving the forecasting paradigm to allow for reproducibility, benchmarking, and steady capability and workforce development as the datasets, models and methods evolve. The sub-sections below discuss opportunities in each area.

Meteorological inputs

Model meteorological inputs are critical to model performance. There is currently no high-quality, high-resolution, real-time meteorological analysis that uses all available (and useful) multi-sensor information, and provides 1) consistency to the extent possible between real-time and retrospective forcings; and 2) uncertainty information in the form of ensembles or statistical metrics. Potential opportunities for improvement include continued development of high-resolution datasets of near-surface weather; enhancement of ensemble forcing procedures to incorporate numerical weather prediction and radar and satellite information; and statistical adjustments to improve real-time to retrospective consistency.

Harnessing watershed predictability

Modeling

It is often noted that the current operational model suite for the forecast centers are legacy NWS river forecast system models that were introduced in the 1970s, and that hydrologic modeling has advanced since then in various contexts: process-oriented watershed modeling (e.g., the Distributed Hydrology Soil Vegetation Model), land-surface models (e.g., VIC model), and more recently coupled land surface models that incorporate increasingly complex representations of water and energy balance physics (e.g., Community Land Model). Not surprisingly, there has long been the view that better streamflow forecasts can be obtained by upgrading from legacy models to more complex and physically oriented models.

The National Water Model is the latest NWS-led effort in this direction, following the decade-long effort to introduce the coarser Hydrologic Laboratory-Research Distributed Hydrologic Model in the RFCs for streamflow forecasting. A more recent example is the recently completed partnership between the CBRFC, RTI, and Utah State University under NASA funding to implement an 800m version of HL-RDHM over the Upper

Colorado River Basin for forecasting, and to assimilate MODIS-based snow cover imagery.

Outside of the NWS, there have been, or are, multiple forecasting activities based on different modeling implementations. Notable research efforts have included the aforementioned NOAA-funded, VIC-based, Experimental West-Wide Seasonal Hydrologic Forecasting System at the University of Washington, which ran in real-time over five years, producing ESP and enhanced ESP forecasts and allowing for automated data assimilation. Where calibrated, the VIC-based water supply forecast predictions appeared to have comparable skill to the RFC water supply forecasts. Private-sector efforts also exist, providing short- and mid-range forecasts to reservoir management clients, though these are not well documented.

The modeling advances over the last three decades and their demonstration in forecasting contexts have not altered the reliance of RFC operational practices on the legacy models. There is a clear scientific rationale for enhancing the physics of the legacy models in many forecast cases: for instance, where key runoff generation processes are missing from the models, or where the spatially lumped models cannot represent watershed process heterogeneity sufficiently to represent streamflow dynamics adequately. Examples of the former are when parts of watersheds have burned, which would require different forest cover depictions; or where soil cracking, surface ponding or frozen-ground effects are important. An example of the latter is where the differential timing of snow accumulation and melt in a watershed needs to account for myriad spatially variable factors including elevation, aspect and canopy coverage.

Yet implementing modeling advances faces major hurdles for operational flow prediction in both the current in-the-loop forecast paradigm and a potential over-the-loop workflow. The manual forecaster practice requires relatively low-dimensional (i.e., simpler) models in which model states can be interactively adjusted, which limits the complexity of the modeling structure and physics. It would be impossible for a forecast expert to adjust model states in a high-dimensional model, especially in real-time. And some of the manual adjustments, especially in real-time flooding situations, are critical for incorporating timely updates of management effects such as spillway releases. The models also must run relatively fast to be supportable on current forecast center computational infrastructure—which does not include supercomputing. Also, significantly, the models must be amenable to calibration, yielding high-quality streamflow simulations, which means both that they must be fast, since calibration requires 100s to 1000s of repetitive simulations, and that forecasters have a comprehensive understanding of parameter sensitivities.

The inability, thus far, of agencies and research groups to adequately calibrate more complex models (e.g., the National Water Model) for streamflow simulation has been a major factor blocking their adoption. Complexity that raises the computational demand of forecasting to the extent that various techniques such as data assimilation, hindcasting or mid-range ensemble prediction are infeasible is also a detriment. At present, for instance, the National Water Model runs 30-day lagged-ensemble forecasts, which are not sufficient for many water management applications. In contrast, coarser-resolution systems such as the WorldWideHype system run full-ensemble forecasts for multiple seasons ahead.

In summary, modeling advances hold potential to improve operational forecasting, but their potential uptake requires several major, challenging scientific and technological upgrades. Simply investing in a new model implementation alone without supporting science and methods (as discussed in Chapter 6) is unlikely to yield improved predictions in the near term. Therefore, the most promising research opportunities include:

- Effective approaches for regional parameter estimation (calibration) in more complex watershed process models to enable model streamflow simulations on a par with the performance of current legacy models.
 RTI is currently working with the CBRFC on a modeling effort to improve the CBRFC's estimation of consumptive use.
- Effective approaches for automated hydrologic data assimilation, to replace the many manual adjustments made by expert forecasters and enable skillful over-the-loop systems.
- Automated interoperability of water management decisions and river basin modeling systems, to replace the manual incorporation of management effects like releases and diversions.

Some funding toward these aims has been made available in recent years through the NOAA Office of Weather and Air Quality program, but it is almost entirely focused on the high-resolution National Water Model and National Water Center-based forecasting, rather than being more generally targeted toward advancing hydrologic prediction science, regardless of the specific modeling platform.

In addition, research is needed to identify clearly, from a process and information standpoint, where and why additional complexity should be expected to improve a particular streamflow forecast product, whether short- or mid-range. Experience has overwhelmingly shown that the greater complexity in resolution or in process representation does not guarantee improved streamflow simulation and prediction. Often, the reverse is true, thus evidence-based arguments for such advances must be

sharpened, identifying particular forecast applications in particular hydroclimatic settings, to avoid prolonging unproductive model development initiatives.

Improving watershed observations

There is little question that more extensive monitoring of watershed conditions, either by direct or remote measurements, would benefit hydrologic forecasting. The benefits can arise in two ways: 1) improving real-time analyses that provide the initial conditions for forecasts, which matter most when those conditions provide most of the forecast signal, such as in late spring; and 2) improving model implementation by helping constrain model parameters and guide structural implementation of those parameters.

In the first case, increased density of real-time measurements of SWE and streamflow can reduce uncertainty about forecast model states in real-time, reducing errors in the forecasts. Increased accuracy in watershed precipitation and temperature analyses that drive forecast models will also improve real-time states and lessen the need for forecaster manual adjustments. Satellite remote sensing of distributed snow cover and dust-related radiative forcing is currently used by the CBRFC as an ancillary source of information to adjust model states, in a semi-quantitative but not automated process. The relatively newer high-resolution Airborne Snow Observatory (ASO) imagery and other fully spatially distributed snow information (Chapter 5) have potential to improve snowmelt runoff forecasts by providing more detailed and comprehensive characterization of the snowpack. This potential is still being explored.

Soil moisture observations are also potentially beneficial, though both in situ and remotely sensed soil moisture observations (Chapter 5) have not been able to supplement, let alone displace, the use of modeled soil moisture by the CBRFC and other operational forecasters. In situ stations are sparse, insufficiently deep, and typically lack long periods of record, and satellite soil moisture imagery is coarse (typically 25-km resolution) and lacks information for more than the top 5 cm of the soil. To date, remotely sensed soil moisture has not been shown to benefit operational streamflow prediction. A number of studies have shown, nonetheless, that the use of soil moisture observations or estimates, where available, can increase forecast skill. For example, Harpold et al. (2017) achieved a 10-20% improvement in statistical water supply forecast prediction using in situ NRCS Soil Climate Analysis Network soil moisture measurements to supplement SWE and precipitation observations, while Rosenberg, Wood, and Steinemann (2011) similarly demonstrated improved statistical water supply forecast predictions using a combination of VIC-based modeled soil moisture and SWE as predictors. As noted earlier, the current RFC practice

of adjusting modeled soil moistures in fall, ahead of the forecasting season, recognizes the influence of soil moisture on spring-summer runoff.

Many of these hydrologic observations (other than soil moisture, due to its limited availability) can be used to help evaluate and improve watershed models, particularly by extending their assessment beyond a focus on streamflow to include more process-specific, distributed variables. Doing so increases the chance that when the model is simulating streamflow, it achieves good results for the right reasons, i.e., because it simulates watershed sub-processes correctly. Evapotranspiration (ET) estimates from satellites, models, and hybrid satellite/model approaches (Chapter 5) can be used to bracket watershed model ET fluxes and improve the calibration of watershed models. It is unclear, however, whether real-time ET estimates would benefit real-time streamflow predictions significantly, since calibrated models typically can estimate ET relatively well from other meteorological forcings.

There are a number of challenges to effectively using watershed observations to improve forecasts, however, and it is common for the immediate benefit of new or expanded observations to be overstated by groups that have a vested interest in their support, development or adoption. One of the primary challenges is that new observations lack a long enough record to incorporate into operational forecast practice. Watershed models are calibrated over multiple years to their meteorological inputs, so, for example, placing a new radar site for measuring precipitation yields a new input analysis that the model is not trained to handle, and cannot be used immediately in prediction. A number of years of operation may be needed before the radar analysis can be merged with longer-term observational analyses to provide a multi-sensor record that a watershed model can be trained to use. Statistical models have similar training requirements; ideally, they are trained on at least 30 years of predictor observations.

The new high-resolution ASO snow data (Chapter 5) appears to be a high-potential-benefit dataset for seasonal streamflow forecasting, although as noted earlier a comprehensive analysis to determine its optimal application and real marginal value has not yet been performed. For example, it is unknown whether ASO SWE estimates early in the season offer more value than the use of modeled snow water equivalent, either in physically based forecast frameworks or in statistical ones. ASO's distributed snapshots of SWE could possibly be combined with long-term, in situ SNOTEL SWE to reconstruct SWE volumes from long-term index stations, achieving better predictions and possibly avoiding the need for additional or frequent ASO flights. To better understand how much predictive skill ASO snowpack information adds relative to conventional seasonal (water supply) streamflow forecasts, and to test whether a limited number of targeted

ASO flights can be used to improve future forecasts in other basins, Reclamation has an ongoing project that focuses on merging high resolution airborne snowpack data with existing long-term hydrometeorological observations to improve water supply forecasting. In another project led by NASA Jet Propulsion Lab and the CBRFC, ASO SWE observations are being compared with modeled SWE data to determine correlations between the two data sets and assess whether the ASO data could have improved past streamflow forecasts for selected basins.

A number of studies over the last 15 years have tried to show the benefits of assimilating snow covered area data from the satellite sensors MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) into hydrology models to the benefit of forecasting. These studies have generally suggested minor or negligible gains. McGuire et al. (2006) assimilated MODIS snow parameters into VIC and found moderate improvements in ESP forecasts for a number of locations in Idaho, but in general, relatively few studies exist to assess snow covered area assimilation in a mid-range forecasting context. The CBRFC has operationalized the input of MODSCAG data from MODIS to provide real-time information that can aid the forecasters in adjusting model snow covered area (Chapter 5), but has not quantified the impacts of these adjustments on seasonal forecast skill. MODIS imagery is often cloud-obscured in key regions of the West, including the Upper Basin, during times when it would be useful, thus its operational utility can be limited.

By better characterizing watershed conditions and enhancing our ability to model watersheds, new or improved watershed observations will generally provide a positive return on investment. At certain times of year, when initial hydrologic conditions dominate the mid-range forecast signal, improved initial condition estimates will directly translate into improved mid-range predictions. There is always a need to consider the potential benefits of particular siting locations for new in situ observations such as SNOTEL sites, to avoid redundant measurements and to optimally fill measurement gaps. Rosenberg, Wood, and Steinemann (2013) describe the use of VIC modeling to identify optimal placements for new SNOTEL sites in the mid-range water supply forecasting context—locations where SWE is not highly correlated with existing stations. There are still many forecast locations across the western U.S., including the Colorado River Basin, for which additional in situ SWE, precipitation, temperature, soil moisture, and streamflow measurements could reduce uncertainty in mid-range forecasts.

Spatial observation-based analyses of SWE and soil moisture also have great potential to improve the initial conditions for mid-range forecasts, but it is critical to recognize that their optimal value will be difficult to harness without 1) methodological research into how they may be incorporated into a forecast workflow, at the lowest potential cost, and 2)

the development of both real-time and multi-year (retrospective) records that provide a foundation for research and methodological verification.

Hydrologic data assimilation

The current mid-range forecast paradigm relies on forecaster effort to adjust model states to be consistent with streamflow observations. To open the door for adoption of more complex models, multi-faceted ensemble approaches, leveraging supercomputing, and other advancements in streamflow forecasting, the research and operational communities must develop effective automated hydrologic data assimilation methods that can be applied across regional domains. This transition from in-the-loop to over-the-loop paradigms took place in the meteorological forecasting community several decades ago, but is only beginning to take root in the hydrologic forecasting community today.

The literature is full of small-scale, limited period, case study examples in which hydrologic data assimilation has been shown to be beneficial. Liu et al. (2012) provide a review of hydrologic data assimilation theory and applications, noting that "Despite the overwhelming research into hydrologic data assimilation, only a few studies...formulated data assimilation in an operational setting and attempted to evaluate the performance gain from data assimilation in a forecast mode" and observed that "the application of advanced DA techniques for improving hydrologic forecasts by operational agencies is even rarer...". Indeed, despite some examples of operational assimilation for short-range prediction, there are almost no enterprise-scale hydrologic data assimilation systems in existence today. The implementation of a proposed hydrologic data assimilation component of HEFS was deferred beyond the current version of HEFS. The National Water Model employs a routing-model data assimilation approach that adjusts streamflow, but does not attempt true hydrologic data assimilation. The Northwest RFC runs a principalcomponents based sub-system within CHPS to propose SWE updates for their operational models, but forecasters oversee any modifications to model states.

A sample of operational-context hydrologic data assimilation studies includes Seo, Koren, and Cajina (2003); Seo et al. (2009); Thirel, Martin, Mahfouf, Massart, Ricci, and Habets (2010); Thirel, Martin, Mahfouf, Massart, Ricci, Regimbeau, et al. (2010); Weerts et al. (2010); and DeChant and Moradkhani (2011a, 2011b). Many of these hydrologic data assimilation studies relate to short-range forecasting, but there have also been persuasive demonstrations showing skill improvements in SWE assimilation for seasonal forecasting. Huang et al. (2017) provided one of the more comprehensive illustrations for ESP forecasting in 12 western U.S. basins that an ensemble-based hydrologic data assimilation approach with NWS forecast models improved the accuracy of seasonal runoff volume

forecasts. Bergeron, Trudel, and Leconte (2016) assessed the assimilation of streamflow, SWE and snow covered area for distributed model forecasts of a watershed in Canada, finding that streamflow assimilation had a general benefit throughout the year, assimilation of point SWE observations benefitted seasonal forecasts, while assimilation of snow covered area data had little benefit.

It is clear that hydrologic data assimilation would provide a step forward for operational flow forecasting, and high-potential techniques exist that could be implemented. A particular benefit of automated hydrologic data assimilation would be to enable hindcasting that has more consistency with real-time forecasting, which would allow for more robust benchmarking and evaluation of different forecasting techniques. It thus seems prudent to invest in efforts to develop and deploy hydrologic data assimilation, particularly for seasonal forecasting (where it is more tractable than daily flood forecasting). Due to the nascent nature of the technique's applications in operational settings, it appears likely that the benefits of such development will not be immediate, and that experimentation and refinement of the implementation will be needed. The long-range potential benefit, and particularly the possibility of transforming mid-range forecast practice by enabling over-the-loop prediction, could be highly valuable.

Harnessing climate predictability

The hydrology research community has been investigating the potential for advancing mid-range forecasting through the use of climate information either climate system states such as El Niño, or explicit climate forecasts for several decades. Hamlet and Lettenmaier (1999) showed benefits of trace-weighting using ENSO and PDO indices for mid-range flow prediction in the Columbia River Basin, and Wood, Kumar, and Lettenmaier (2005) showed the benefits of using climate model forecasts from NCEP to enhance ESP prediction skill (though finding a benefit only in strong ENSO anomaly years). Other research efforts have confirmed the benefit of using climate forecasts from the NMME for in the generation of runoff and soil moisture predictions, both in the U.S., e.g., Mo and Lettenmaier (2014) and in Europe, e.g., Thober et al. (2015). A recent collection of over 40 papers on seasonal streamflow forecasting in the journal Hydrology and Earth System Sciences (Wetterhall and Di Giuseppe 2018) included a number of studies assessing the value of other climate forecast systems, such as the ECWMF System 4 and System 5, to boost the skill of mid-range climate predictions. In the U.S., as described earlier, the major pathway to use operational climate forecasts in RFC streamflow prediction is embedded in HEFS, but this pathway has been little used.

It is clear that improved sub-seasonal and seasonal climate forecasts would have substantial benefit for seasonal and longer hydrologic forecasts, with a particular need for forecasts of cool-season precipitation in the main runoff generating regions of the western U.S such as the Upper Basin. Subseasonal and seasonal climate prediction has also long been a major scientific challenge, requiring large-scale investments by the Earth system research community in improved global-scale observations, climate modeling, climate model data assimilation systems, and predictability studies. Such work is underway, supported via the research and climate-services programs of agencies including NASA, NOAA, DOE, DOD, and NSF, as well as internationally by multifaceted, multinational initiatives (Chapter 7). A major community advance in recent years has been the generation of hindcasts to complement real-time forecasts, which allows for skill assessment and the training of downscaling techniques for the forecasts. Another is the development of multi-model forecast products, such as the NMME and SubX.

There is currently no shortage of techniques for incorporating climate information into mid-range hydrologic predictions (e.g., pre- and post-weighting methods), but the value of doing so is dependent on the skill of the input climate information. In locations where sub-seasonal and seasonal predictability is stronger, such as the Pacific Northwest and parts of California, the application of climate information can provide a moderate increase in mid-range hydrologic skill, on the order of 10-20%, depending on the forecast location, lead time, and initialization date.

The Upper Basin is well known as a region of limited skill for sub-seasonal and seasonal precipitation forecasts (Chapter 7), but there is hope that more regionally tailored, circulation-based analyses of climate variability, and climate predictability in steadily evolving climate forecast models, could lead to minor to moderate skill improvements in streamflow forecasts. Because of the sizable potential value of improved climate prediction for seasonal and longer streamflow forecasting, it is advisable to continue to monitor progress and invest in analysis and development of watershed-scale climate forecasts via both empirical and dynamical methods and sources as operational climate forecasting capabilities slowly evolve. The current state of the science and practice, and ongoing efforts to improve climate forecasts, are described more fully in Chapter 7.

Developing testbeds to investigate over-the-loop forecast approaches

NOAA currently has twelve <u>Testbeds and Proving Grounds</u> to facilitate the orderly transition of research capabilities to operational implementation for such phenomena as severe weather and hurricanes, but lacks a testbed devoted to hydrologic prediction. The most relevant testbed is the Hydromet Testbed hosted jointly by NOAA's Earth System Research Laboratory (ESRL) Physical Sciences Division and the Weather Prediction Center, but the focus of that testbed has long been more meteorological than hydrological. A major advance over the last decade from that testbed, for instance, was the identification and development of predictive

capabilities related to atmospheric rivers (Chapter 2). The lack of a hydrologic forecasting testbed is a critical institutional gap, in that such a testbed that would support experimentation and systematic development of real-time forecast approaches, including new models, data assimilation techniques, post-processing approaches, model calibration techniques, climate and weather downscaling methods, verification, and communication related to forecasts and decision making. Such a testbed could support the transition of new research to operations for both the National Water Center and for the RFCs, and build the case for the viability of over-the-loop approaches.

In a piecemeal fashion, advancing individual strategies for better harnessing watershed and climate predictability will incrementally produce better forecasts, but the more fundamental challenge—and opportunity—is to build the institutional capacity in NOAA and other agencies to support steady, rational development activities over multiple years. For the most part, these will be over-the-loop approaches in which an automated system is run with various components, generating hindcasts and real-time forecasts, and can be verified and benchmarked against research variations that could potentially provide upgrades to the system. The Colorado River Basin Streamflow Testbed described earlier shows an example of what can be gained from the objective comparison of forecast variations (through post-processing) for water management outcomes, though the hydrologic forecasts themselves lie outside of the testbed. Reclamation and USACE have supported work with NCAR and partners in recent years to develop a small-scale example of such a testbed, but much larger scale, more formal, multi-agency investment is required, employing or virtually harnessing multiple full-time staff, and with strong links to operational forecast centers and stakeholder groups.

A summary of these challenges and opportunities for streamflow forecasting is provided below.

Challenge

The modeling advances over the last three decades and their demonstration in forecasting contexts have not altered the reliance of RFC operational practices on the legacy models. There is a clear scientific rationale for enhancing the physics of the legacy models in many forecast cases, yet implementing modeling advances faces major hurdles for operational flow prediction in both the current in-the-loop forecast paradigm and the over-the-loop workflow.

Opportunities

• Effective approaches for regional parameter estimation (calibration) in more complex watershed process models to enable model streamflow simulations on a par with the performance of current legacy models.

- Effective approaches for automated hydrologic data assimilation, to replace the many manual adjustments made by expert forecasters and enable skillful over-the-loop systems.
- Automated interoperability of water management decisions and river basin modeling systems, to replace the manual incorporation of management effects like releases and diversions.

Challenge

There is little question that more extensive monitoring of watershed conditions, either by direct or remote measurements, would benefit hydrologic forecasting. The benefits can arise in two ways: 1) improving real-time analyses that provide the initial conditions for forecasts, which matter most when those conditions provide most of the forecast signal, such as in late spring; and 2) improving model implementation by helping constrain model parameters and guide structural implementation of those parameters.

Opportunities

- Expansion of real time measurements of streamflow, snow water equivalent (SWE), soil moisture, and ET.
- Methodological research into how observations that are sparse or coarse (e.g., soil moisture) or collected as snapshots (e.g., ASO SWE) may be incorporated into a forecast workflow.
- Development of both real-time and multi-year (retrospective) records that provide a foundation for research and methodological verification.

Challenge

To open the door for adoption of more complex models, multi-faceted ensemble approaches, leveraging supercomputing, and other advancements in streamflow forecasting, the research and operational communities must develop effective automated hydrologic data assimilation methods.

Opportunity

• Experimentation and refinement of automated hydrologic data assimilation, particularly to enable over-the-loop prediction.

Challenge

It is clear that improved sub-seasonal (S2S) and seasonal climate predictions would have substantial benefit for mid-range hydrologic predictions, with a particular need for cool-season precipitation forecasts in the runoff-generating regions of the western U.S. Yet, S2S climate prediction has also long been a major scientific challenge, requiring large scale investments by the Earth system research community in improved global-scale observations, climate modeling, climate model data assimilation systems, and predictability studies.

Opportunity

 Invest in analysis and development of watershed-scale climate forecasts via both empirical and dynamical methods and sources as operational climate forecasting capabilities slowly evolve.

Challenge

The lack of a hydrologic forecasting testbed is a critical institutional gap. Support is needed to transition new research to operations for both the National Water Center and for the RFCs, and build the case for the viability of over-the-loop approaches.

Opportunity

A testbed would support experimentation and systematic development
of real-time forecast approaches, including new models, data
assimilation techniques, post-processing approaches, model calibration
techniques, climate and weather downscaling methods, verification and
communication related to forecasts, and decision making.

- Abatzoglou, John T. 2013. "Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling." *International Journal of Climatology* 33 (1): 121–31. https://doi.org/10.1002/joc.3413.
- ——. 2019. "Climatology Lab." Gridmet. 2019. http://www.climatologylab.org/gridmet.html.
- Abatzoglou, John T., and Timothy J. Brown. 2012. "A Comparison of Statistical Downscaling Methods Suited for Wildfire Applications." International Journal of Climatology 32 (5): 772–80. https://doi.org/10.1002/joc.2312.
- Adam, Jennifer C., and Dennis P. Lettenmaier. 2003. "Adjustment of Global Gridded Precipitation for Systematic Bias." Journal of Geophysical Research: Atmospheres 108 (D9): n/a-n/a. https://doi.org/10.1029/2002JD002499.
- Adams, David K., and Andrew C. Comrie. 1997. "The North American Monsoon." Bulletin of the American Meteorological Society, 2197–2213. https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.
- Adams, Thomas E., III, and Randel Dymond. 2018. "Evaluation and Benchmarking of Operational Short-Range Ensemble Mean and Median Streamflow Forecasts for the Ohio River Basin." Journal of Hydrometeorology 19 (10): 1689–1706. https://doi.org/10.1175/JHM-D-18-0102.1.
- Albano, Christine M., Michael D. Dettinger, Maureen I. McCarthy, Kevin D. Schaller, Toby L. Welborn, and Dale A. Cox. 2016. "Application of an Extreme Winter Storm Scenario to Identify Vulnerabilities, Mitigation Options, and Science Needs in the Sierra Nevada Mountains, USA." Natural Hazards 80 (2): 879–900. https://doi.org/10.1007/s11069-015-2003-4.
- Albers, John R., and Matthew Newman. 2019. "A Priori Identification of Skillful Extratropical Subseasonal Forecasts." Geophysical Research Letters 46 (21): 12527–36. https://doi.org/10.1029/2019GL085270.
- Alder, Jay R., and Steven W. Hostetler. 2019. "The Dependence of Hydroclimate Projections in Snow-Dominated Regions of the Western United States on the Choice of Statistically Downscaled Climate Data." Water Resources Research 55 (3): 2279–2300. https://doi.org/10.1029/2018WR023458.
- Alder, Jay R., and Steven W. Hostetler. 2015. "Web Based Visualization of Large Climate Data Sets." Environmental Modelling & Software 68 (June): 175–80. https://doi.org/10.1016/j.envsoft.2015.02.016.
- Allaby, Michael. 2008. A Dictionary of Earth Sciences. Oxford University Press. https://www.oxfordreference.com/view/10.1093/acref/9780199211944.001.0001/acref-9780199211944.
- Allen, Richard G., L. S. Pereira, Dirk Raes, and Martin Smith. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations.
- Allen, Richard G., Masahiro Tasumi, and Ricardo Trezza. 2007. "Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model." Journal of Irrigation and Drainage Engineering 133 (4): 380–94. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380).
- Alley, William M., and Leonard F. Konikow. 2015. "Bringing GRACE Down to Earth." Groundwater 53 (6): castle. https://doi.org/10.1111/gwat.12379.
- Amatya, Devendra M., Suat Irmak, Prasanna Gowda, Ge Sun, Jami E. Nettles, and Kyle R. Douglas-Mankin. 2016. "Ecosystem Evapotranspiration: Challenges in Measurements, Estimates, and Modeling." Transactions of the ASABE 59 (2): 555–60. https://doi.org/10.13031/trans.59.11808.

- Anderson, Brian Trail. 2011. "Spatial Distribution and Evolution of a Seasonal Snowpack in Complex Terrain: An Evaluation of the SNODAS Modeling Product." PhD Dissertation, Boise State University.
- Anderson, Eric A. 1973. "National Weather Service River Forecast System-Snow Accumulation and Ablation Model." NWS HYDRO-17. NOAA Technical Memorandum.
- Anderson, M. G., and T. P. Burt. 1985. Hydrological Forecasting. https://www.osti.gov/biblio/6271151.
- Anderson, Martha C., Christopher Hain, Brian Wardlow, Agustin Pimstein, John R. Mecikalski, and William P. Kustas. 2011. "Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States." Journal of Climate 24 (8): 2025–44. https://doi.org/10.1175/2010JCLI3812.1.
- Anderson, Martha C., J. M. Norman, G. R. Diak, William P. Kustas, and John R. Mecikalski. 1997. "A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing." Remote Sensing of Environment 60 (2): 195–216. https://doi.org/10.1016/S0034-4257(96)00215-5.
- Anderson, Richard M., Victor I. Koren, and Seann M. Reed. 2006. "Using SSURGO Data to Improve Sacramento Model a Priori Parameter Estimates." Journal of Hydrology 320 (1–2): 103–16. https://doi.org/10.1016/j.jhydrol.2005.07.020.
- Anderson, SallyRose, Glenn Tootle, and Henri Grissino-Mayer. 2012. "Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies." JAWRA Journal of the American Water Resources Association 48 (4): 849–58. https://doi.org/10.1111/j.1752-1688.2012.00651.x.
- Andreadis, Konstantinos M., Elizabeth A. Clark, Andrew W. Wood, Alan F. Hamlet, and Dennis P. Lettenmaier. 2005. "Twentieth-Century Drought in the Conterminous United States." Journal of Hydrometeorology 6 (6): 985–1001. https://doi.org/10.1175/JHM450.1.
- Ault, Toby R., Julia E. Cole, Jonathan T. Overpeck, Gregory T. Pederson, and David M. Meko. 2014. "Assessing the Risk of Persistent Drought Using Climate Model Simulations and Paleoclimate Data." Journal of Climate 27 (20): 7529–49. https://doi.org/10.1175/JCLI-D-12-00282.1.
- Ault, Toby R., Julia E. Cole, Jonathan T. Overpeck, Gregory T. Pederson, Scott St. George, Bette Otto-Bliesner, Connie A. Woodhouse, and Clara Deser. 2013. "The Continuum of Hydroclimate Variability in Western North America during the Last Millennium." Journal of Climate 26 (16): 5863–78. https://doi.org/10.1175/JCLI-D-11-00732.1.
- Ault, Toby R., Justin S. Mankin, Benjamin I. Cook, and Jason E. Smerdon. 2016. "Relative Impacts of Mitigation, Temperature, and Precipitation on 21st-Century Megadrought Risk in the American Southwest." Science Advances 2 (10): e1600873. https://doi.org/10.1126/sciadv.1600873.
- Ault, Toby R., and Scott St. George. 2018. "Unraveling the Mysteries of Megadrought." Physics Today 71 (8): 44–50. https://doi.org/10.1063/PT.3.3997.
- Baker, Sarah A. 2019. "Development of Sub-Seasonal to Seasonal Watershed-Scale Hydroclimate Forecast Techniques to Support Water Management." Dissertation, Boulder, CO: University of Colorado. https://search.proquest.com/openview/86480abe8a4f1b7c3f0bccc9bf5142ac/1?pq-origsite=gscholar&cbl=18750&diss=y.
- Baker, Sarah A., Andrew W. Wood, and Balaji Rajagopalan. 2019. "Developing Subseasonal to Seasonal Climate Forecast Products for Hydrology and Water Management." JAWRA Journal of the American Water Resources Association 55 (4): 1024–37. https://doi.org/10.1111/1752-1688.12746.
- Bardsley, Tim, Andrew W. Wood, Michael T. Hobbins, T. Kirkham, L. Briefer, J. Niermeyer, and S. Burian. 2013. "Planning for an Uncertain Future: Climate Change Sensitivity Assessment toward Adaptation Planning for Public Water Supply." Earth Interactions 17: 1–26.

- Barnett, Tim P., and David W. Pierce. 2009. "Sustainable Water Deliveries from the Colorado River in a Changing Climate." Proceedings of the National Academy of Sciences 106 (18): 7334–38. https://doi.org/10.1073/pnas.0812762106.
- Barnett, Tim P., David W. Pierce, Hugo G. Hidalgo, Celine Bonfils, Benjamin D. Santer, Tapash Das, Govindasamy Bala, et al. 2008. "Human-Induced Changes in the Hydrology of the Western United States." Science 319 (5866): 1080–83. https://doi.org/10.1126/science.1152538.
- Barnhart, Theodore B., Noah P. Molotch, Ben Livneh, Adrian A. Harpold, John F. Knowles, and Dominik Schneider. 2016. "Snowmelt Rate Dictates Streamflow." Geophysical Research Letters 43 (15): 8006–16. https://doi.org/10.1002/2016GL069690.
- Barnston, Anthony G. 1994. "Linear Statistical Short-Term Climate Predictive Skill in the Northern Hemisphere." Journal of Climate 7: 1513–64. https://doi.org/10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2.
- Barnston, Anthony G., Michael K. Tippett, Michelle L. L'Heureux, Shuhua Li, and David G. DeWitt. 2012. "Skill of Real-Time Seasonal ENSO Model Predictions during 2002–11: Is Our Capability Increasing?" Bulletin of the American Meteorological Society 93 (5): 631–51. https://doi.org/10.1175/BAMS-D-11-00111.1.
- Barnston, Anthony G., Michael K. Tippett, Meghana Ranganathan, and Michelle L. L'Heureux. 2017. "Deterministic Skill of ENSO Predictions from the North American Multimodel Ensemble." Climate Dynamics, March. https://doi.org/10.1007/s00382-017-3603-3.
- Barrett, Andrew P. 2003. "National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation System (SNODAS) Products at NSIDC." 11. Special Report. National Snow and Ice Data Center (NSIDC).
- Barros, Ana Paula, and Dennis P. Lettenmaier. 1994. "Incorporation of an Evaporative Cooling Scheme into a Dynamic Model of Orographic Precipitation." Monthly Weather Review 122: 2777–83.
- Barry, R.G., and R.J. Chorley. 2010. Atmosphere, Weather and Climate. Routledge. https://books.google.com/books?id=heM0uAAACAAJ.
- Barsugli, Joseph J., Christopher J. Anderson, Joel B. Smith, and Jason M. Vogel. 2009. "Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change." Water Utility Climate Alliance.
- Barsugli, Joseph J., and Ben Livneh. 2018. "A Workshop on Understanding the Causes of the Historical Changes in Flow of the Colorado River." Workshop Report. Boulder, CO: NOAA Earth Systems Research Laboratory.
- Battaglin, William, Lauren Hay, and Steven L. Markstrom. 2011. "Simulating the Potential Effects of Climate Change in Two Colorado Basins and at Two Colorado Ski Areas." Earth Interactions 15 (22): 1–23. https://doi.org/10.1175/2011El373.1.
- Bauer, Peter, Alan Thorpe, and Gilbert Brunet. 2015. "The Quiet Revolution of Numerical Weather Prediction." Nature 525 (7567): 47–55. https://doi.org/10.1038/nature14956.
- Becker, Emily, Huug M. Van den Dool, and Qin Zhang. 2014. "Predictability and Forecast Skill in NMME." Journal of Climate 27 (15): 5891–5906. https://doi.org/10.1175/JCLI-D-13-00597.1.
- Beckers, J. V. L., A. H. Weerts, E. Tijdeman, and E. Welles. 2016. "ENSO-Conditioned Weather Resampling Method for Seasonal Ensemble Streamflow Prediction." Hydrol. Earth Syst. Sci. 20 (8): 3277–87. https://doi.org/10.5194/hess-20-3277-2016.
- Behnke, Ruben, S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, and V. C. Radeloff. 2016. "Evaluation of Downscaled, Gridded Climate Data for the Conterminous United States." Ecological Applications 26 (5): 1338–51. https://doi.org/10.1002/15-1061.
- Behnke, Ruben, Steve Vavrus, Andrew Allstadt, Thomas Albright, W. E. Thogmartin, and V. C. Radeloff. 2016. "Evaluation of Downscaled, Gridded Climate Data for the Conterminous United States." Ecological Applications 26 (5): 1338–51. https://doi.org/10.1002/15-1061.

- Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard. 2014. "ENSO Representation in Climate Models: From CMIP3 to CMIP5." Climate Dynamics 42 (7–8): 1999–2018. https://doi.org/10.1007/s00382-013-1783-z.
- Bender, Jens, Thomas Wahl, and Jürgen Jensen. 2014. "Multivariate Design in the Presence of Non-Stationarity." Journal of Hydrology 514 (June): 123–30. https://doi.org/10.1016/j.jhydrol.2014.04.017.
- Bender, Stacie, Paul Miller, Brent Bernard, and John Lhotak. 2014. "Use of Snow Data from Remote Sensing in Operational Streamflow Prediction." In , 11.
- Bergeron, Jean M., Mélanie Trudel, and Robert Leconte. 2016. "Combined Assimilation of Streamflow and Snow Water Equivalent for Mid-Term Ensemble Streamflow Forecasts in Snow-Dominated Regions." Hydrology and Earth System Sciences 20 (10): 4375–89. https://doi.org/10.5194/hess-20-4375-2016.
- Berghuijs, W. R., R. A. Woods, and M. Hrachowitz. 2014. "A Precipitation Shift from Snow towards Rain Leads to a Decrease in Streamflow." Nature Climate Change 4 (7): 583–86. https://doi.org/10.1038/nclimate2246.
- Best, M. J., G. Abramowitz, H. R. Johnson, A. J. Pitman, G. Balsamo, A. Boone, M. Cuntz, et al. 2015. "The Plumbing of Land Surface Models: Benchmarking Model Performance." Journal of Hydrometeorology 16 (3): 1425–42. https://doi.org/10.1175/JHM-D-14-0158.1.
- Beven, Keith J. 2002. "Towards an Alternative Blueprint for a Physically Based Digitally Simulated Hydrologic Response Modelling System." Hydrological Processes 16 (2): 189–206. https://doi.org/10.1002/hyp.343.
- ——. 2012. Rainfall-Runoff Modelling: The Primer. 2nd ed. Wiley-Blackwell.
- Beven, Keith J., and Hannah L. Cloke. 2012. "Comment on 'Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water' by Eric F. Wood et Al." Water Resources Research 48 (1). https://doi.org/10.1029/2011WR010982.
- Biddle, Suzanne Hardy. 2001. "Optimizing the TVA Reservoir System Using Riverware." In Bridging the Gap, 1–6. Proceedings. https://doi.org/10.1061/40569(2001)149.
- Biondi, Franco, Alexander Gershunov, and Daniel R. Cayan. 2001. "North Pacific Decadal Climate Variability since 1661." Journal of Climate 14 (1): 5–10. https://doi.org/10.1175/1520-0442(2001)014<0005:NPDCVS>2.0.CO;2.
- Bjerknes, J. 1966. "A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature." Tellus 18 (4): 820–29. https://doi.org/10.1111/j.2153-3490.1966.tb00303.x.
- ——. 1969. "Atmospheric Teleconnections from the Equatorial Pacific." Monthly Weather Review 97: 163–72. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
- Blanford, H. F. 1884. "On the Connexion of the Himalaya Snowfall with Dry Winds and Seasons of Drought in India." Proceedings of the Royal Society of London 37: 21.
- Blankenship, Clay B., Jonathan L. Case, William L. Crosson, and Bradley T. Zavodsky. 2018. "Correction of Forcing-Related Spatial Artifacts in a Land Surface Model by Satellite Soil Moisture Data Assimilation." IEEE Geoscience and Remote Sensing Letters 15 (4): 498–502. https://doi.org/10.1109/LGRS.2018.2805259.
- Bolinger, Rebecca A., Christian D. Kummerow, and Nolan J. Doesken. 2014. "Attribution and Characteristics of Wet and Dry Seasons in the Upper Colorado River Basin." Journal of Climate 27 (23): 8661–73. https://doi.org/10.1175/JCLI-D-13-00618.1.
- Bracken, Cameron W. 2011. "Seasonal to Inter-Annual Streamflow Simulation and Forecasting on the Upper Colorado River Basin and Implications for Water Resources Management." Boulder, CO: University of Colorado. https://www.colorado.edu/cadswes/sites/default/files/attached-files/bracken-ms_thesis-2011.pdf.

- Bracken, Cameron W., Balaji Rajagopalan, and Connie A. Woodhouse. 2016. "A Bayesian Hierarchical Nonhomogeneous Hidden Markov Model for Multisite Streamflow Reconstructions." Water Resources Research 52 (10): 7837–50. https://doi.org/10.1002/2016WR018887.
- Bradley, A. Allen, Mohamed Habib, and Stuart S. Schwartz. 2015. "Climate Index Weighting of Ensemble Streamflow Forecasts Using a Simple Bayesian Approach." Water Resources Research 51 (9): 7382–7400. https://doi.org/10.1002/2014WR016811.
- Bradley, R. S., H. F. Diaz, G. N. Kiladis, and J. K. Eischeid. 1987. "ENSO Signal in Continental Temperature and Precipitation Records." Nature 327 (6122): 497–501. https://doi.org/10.1038/327497a0.
- Braganza, Karl, Joëlle L. Gergis, Scott B. Power, James S. Risbey, and Anthony M. Fowler. 2009. "A Multiproxy Index of the El Niño–Southern Oscillation, A.D. 1525–1982." Journal of Geophysical Research 114 (D5). https://doi.org/10.1029/2008JD010896.
- Brahney, J., A. P. Ballantyne, C. Sievers, and J. C. Neff. 2013. "Increasing Ca2+ Deposition in the Western US: The Role of Mineral Aerosols." Aeolian Research 10 (September): 77–87. https://doi.org/10.1016/j.aeolia.2013.04.003.
- Bras, Rafael L., and Ignacio Rodríguez-Iturbe. 1985. Random Functions and Hydrology. Reading, Mass: Addison-Wesley.
- Breheny, Patrick. 2012. "Kernel Density Estimation." Slides, University of Kentucky, Lexington, October. https://web.as.uky.edu/statistics/users/pbreheny/621/F12/notes/10-18.pdf.
- Brekke, Levi D. 2009. "Long-Term Planning Hydrology Based on Various Blends of Instrumental Records, Paleoclimate, and Projected Climate Information." US Bureau of Reclamation. https://www.usbr.gov/research/projects/detail.cfm?id=6395.
- ———. 2011. "Addressing Climate Change in Long-Term Water Resources Planning and Management." CWTS-10-02. US Army Corps of Engineers Civil Works Technical Series. US Army Corps of Engineers. https://www.usbr.gov/climate/userneeds/docs/LTdoc.pdf.
- Brekke, Levi D., Michael D. Dettinger, Edwin P. Maurer, and Michael Anderson. 2008. "Significance of Model Credibility in Estimating Climate Projection Distributions for Regional Hydroclimatological Risk Assessments." Climatic Change 89 (3–4): 371–94. https://doi.org/10.1007/s10584-007-9388-3.
- Brekke, Levi D., Julie E. Kiang, J. Rolf Olsen, Roger S. Pulwarty, David A. Raff, D. Phil Turnipseed, Robert S. Webb, and Kathleen D. White. 2009. "Climate Change and Water Resources Management: A Federal Perspective." Circular 1331. Reston, Va: U.S. Geological Survey.
- Brown, Casey, and Robert L. Wilby. 2012. "An Alternate Approach to Assessing Climate Risks." Eos, Transactions American Geophysical Union 93 (41): 401–2. https://doi.org/10.1029/2012EO410001.
- Brown, David P., and Andrew C. Comrie. 2004. "A Winter Precipitation 'Dipole' in the Western United States Associated with Multidecadal ENSO Variability." Geophysical Research Letters 31 (9): n/a-n/a. https://doi.org/10.1029/2003GL018726.
- Brown, Tim, John D. Horel, Gregory D. McCurdy, and Matthew G. Fearson. 2011. "Report to the NWCG: What Is the Appropriate RAWS Network?" Program for Climate, Ecosystem and Fire Applications (CEFA) Report 1101. National Wildfire Coordinating Group. https://www.nwcg.gov/publications/1003.
- Bryant, Ann C., Thomas H. Painter, Jeffrey S. Deems, and Stacie M. Bender. 2013. "Impact of Dust Radiative Forcing in Snow on Accuracy of Operational Runoff Prediction in the Upper Colorado River Basin." Geophysical Research Letters 40 (15): 3945–49. https://doi.org/10.1002/grl.50773.
- CADSWES. 2018. "RiverWare Technical Documentation Version 7.4, Objects." http://riverware.org/PDF/RiverWare/documentation/Objects.pdf.

- California Dept. of Water Resources. 2016. "Description of Analytical Tools, Water Evaluation and Planning (WEAP)." https://water.ca.gov/LegacyFiles/waterplan/docs/tools/descriptions/WEAP-description.pdf.
- ———. 2019. "WRIMS: Water Resource Integrated Modeling System." 2019. http://water.ca.gov/Library/Modeling-and-Analysis/Modeling-Platforms/Water-Resource-Integrated-Modeling-System.
- Carroll, Rosemary W. H., Lindsay A. Bearup, Wendy Brown, Wenming Dong, Markus Bill, and Kenneth H. Williams. 2018. "Factors Controlling Seasonal Groundwater and Solute Flux from Snow-Dominated Basins." Hydrological Processes 32 (14): 2187–2202. https://doi.org/10.1002/hyp.13151.
- Castle, Stephanie L., Brian F. Thomas, John T. Reager, Matthew Rodell, Sean C. Swenson, and James S. Famiglietti. 2014. "Groundwater Depletion during Drought Threatens Future Water Security of the Colorado River Basin." Geophysical Research Letters 41 (16): 5904–11. https://doi.org/10.1002/2014GL061055.
- Cawthorne, Dylan. 2017. "2017 Colorado River Hydrology Research Symposium," 43.
- Cayan, Daniel R., Michael D. Dettinger, David W. Pierce, Tapash Das, Noah Knowles, F. Martin Ralph, and Edwin Sumargo. 2016. "Natural Variability Anthropogenic Climate Change and Impacts on Water Availability and Flood Extremes in the Western United States." In Water Policy and Planning in a Variable and Changing Climate. Drought and Water Crises. CRC Press. https://doi.org/10.1201/b19534.
- Cayan, Daniel R., Susan A. Kammerdiener, Michael D. Dettinger, Joseph M. Caprio, and David H. Peterson. 2001. "Changes in the Onset of Spring in the Western United States." Bulletin of the American Meteorological Society 82 (3): 399–416. https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2.
- Cayan, Daniel R., Kelly T. Redmond, and Laurence G. Riddle. 1999. "ENSO and Hydrologic Extremes in the Western United States." Journal of Climate 12 (9): 2881–93. https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.
- Chen, Xianyao, and John M. Wallace. 2016. "Orthogonal PDO and ENSO Indices." Journal of Climate 29 (10): 3883–92. https://doi.org/10.1175/JCLI-D-15-0684.1.
- Christensen, Niklas S., and Dennis P. Lettenmaier. 2007. "A Multimodel Ensemble Approach to Assessment of Climate Change Impacts on the Hydrology and Water Resources of the Colorado River Basin." Hydrol. Earth Syst. Sci., 18.
- Christensen, Niklas S., Andrew W. Wood, Nathalie Voisin, Dennis P. Lettenmaier, and Richard N. Palmer. 2004. "The Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin." Climatic Change 62 (1–3): 337–63. https://doi.org/10.1023/B:CLIM.0000013684.13621.1f.
- Clark, Martyn P., Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard. 2017. "The Evolution of Process-Based Hydrologic Models: Historical Challenges and the Collective Quest for Physical Realism." Hydrology and Earth System Sciences 21 (7): 3427–40. https://doi.org/10.5194/hess-21-3427-2017.
- Clark, Martyn P., Subhrendu Gangopadhyay, Lauren E. Hay, Balaji Rajagopalan, and Robert Wilby. 2004. "The Schaake Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted Precipitation and Temperature Fields." Journal of Hydrometeorology 5 (1): 243–62. https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.
- Clark, Martyn P., and Lauren E. Hay. 2004. "Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of Streamflow." Journal of Hydrometeorology 5 (15): 32. https://doi.org/doi:10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2.

- Clark, Martyn P., Bart Nijssen, Jessica D. Lundquist, Dmitri Kavetski, David E. Rupp, Ross A. Woods, Jim E. Freer, et al. 2015. "A Unified Approach for Process-Based Hydrologic Modeling: 1. Modeling Concept." Water Resources Research 51 (4): 2498–2514. https://doi.org/10.1002/2015WR017198.
- Clark, Martyn P., and Andrew G. Slater. 2006. "Probabilistic Quantitative Precipitation Estimation in Complex Terrain." Journal of Hydrometeorology 7 (1): 3–22. https://doi.org/10.1175/JHM474.1.
- Clark, Martyn P., Robert L. Wilby, Ethan D. Gutmann, Julie A. Vano, Subhrendu Gangopadhyay, Andrew W. Wood, Hayley J. Fowler, Christel Prudhomme, Jeffrey R. Arnold, and Levi D. Brekke. 2016. "Characterizing Uncertainty of the Hydrologic Impacts of Climate Change." Current Climate Change Reports 2 (2): 55–64. https://doi.org/10.1007/s40641-016-0034-x.
- Clayton, Jordan, Steven Quiring, Tyson Ochsner, Michael Cosh, C. Baker, Trent Ford, John Bolten, and Molly Woloszyn. 2019. "Building a One-Stop Shop for Soil Moisture Information." Eos 100 (June). https://doi.org/10.1029/2019EO123631.
- CLIMAS and WWA. n.d. "TreeFlow Streamflow Reconstructions from Tree Rings." TreeFlow. Accessed June 27, 2019. https://www.treeflow.info/.
- Cloke, Hannah L., and Florian Pappenberger. 2009. "Ensemble Flood Forecasting: A Review." Journal of Hydrology 375 (3–4): 613–26. https://doi.org/10.1016/j.jhydrol.2009.06.005.
- Clow, David W. 2010. "Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming." Journal of Climate 23 (9): 2293–2306. https://doi.org/10.1175/2009JCLI2951.1.
- Clow, David W., Leora Nanus, Kristine L. Verdin, and Jeffrey Schmidt. 2012. "Evaluation of SNODAS Snow Depth and Snow Water Equivalent Estimates for the Colorado Rocky Mountains, USA: EVALUATION OF SNODAS." Hydrological Processes 26 (17): 2583–91. https://doi.org/10.1002/hyp.9385.
- Clow, David W., Mark W. Williams, and Paul F. Schuster. 2016. "Increasing Aeolian Dust Deposition to Snowpacks in the Rocky Mountains Inferred from Snowpack, Wet Deposition, and Aerosol Chemistry." Atmospheric Environment 146 (December): 183–94. https://doi.org/10.1016/j.atmosenv.2016.06.076.
- Coats, Sloan, Jason E. Smerdon, Benjamin I. Cook, and Richard Seager. 2015. "Are Simulated Megadroughts in the North American Southwest Forced?" Journal of Climate 28 (1): 124–42. https://doi.org/10.1175/JCLI-D-14-00071.1.
- Coats, Sloan, Jason E. Smerdon, Benjamin I. Cook, Richard Seager, Edward R. Cook, and K. J. Anchukaitis. 2016. "Internal Ocean-Atmosphere Variability Drives Megadroughts in Western North America." Geophysical Research Letters 43 (18): 9886–94. https://doi.org/10.1002/2016GL070105.
- "CoCoRaHS: Community Collaborative Rain, Hail & Snow Network." n.d. Accessed November 13, 2019. https://www.cocorahs.org/.
- Cohn, Timothy, Julie Kiang, and Robert Mason. 2013. "Estimating Discharge Measurement Uncertainty Using the Interpolated Variance Estimator." Journal of Hydraulic Engineering 139 (5): 502–10. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000695.
- Colorado State University. 2017. "MODSIM-DSS." 2017. http://modsim.engr.colostate.edu/.
- Colorado State University. 2019. "CoAgMET." CoAgMET Colorado's Mesonet. 2019. https://coagmet.colostate.edu/.
- Colorado Water Conservation Board. 2012. "Colorado River Water Availability Study." Colorado Water Conservation Board.
 - http://cwcbweblink.state.co.us/WebLink/ElectronicFile.aspx?docid=158319&searchid=78f0eafa-0b8f-4d8a-9ff3-faf67cc82f52&dbid=0.

- Cook, Benjamin I., Toby R. Ault, and Jason E. Smerdon. 2015. "Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains." Science Advances 1 (1): e1400082. https://doi.org/10.1126/sciadv.1400082.
- Cook, Benjamin I., Richard Seager, and Ron L. Miller. 2011. "On the Causes and Dynamics of the Early Twentieth-Century North American Pluvial." Journal of Climate 24 (19): 5043–60. https://doi.org/10.1175/2011JCLI4201.1.
- Cook, Edward R. 2004. "Long-Term Aridity Changes in the Western United States." Science 306 (5698): 1015–18. https://doi.org/10.1126/science.1102586.
- Cook, Edward R., and Leonardas Kairiūkštis, eds. 1990. Methods of Dendrochronology: Applications in the Environmental Science. Dordrecht, Netherlands; Boston: [S.I.]: Kluwer Academic Publishers; International Institute for Applied Systems Analysis.
- Cook, Edward R., Richard Seager, Mark A. Cane, and David W. Stahle. 2007. "North American Drought: Reconstructions, Causes, and Consequences." Earth-Science Reviews 81 (1–2): 93–134. https://doi.org/10.1016/j.earscirev.2006.12.002.
- Cook, Edward R., Richard Seager, Richard R. Heim, Russell S. Vose, Celine Herweijer, and Connie Woodhouse. 2010. "Megadroughts in North America: Placing IPCC Projections of Hydroclimatic Change in a Long-Term Palaeoclimate Context." Journal of Quaternary Science 25 (1): 48–61. https://doi.org/10.1002/jqs.1303.
- Cosgrove, Brian A. 2003. "Real-Time and Retrospective Forcing in the North American Land Data Assimilation System (NLDAS) Project." Journal of Geophysical Research 108 (D22). https://doi.org/10.1029/2002JD003118.
- Cowan, Michael S., R. Wayne Cheney, and Jeffrey C. Addiego. 1981. "An Executive Summary of the Colorado River Simulation System." Denver, Colorado: Reclamation.
- CWCB. 2012. "Colorado River Water Availability Study." Colorado Water Conservation Board. https://dnrweblink.state.co.us/cwcb/0/doc/158319/Electronic.aspx?searchid=78f0eafa-0b8f-4d8a-9ff3-faf67cc82f52.
- Daly, Christopher. 2006. "Guidelines for Assessing the Suitability of Spatial Climate Data Sets." International Journal of Climatology 26 (6): 707–21. https://doi.org/10.1002/joc.1322.
- Daly, Christopher, Wayne P. Gibson, George H. Taylor, Gregory L. Johnson, and Phillip Pasteris. 2002. "A Knowledge-Based Approach to the Statistical Mapping of Climate." Climate Research 22: 99–113. https://doi.org/10.3354/cr022099.
- Daly, Christopher, Michael Halbleib, Joseph I. Smith, Wayne P. Gibson, Matthew K. Doggett, George H. Taylor, Jan Curtis, and Phillip P. Pasteris. 2008. "Physiographically Sensitive Mapping of Climatological Temperature and Precipitation across the Conterminous United States."

 International Journal of Climatology 28 (15): 2031–64. https://doi.org/10.1002/joc.1688.
- Daly, Christopher, Ronald P. Neilson, and Donald L. Phillips. 1994. "A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainout Terrain." Journal of Applied Meteorology 33: 140–58.
- Daly, Christopher, Joseph I. Smith, and Keith V. Olson. 2015. "Mapping Atmospheric Moisture Climatologies across the Conterminous United States." Edited by Robert Guralnick. PLOS ONE 10 (10): e0141140. https://doi.org/10.1371/journal.pone.0141140.
- Daly, Christopher, George Taylor, and Wayne Gibson. 1997. "The PRISM Approach to Mapping Precipitation and Temperature." In Proceedings, 10th AMS Conference on Applied Climatology, 20–23.
- D'Arrigo, Rosanne, R. Villalba, and G. Wiles. 2001. "Tree-Ring Estimates of Pacific Decadal Climate Variability." Climate Dynamics 18 (3–4): 219–24. https://doi.org/10.1007/s003820100177.
- Das, Tapash, David W. Pierce, Daniel R. Cayan, Julie A. Vano, and Dennis P. Lettenmaier. 2011. "The Importance of Warm Season Warming to Western U.S. Streamflow Changes." Geophysical Research Letters 38 (23): n/a-n/a. https://doi.org/10.1029/2011GL049660.

- Davis, Gary. 2007. "History of the NOAA Satellite Program." Journal of Applied Remote Sensing 1 (1): 012504. https://doi.org/10.1117/1.2642347.
- Dawson, Nicholas, Patrick Broxton, and Xubin Zeng. 2018. "Evaluation of Remotely Sensed Snow Water Equivalent and Snow Cover Extent over the Contiguous United States." Journal of Hydrometeorology 19 (11): 1777–91. https://doi.org/10.1175/JHM-D-18-0007.1.
- Day, Gerald N. 1985. "Extended Streamflow Forecasting Using NWSRFS." Journal of Water Resources Planning and Management 111 (2): 157–70. https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157).
- DeChant, Caleb M., and Hamid Moradkhani. 2011a. "Radiance Data Assimilation for Operational Snow and Streamflow Forecasting." Advances in Water Resources 34 (3): 351–64. https://doi.org/10.1016/j.advwatres.2010.12.009.
- ———. 2011b. "Improving the Characterization of Initial Condition for Ensemble Streamflow Prediction Using Data Assimilation." Hydrology and Earth System Sciences 15 (11): 3399–3410. https://doi.org/10.5194/hess-15-3399-2011.
- Deems, Jeffrey S., and Alan F. Hamlet. 2010. "Historical Meteorological Driving Data Set," 13.
- Deems, Jeffrey S., Thomas H. Painter, Joseph J. Barsugli, Jayne Belnap, and Bradley Udall. 2013. "Combined Impacts of Current and Future Dust Deposition and Regional Warming on Colorado River Basin Snow Dynamics and Hydrology." Hydrology and Earth System Sciences 17 (11): 4401–13. https://doi.org/10.5194/hess-17-4401-2013.
- DelSole, Timothy, and Jagadish Shukla. 2009. "Artificial Skill Due to Predictor Screening." Journal of Climate 22 (2): 331–45. https://doi.org/10.1175/2008JCLI2414.1.
- Demargne, Julie, Mary Mullusky, Larry Lowe, James Coe, Kevin Werner, Brenda Alcorn, Lisa Holts, et al. 2009. "Towards Standard Verification Strategies For Operational Hydrologic Forecasting: Report of the NWS Hydrologic Forecast Verification Team." Silver Spring, Maryland. https://www.nws.noaa.gov/oh/rfcdev/docs/NWS-Hydrologic-Forecast-Verification-Team_Final-report_Sep09.pdf.
- Demargne, Julie, Limin Wu, Satish K. Regonda, James D. Brown, Haksu Lee, Minxue He, Dong-Jun Seo, et al. 2014. "The Science of NOAA's Operational Hydrologic Ensemble Forecast Service." Bulletin of the American Meteorological Society 95 (1): 79–98. https://doi.org/10.1175/BAMS-D-12-00081.1.
- Deser, Clara, Reto Knutti, Susan Solomon, and Adam S. Phillips. 2012. "Communication of the Role of Natural Variability in Future North American Climate." Nature Climate Change 2 (11): 775–79. https://doi.org/10.1038/nclimate1562.
- Deser, Clara, Adam Phillips, Vincent Bourdette, and Haiyan Teng. 2012. "Uncertainty in Climate Change Projections: The Role of Internal Variability." Climate Dynamics 38 (3–4): 527–46. https://doi.org/10.1007/s00382-010-0977-x.
- DHI. 2019. "MIKE HYDRO Basin." February 2019. https://www.mikepoweredbydhi.com/products/mike-hydro-basin.
- Diamond, Howard J., Thomas R. Karl, Michael A. Palecki, C. Bruce Baker, Jesse E. Bell, Ronald D. Leeper, David R. Easterling, et al. 2013. "U.S. Climate Reference Network After One Decade of Operations," 14.
- Dirmeyer, Paul A., and Subhadeep Halder. 2016. "Sensitivity of Numerical Weather Forecasts to Initial Soil Moisture Variations in CFSv2." Weather and Forecasting 31 (6): 1973–83. https://doi.org/10.1175/WAF-D-16-0049.1.
- Doesken, Nolan J., and Henry W. Reges. 2010. "The Value of the Citizen Weather Observer." Weatherwise 63 (6): 30–37.

- Dorigo, Wouter, Peter Oevelen, Wolfgang Wagner, Matthias Drusch, Susanne Mecklenburg, Alan Robock, and Thomas Jackson. 2011. "A New International Network for in Situ Soil Moisture Data." Eos, Transactions American Geophysical Union 92 (17): 141–42. https://doi.org/10.1029/2011EO170001.
- Duan, Qingyun, Soroosh Sorooshian, and Vijai K. Gupta. 1994. "Optimal Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models." Journal of Hydrology 158 (3): 265–84. https://doi.org/10.1016/0022-1694(94)90057-4.
- Duniway, Michael C., Alix A. Pfennigwerth, Stephen E. Fick, Travis W. Nauman, Jayne Belnap, and Nichole N. Barger. 2019. "Wind Erosion and Dust from US Drylands: A Review of Causes, Consequences, and Solutions in a Changing World." Ecosphere 10 (3): e02650. https://doi.org/10.1002/ecs2.2650.
- Durre, Imke, Matthew J. Menne, Byron E. Gleason, Tamara G. Houston, and Russell S. Vose. 2010. "Comprehensive Automated Quality Assurance of Daily Surface Observations." Journal of Applied Meteorology and Climatology 49 (8): 1615–33. https://doi.org/10.1175/2010JAMC2375.1.
- Emerton, Rebecca E., Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger. 2018. "Developing a Global Operational Seasonal Hydro-Meteorological Forecasting System: GloFAS-Seasonal v1.0."

 Geoscientific Model Development 11 (8): 3327–46. https://doi.org/10.5194/gmd-11-3327-2018.
- Erkyihun, Solomon Tassew, Balaji Rajagopalan, Edith Zagona, Upmanu Lall, and Kenneth Nowak. 2016. "Wavelet-Based Time Series Bootstrap Model for Multidecadal Streamflow Simulation Using Climate Indicators." Water Resources Research 52 (5): 4061–77. https://doi.org/10.1002/2016WR018696.
- Evan, Amato T. 2018. "A New Method to Characterize Changes in the Seasonal Cycle of Snowpack." Journal of Applied Meteorology and Climatology, December. https://doi.org/10.1175/JAMC-D-18-0150.1.
- Eyring, Veronika, Peter M. Cox, Gregory M. Flato, Peter J. Gleckler, Gab Abramowitz, Peter Caldwell, William D. Collins, et al. 2019. "Taking Climate Model Evaluation to the next Level." Nature Climate Change 9 (2): 102–10. https://doi.org/10.1038/s41558-018-0355-y.
- Fan, Y., Martyn P. Clark, D. M. Lawrence, S. Swenson, L. E. Band, S. L. Brantley, P. D. Brooks, et al. 2019. "Hillslope Hydrology in Global Change Research and Earth System Modeling." Water Resources Research 55 (2): 1737–72. https://doi.org/10.1029/2018WR023903.
- Federal Aviation Administration (FAA). 2019. "Surface Weather Observation Stations (ASOS/AWOS)." Surface Weather Observation Stations (ASOS/AWOS). 2019. https://www.faa.gov/air_traffic/weather/asos/.
- Ficklin, Darren L., Iris T. Stewart, and Edwin P. Maurer. 2013. "Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin." Edited by Vishal Shah. PLoS ONE 8 (8): e71297. https://doi.org/10.1371/journal.pone.0071297.
- Finch, J. W. 2001. "A Comparison between Measured and Modelled Open Water Evaporation from a Reservoir in South-East England." Hydrological Processes 15 (14): 2771–78. https://doi.org/10.1002/hyp.267.
- Flato, Gregory M., J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox, et al. 2013. "Evaluation of Climate Models." In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 741–882. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.020.

- Fleming, Sean W., and Angus G. Goodbody. 2019. "A Machine Learning Metasystem for Robust Probabilistic Nonlinear Regression-Based Forecasting of Seasonal Water Availability in the US West." IEEE Access 7: 119943–64. https://doi.org/10.1109/ACCESS.2019.2936989.
- Flossmann, Andrea I., Michael Manton, Ali Abshaev, Roelof Bruintjes, Masataka Murakami, Thara Prabhakaran, and Zhanyu Yao. 2019. "Review of Advances in Precipitation Enhancement Research." Bulletin of the American Meteorological Society 100 (8): 1465–80. https://doi.org/10.1175/BAMS-D-18-0160.1.
- Foster, Lauren M., Lindsay A. Bearup, Noah P. Molotch, Paul Brooks, and Reed M. Maxwell. 2016. "Energy Budget Increases Reduce Mean Streamflow More than Snow–Rain Transitions: Using Integrated Modeling to Isolate Climate Change Impacts on Rocky Mountain Hydrology." Environmental Research Letters 11 (4): 044015. https://doi.org/10.1088/1748-9326/11/4/044015.
- Franz, Kristie J., Terrie S. Hogue, and Soroosh Sorooshian. 2008. "Operational Snow Modeling: Addressing the Challenges of an Energy Balance Model for National Weather Service Forecasts." Journal of Hydrology 360: 48–66.
- French, Jeffrey R., Katja Friedrich, Sarah A. Tessendorf, Robert M. Rauber, Bart Geerts, Roy M. Rasmussen, Lulin Xue, Melvin L. Kunkel, and Derek R. Blestrud. 2018. "Precipitation Formation from Orographic Cloud Seeding." Proceedings of the National Academy of Sciences 115 (6): 1168–73. https://doi.org/10.1073/pnas.1716995115.
- Freund, Mandy B., Benjamin J. Henley, David J. Karoly, Helen V. McGregor, Nerilie J. Abram, and Dietmar Dommenget. 2019. "Higher Frequency of Central Pacific El Niño Events in Recent Decades Relative to Past Centuries." Nature Geoscience 12 (6): 450–55. https://doi.org/10.1038/s41561-019-0353-3.
- Frevert, Donald K., and R. Wayne Cheney. 1988. "Alternative Methods of Generating Hydrologic Data for Reservoir Optimization." In Computerized Decision Support Systems for Water Managers. New York, NY: American Society of Civil Engineers.
- Friedrich, Katja, Robert L. Grossman, Justin Huntington, Peter D. Blanken, John Lenters, Kathleen D. Holman, David Gochis, et al. 2018. "Reservoir Evaporation in the Western United States: Current Science, Challenges, and Future Needs." Bulletin of the American Meteorological Society 99 (1): 167–87. https://doi.org/10.1175/BAMS-D-15-00224.1.
- Fritts, Harold C. 1976. Tree Rings and Climate. London; New York: Academic Press.
- Fritts, Harold C., J. Guiot, and G. A. Gordon. 1990. "Verification. in Methods of Dendrochronology: Applications in the Environmental Sciences." In Methods of Dendrochronology: Applications in the Environmental Sciences. Edited by E. R. Cook and L. A. Kairiukstis, 178–185. Dordrecht: Kluwer Academic Publishers.
- Fritze, Holger, Iris T. Stewart, and Edzer Pebesma. 2011. "Shifts in Western North American Snowmelt Runoff Regimes for the Recent Warm Decades." Journal of Hydrometeorology 12 (5): 989–1006. https://doi.org/10.1175/2011JHM1360.1.
- Fyfe, John C., Chris Derksen, Lawrence Mudryk, Gregory M. Flato, Benjamin D. Santer, Neil C. Swart, Noah P. Molotch, et al. 2017. "Large Near-Term Projected Snowpack Loss over the Western United States." Nature Communications 8 (April): 14996. https://doi.org/10.1038/ncomms14996.
- Gangopadhyay, Subhrendu, Benjamin L. Harding, Balaji Rajagopalan, Jeffrey J. Lukas, and Terrance J. Fulp. 2009. "A Nonparametric Approach for Paleohydrologic Reconstruction of Annual Streamflow Ensembles." Water Resources Research 45 (6). https://doi.org/10.1029/2008WR007201.

- Gangopadhyay, Subhrendu, Gregory J. McCabe, and Connie A. Woodhouse. 2015. "Beyond Annual Streamflow Reconstructions for the Upper Colorado River Basin: A Paleo-Water-Balance Approach." Water Resources Research 51 (12): 9763–74. https://doi.org/10.1002/2015WR017283.
- Gao, Bo-cai. 1996. "NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space." Remote Sensing of Environment 58 (3): 257–66. https://doi.org/10.1016/S0034-4257(96)00067-3.
- Gao, Yanhong, Julie A. Vano, Chunmei Zhu, and Dennis P. Lettenmaier. 2011. "Evaluating Climate Change over the Colorado River Basin Using Regional Climate Models." Journal of Geophysical Research 116 (D13). https://doi.org/10.1029/2010JD015278.
- Garbrecht, Jurgen D., and Thomas C. Piechota. 2005. Climate Variations, Climate Change, and Water Resources Engineering. American Society of Civil Engineers. https://doi.org/10.1061/9780784408247.
- Garen, David C. 1992. "Improved Techniques in Regression-Based Streamflow Volume Forecasting." Journal of Water Resources Planning and Management 118 (6): 654–70. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:6(654).
- Garen, David C., and Thomas C. Pagano. 2007. "Statistical Techniques Used in the VIPER Water Supply Forecasting Software." Technical Note TN-210-SSWSF-2. Technical Note. Natural Resource Conservation Service.

 https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=34239.wba.
- Garfin, Gregg, Angela Jardine, Robert Merideth, Mary Black, and Sarah LeRoy, eds. 2013. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. Washington, DC: Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-484-0.
- Gates, W. Lawrence, James S. Boyle, Curt Covey, Clyde G. Dease, Charles M. Doutriaux, Robert S. Drach, Michael Fiorino, et al. 1992. "An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I)." Bulletin of the American Meteorological Society 73: 1962–70. https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.
- Gedalof, Ze'ev, Nathan J. Mantua, and David L. Peterson. 2002. "A Multi-Century Perspective of Variability in the Pacific Decadal Oscillation: New Insights from Tree Rings and Coral."

 Geophysical Research Letters 29 (24): 57-1-57-4. https://doi.org/10.1029/2002GL015824.
- Geerts, Bart, Qun Miao, Yang Yang, Roy Rasmussen, and Daniel Breed. 2010. "An Airborne Profiling Radar Study of the Impact of Glaciogenic Cloud Seeding on Snowfall from Winter Orographic Clouds." Journal of the Atmospheric Sciences 67 (10): 3286–3302. https://doi.org/10.1175/2010JAS3496.1.
- Geerts, Bart, Binod Pokharel, Katja Friedrich, Dan Breed, Roy Rasmussen, Yang Yang, Qun Miao, Samuel Haimov, Bruce Boe, and Evan Kalina. 2013. "The Agl Seeding Cloud Impact Investigation (ASCII) Campaign 2012: Overview and Preliminary Results." Journal of Weather Modification 45: 20.
- Georgakakos, Konstantine P., N. E. Graham, F.-Y. Cheng, C. Spencer, E. Shamir, A. P. Georgakakos, H. Yao, and M. Kistenmacher. 2012. "Value of Adaptive Water Resources Management in Northern California under Climatic Variability and Change: Dynamic Hydroclimatology." Journal of Hydrology 412–413 (January): 47–65. https://doi.org/10.1016/j.jhydrol.2011.04.032.
- Gergis, Joëlle, Karl Braganza, Anthony Fowler, Scott Mooney, and James Risbey. 2006. "Reconstructing El Niño–Southern Oscillation (ENSO) from High-Resolution Palaeoarchives." Journal of Quaternary Science 21 (7): 707–22. https://doi.org/10.1002/jqs.1070.
- Gershunov, Alexander, and Tim P. Barnett. 1998. "Interdecadal Modulation of ENSO Teleconnections I." Bulletin of the American Meteorological Society 79 (12): 12.

- Gillies, Robert R., Oi-Yu Chung, Shih-Yu Wang, R. Justin DeRose, and Yan Sun. 2015. "Added Value from 576 Years of Tree-Ring Records in the Prediction of the Great Salt Lake Level." Journal of Hydrology 529 (October): 962–68. https://doi.org/10.1016/j.jhydrol.2015.08.058.
- Gillies, Robert R., Oi-Yu Chung, Shih-Yu Wang, and Piotr Kokoszka. 2011. "Incorporation of Pacific SSTs in a Time Series Model toward a Longer-Term Forecast for the Great Salt Lake Elevation."

 Journal of Hydrometeorology 12 (3): 474–80. https://doi.org/10.1175/2010JHM1352.1.
- Giorgi, Filippo, and Linda O. Mearns. 1991. "Approaches to the Simulation of Regional Climate Change: A Review." Reviews of Geophysics 29 (2): 191. https://doi.org/10.1029/90RG02636.
- Gleckler, P. J., K. E. Taylor, and C. Doutriaux. 2008. "Performance Metrics for Climate Models." Journal of Geophysical Research 113 (D6). https://doi.org/10.1029/2007JD008972.
- Gobena, A. K., and T. Y. Gan. 2010. "Incorporation of Seasonal Climate Forecasts in the Ensemble Streamflow Prediction System." Journal of Hydrology 385 (1): 336–52. https://doi.org/10.1016/j.jhydrol.2010.03.002.
- Gochis, David J., W. Yu, and D. N. Yates. 2015. "The WRF-Hydro Model Technical Description and User's Guide, Version 3.0." http://www.ral.ucar.edu/projects/wrf_hydro/.
- Gold, David. 2017. "An Introduction to Copulas." Water Programming: A Collaborative Research Blog (blog). November 11, 2017. https://waterprogramming.wordpress.com/2017/11/11/an-introduction-to-copulas/.
- Gonzalez, Patrick, G. M. Garfin, D. D. Breshears, K. M. Brooks, H. E. Brown, E. H. Elias, A. Gunasekara, et al. 2018. "Fourth National Climate Assessment-Chapter 25: Southwest." https://nca2018.globalchange.gov/chapter/25.
- Goodison, B. E., P. Y. T. Louie, and D. Yang. 1998. "WMO Solid Precipitation Measurement Intercomparison--Final Report," 318.
- Grantz, Katrina, Balaji Rajagopalan, Martyn P. Clark, and Edith Zagona. 2005. "A Technique for Incorporating Large-Scale Climate Information in Basin-Scale Ensemble Streamflow Forecasts." Water Resources Research 41 (10). https://doi.org/10.1029/2004WR003467.
- ——. 2007. "Seasonal Shifts in the North American Monsoon." Journal of Climate 20 (9): 1923–35. https://doi.org/10.1175/JCLI4091.1.
- Gray, Stephen T., Lisa J. Graumlich, Julio L. Betancourt, and Gregory T. Pederson. 2004. "A Tree-Ring Based Reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D." Geophysical Research Letters 31 (12): n/a-n/a. https://doi.org/10.1029/2004GL019932.
- Gray, Stephen T., and Gregory J. McCabe. 2010. "A Combined Water Balance and Tree Ring Approach to Understanding the Potential Hydrologic Effects of Climate Change in the Central Rocky Mountain Region." Water Resources Research 46 (5). https://doi.org/10.1029/2008WR007650.
- Grayson, Rodger B., Ian D. Moore, and Thomas A. McMahon. 1992a. "Physically Based Hydrologic Modeling: 1. A Terrain-Based Model for Investigative Purposes." Water Resources Research 28 (10): 2639–58. https://doi.org/10.1029/92WR01258.
- ——. 1992b. "Physically Based Hydrologic Modeling: 2. Is the Concept Realistic?" Water Resources Research 28 (10): 2659–66. https://doi.org/10.1029/92WR01259.
- Groisman, Pavel Ya, and David R. Easterling. 1994. "Variability and Trends of Total Precipitation and Snowfall over the United States and Canada." Journal of Climate 7: 184–204.
- Grygier, J. C., and Jery R. Stedinger. 1990. "SPIGOT, A Synthetic Streamflow Generation Software Package." Ithaca, NY: School of Civil and Environmental Engineering, Cornell University.
- Guan, Bin, Noah P. Molotch, Duane E. Waliser, Steven M. Jepsen, Thomas H. Painter, and Jeff Dozier. 2013. "Snow Water Equivalent in the Sierra Nevada: Blending Snow Sensor Observations with Snowmelt Model Simulations." Water Resources Research 49 (8): 5029–46. https://doi.org/10.1002/wrcr.20387.

- Guan, Bin, Duane E. Waliser, Noah P. Molotch, Eric J. Fetzer, and Paul J. Neiman. 2012. "Does the Madden–Julian Oscillation Influence Wintertime Atmospheric Rivers and Snowpack in the Sierra Nevada?" Monthly Weather Review 140 (2): 325–42. https://doi.org/10.1175/MWR-D-11-00087.1.
- Guentchev, Galina, Joseph J. Barsugli, and Jon Eischeid. 2010. "Homogeneity of Gridded Precipitation Datasets for the Colorado River Basin." Journal of Applied Meteorology and Climatology 49 (12): 2404–15. https://doi.org/10.1175/2010JAMC2484.1.
- Guo, Ruixia, Clara Deser, Laurent Terray, and Flavio Lehner. 2019. "Human Influence on Winter Precipitation Trends (1921–2015) over North America and Eurasia Revealed by Dynamical Adjustment." Geophysical Research Letters 46 (6): 3426–34. https://doi.org/10.1029/2018GL081316.
- Gutmann, Ethan D., Idar Barstad, Martyn P. Clark, Jeffrey Arnold, and Roy Rasmussen. 2016. "The Intermediate Complexity Atmospheric Research Model (ICAR)." Journal of Hydrometeorology 17 (3): 957–73. https://doi.org/10.1175/JHM-D-15-0155.1.
- Gutmann, Ethan D., Tom Pruitt, Martyn P. Clark, Levi Brekke, Jeffrey R. Arnold, David A. Raff, and Roy M. Rasmussen. 2014. "An Intercomparison of Statistical Downscaling Methods Used for Water Resource Assessments in the United States." Water Resources Research 50 (9): 7167–86. https://doi.org/10.1002/2014WR015559.
- Gutmann, Ethan D., Roy M. Rasmussen, Changhai Liu, Kyoko Ikeda, David J. Gochis, Martyn P. Clark, Jimy Dudhia, and Gregory Thompson. 2012. "A Comparison of Statistical and Dynamical Downscaling of Winter Precipitation over Complex Terrain." Journal of Climate 25 (1): 262–81. https://doi.org/10.1175/2011JCLI4109.1.
- Haarsma, Reindert J., Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, et al. 2016. "High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6." Geoscientific Model Development 9 (11): 4185–4208. https://doi.org/10.5194/gmd-9-4185-2016.
- Haas, Amy. 2018. "Seventieth Annual Report of the Upper Colorado River Commission." Annual report 70. Salt Lake City, UT: Upper Colorado River Commission. http://www.ucrcommission.com/RepDoc/UCRCAnnualReports/70_UCRC_Annual_Report.pdf.
- Hagedorn, Renate, Francisco J. Doblas-Reyes, and T. N. Palmer. 2005. "The Rationale behind the Success of Multi-Model Ensembles in Seasonal Forecasting I. Basic Concept." Tellus A 57 (3): 219–33. https://doi.org/10.1111/j.1600-0870.2005.00103.x.
- Hamel, Jama L. n.d. "AgriMet Quality Procedures.Doc."
- Hamilton, A. S., and R. D. Moore. 2012. "Quantifying Uncertainty in Streamflow Records." Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques 37 (1): 3–21. https://doi.org/10.4296/cwrj3701865.
- Hamlet, Alan F., and Dennis P. Lettenmaier. 1999. "Columbia River Streamflow Forecasting Based on ENSO and PDO Climate Signals." Journal of Water Resources Planning and Management 125 (6): 333–41. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(333).
- ———. 2005. "Production of Temporally Consistent Gridded Precipitation and Temperature Fields for the Continental United States." Journal of Hydrometeorology 6 (3): 330–36. https://doi.org/10.1175/JHM420.1.
- Hamlet, Alan F., Philip W. Mote, Martyn P. Clark, and Dennis P. Lettenmaier. 2005. "Effects of Temperature and Precipitation Variability on Snowpack Trends in the Western United States." Journal of Climate 18 (21): 4545–61. https://doi.org/10.1175/JCLI3538.1.
- Hanson, Clayton L., Gregory L. Johnson, and Albert Rango. 1999. "Comparison of Precipitation Catch between Nine Measuring Systems." Journal of Hydrologic Engineering 4 (1): 70–76. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:1(70).

- Hao, Z., and V. P. Singh. 2012. "Entropy-Copula Method for Single-Site Monthly Streamflow Simulation." Water Resources Research 48 (6). https://doi.org/10.1029/2011WR011419.
- Harding, Benjamin L., Andrew W. Wood, and James R. Prairie. 2012. "The Implications of Climate Change Scenario Selection for Future Streamflow Projection in the Upper Colorado River Basin." Hydrology and Earth System Sciences 16 (11): 3989–4007. https://doi.org/10.5194/hess-16-3989-2012.
- Harding, Benjamin L. 2015. "Colorado River Water Availability Study, Phase II, Updating Climate Impacted Hydrology."
- Harpold, Adrian A., Kent Sutcliffe, Jordan Clayton, Angus Goodbody, and Shareily Vazquez. 2017. "Does Including Soil Moisture Observations Improve Operational Streamflow Forecasts in Snow-Dominated Watersheds?" JAWRA Journal of the American Water Resources Association 53 (1): 179–96. https://doi.org/10.1111/1752-1688.12490.
- Harrison, Brent, and Roger Bales. 2015. "Skill Assessment of Water Supply Outlooks in the Colorado River Basin." Hydrology 2 (3): 112–31. https://doi.org/10.3390/hydrology2030112.
- Harwell, Glenn R. 2012. "Estimation of Evaporation from Open Water—A Review of Selected Studies, Summary of U.S. Army Corps of Engineers Data Collection and Methods, and Evaluation of Two Methods for Estimation of Evaporation from Five Reservoirs in Texas." Scientific Investigations Report 2012–5202. U.S. Geological Survey.
- Hausfather, Zeke. 2019. "CMIP6-the next Generation of Climate Models Explained." Carbon Brief. 2019. https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained.
- Hausfather, Zeke, Matthew J. Menne, Claude N. Williams, Troy Masters, Ronald Broberg, and David Jones. 2013. "Quantifying the Effect of Urbanization on U.S. Historical Climatology Network Temperature Record." Journal of Geophysical Research: Atmospheres 118 (2): 481–94. https://doi.org/10.1029/2012JD018509.
- Hausfather, Zeke, and Glen P. Peters. 2020. "Emissions the 'Business as Usual' Story Is Misleading." Nature 577 (7792): 618–20. https://doi.org/10.1038/d41586-020-00177-3.
- Hawkins, Ed, and Rowan Sutton. 2009. "The Potential to Narrow Uncertainty in Regional Climate Predictions." Bulletin of the American Meteorological Society 90 (8): 1095–1108. https://doi.org/10.1175/2009BAMS2607.1.
- Hedrick, A., H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline. 2015. "Independent Evaluation of the Snodas Snow Depth Product Using Regional-Scale Lidar-Derived Measurements." The Cryosphere 9 (1): 13–23. https://doi.org/10.5194/tc-9-13-2015.
- Helms, Douglas, Steven E. Phillips, and Paul F. Reich. 2008. The History of Snow Survey and Water Supply Forecasting-Interviews with U.S. Department of Agriculture Pioneers. USDA NRCS Historical Notes 8. US Department of Agriculture. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043910.pdf.
- Henn, Brian, Andrew J. Newman, Ben Livneh, Christopher Daly, and Jessica D. Lundquist. 2018. "An Assessment of Differences in Gridded Precipitation Datasets in Complex Terrain." Journal of Hydrology 556 (January): 1205–19. https://doi.org/10.1016/j.jhydrol.2017.03.008.
- Hereford, Richard, and Robert H. Webb. 1992. "Historic Variation of Warm-Season Rainfall, Southern Colorado Plateau, Southwestern U.S.A." Climatic Change 22 (3): 239–56. https://doi.org/10.1007/BF00143030.
- Herman Jonathan D., Zeff Harrison B., Lamontagne Jonathan R., Reed Patrick M., and Characklis Gregory W. 2016. "Synthetic Drought Scenario Generation to Support Bottom-Up Water Supply Vulnerability Assessments." Journal of Water Resources Planning and Management 142 (11): 04016050. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000701.
- Herweijer, Celine, Richard Seager, Edward R. Cook, and Julien Emile-Geay. 2007. "North American Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data." Journal of Climate 20 (7): 1353–76. https://doi.org/10.1175/JCLI4042.1.

- Hidalgo, Hugo G., Thomas C. Piechota, and John A. Dracup. 2000. "Alternative Principal Components Regression Procedures for Dendrohydrologic Reconstructions." Water Resources Research 36 (11): 3241–49.
- Hidalgo, Hugo G. 2004. "Climate Precursors of Multidecadal Drought Variability in the Western United States." Water Resources Research 40 (12). https://doi.org/10.1029/2004WR003350.
- Hidalgo, Hugo G., Michael D. Dettinger, and Daniel R. Cayan. 2008. "Downscaling with Constructed Analogues: Daily Precipitation and Temperature Fields Over the United States." California Energy Commission.
- Hidalgo, Hugo G., and John A. Dracup. 2003. "ENSO and PDO Effects on Hydroclimatic Variability in the Upper Colorado River Basin." Journal of Hydrometeorology 4: 5–23.
- Higgins, R. Wayne, H-K. Kim, and D. Unger. 2004. "Long-Lead Seasonal Temperature and Precipitation Prediction Using Tropical Pacific SST Consolidation Forecasts." Journal of Climate 17: 3398–3414. https://doi.org/10.1175/1520-0442(2004)017<3398:LSTAPP>2.0.CO;2.
- Higgins, R. Wayne, Wei Shi, E. Yarosh, and R. Joyce. 2000. "Improved United States Precipitation Quality Control System and Analysis. NCEP/Climate Prediction Center ATLAS No. 7." U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service.
 - https://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/7/.
- Hobbins, Michael T., and Justin L. Huntington. 2017. Evapotranspiration and Evaporative Demand, Chapter 42: Handbook of Applied Hydrology. Edited by V. P. Singh and Ven Te Chow. Second edition. New York: Mcgraw-Hill Education.
- Hobbins, Michael T., Daniel McEvoy, and Christopher Hain. 2017. "Evapotranspiration, Evaporative Demand, and Drought." In Drought and Water Crises, by Donald Wilhite and Roger Pulwarty, 259–88. CRC Press. https://doi.org/10.1201/9781315265551-15.
- Hobbins, Michael T., Andrew W. Wood, Daniel J. McEvoy, Justin L. Huntington, Charles Morton, Martha C. Anderson, and Christopher Hain. 2016. "The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand." Journal of Hydrometeorology 17 (6): 1745–61. https://doi.org/10.1175/JHM-D-15-0121.1.
- Hobbins, Michael T., Andrew W. Wood, David Streubel, and Kevin Werner. 2012. "What Drives the Variability of Evaporative Demand across the Conterminous United States?" Journal of Hydrometeorology 13 (4): 1195–1214. https://doi.org/10.1175/JHM-D-11-0101.1.
- Hoerling, Martin P., Joseph J. Barsugli, B. Livneh, J. Eischeid, X. Quan, and A. Badger. 2019. "Causes for the Century-Long Decline in Colorado River Flow." Journal of Climate, August, JCLI-D-19-0207.1. https://doi.org/10.1175/JCLI-D-19-0207.1.
- Hoerling, Martin P., Michael Dettinger, Klaus Wolter, Jeffrey J. Lukas, Jon Eischeid, Rama Nemani, Brant Liebmann, Kenneth E. Kunkel, and Arun Kumar. 2013. "Present Weather and Climate: Evolving Conditions." In Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment, edited by Gregg Garfin, Angela Jardine, Robert Merideth, Mary Black, and Sarah LeRoy, 74–100. Washington, DC: Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-484-0_5.
- Hoerling, Martin P., Jon Eischeid, and Judith Perlwitz. 2010. "Regional Precipitation Trends:

 Distinguishing Natural Variability from Anthropogenic Forcing." Journal of Climate 23 (8): 2131–45. https://doi.org/10.1175/2009JCLI3420.1.
- Hood, Eran, Mark Williams, and Don Cline. 1999. "Sublimation from a Seasonal Snowpack at a Continental, Mid-Latitude Alpine Site." Hydrological Processes 13 (12–13): 1781–97. https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1781::AID-HYP860>3.0.CO;2-C.

- Huang, Chengcheng, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, and Xiaogu Zheng. 2017. "Evaluation of Snow Data Assimilation Using the Ensemble Kalman Filter for Seasonal Streamflow Prediction in the Western United States." Hydrol. Earth Syst. Sci. 21 (1): 635–50. https://doi.org/10.5194/hess-21-635-2017.
- Huang, Jin, Huug M. Van den Dool, and Anthony G. Barnston. 1996. "Long-Lead Seasonal Temperature Prediction Using Optimal Climate Normals." Journal of Climate 9: 809–17. https://doi.org/10.1175/1520-0442(1996)009<0809:LLSTPU>2.0.CO;2.
- Huang, Jin, Huug M. Van den Dool, and Konstantine P. Georgarakos. 1995. "Analysis of Model-Calculated Soil Moisture over the United States (1931–1993) and Applications to Long-Range Temperature Forecasts." Journal of Climate. https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2.
- Hubbard, K. G., X. Lin, and E. A. Walter-Shea. 2001. "The Effectiveness of the ASOS, MMTS, Gill, and CRS Air Temperature Radiation Shields*." Journal of Atmospheric and Oceanic Technology 18 (6): 851–64. https://doi.org/10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2.
- Hudson, Debbie. 2017. "Ensemble Verification Metrics." presented at the ECMWF Annual Seminar 2017, Reading, UK.
- Hultstrand, Douglas M., and Steven R. Fassnacht. 2018. "The Sensitivity of Snowpack Sublimation Estimates to Instrument and Measurement Uncertainty Perturbed in a Monte Carlo Framework." Frontiers of Earth Science 12 (4): 728–38. https://doi.org/10.1007/s11707-018-0721-0.
- Hurrell, James W., M. M. Holland, P. R. Gent, S. Ghan, Jennifer E. Kay, and P. J. Kushner. 2013. "The Community Earth System Model," 22.
- Ikeda, Kyoko, Roy Rasmussen, Changhai Liu, David Gochis, David Yates, Fei Chen, Mukul Tewari, et al. 2010. "Simulation of Seasonal Snowfall over Colorado." Atmospheric Research 97 (4): 462–77. https://doi.org/10.1016/j.atmosres.2010.04.010.
- International Boundary and Water Commission. 2012. "Minute No. 319. Interim International Cooperative Measures in the Colorado River Basin Through 2017 and Extension of Minute 318 Cooperative Measures to Address the Continued Effects of the April 2010 Earthquake in the Mexicali Valley, Baja California." https://www.ibwc.gov/Files/Minutes/Minute_319.pdf.
- ———. 2017. "Minute No. 323. Extension of Cooperative Measures and Adoption of a Binational Water Scarcity Contingency Plan in the Colorado River Basin." https://www.ibwc.gov/Files/Minutes/Min323.pdf.
- Interstate Council on Water Policy. 2012. "Colorado River Water Science Stakeholders' Roundtable--A Meeing for USGS Cooperative Water Program Partners." Pdf presented at the Colorado River Water Science Stakeholders' Roundtable--A meeing for USGS Cooperative Water Program Partners, Salt Lake City, UT, February 8.
 - https://water.usgs.gov/coop/meeting.book.01262012.pdf.

https://mesonet.agron.iastate.edu/scan/.

- Iowa State University. n.d. "ASOS Network Quick Links." Iowa Environmental Mesonet Networks. https://mesonet.agron.iastate.edu/ASOS/.
- n.d. "AWOS Quick Links." Iowa Environmental Mesonet Networks.
 https://mesonet.agron.iastate.edu/AWOS/.
 n.d. "NWS COOP Quick Links." Iowa Environmental Mesonet Networks.
 https://mesonet.agron.iastate.edu/COOP/.
 n.d. "SCAN Network." Iowa Environmental Mesonet Networks.
- Jana, Srijita, Balaji Rajagopalan, Michael A. Alexander, and Andrea J. Ray. 2018. "Understanding the Dominant Sources and Tracks of Moisture for Summer Rainfall in the Southwest United States." Journal of Geophysical Research: Atmospheres 123 (10): 4850–70. https://doi.org/10.1029/2017JD027652.

- Jensen, Marvin E., Avry Dotan, and Roland Sanford. 2005. "Penman-Monteith Estimates of Reservoir Evaporation." In Impacts of Global Climate Change, 1–24. Anchorage, Alaska, United States: American Society of Civil Engineers. https://doi.org/10.1061/40792(173)548.
- Johnson, Jennifer. 2014. "MODSIM versus RiverWare: A Comparative Analysis of Two River Reservoir Modeling Tools." 2014.3669. US Bureau of Reclamation. https://www.usbr.gov/research/projects/download_product.cfm?id=1360.
- Julander, Randall P., and Michael Bricco. 2006. "An Examination of External Influences Imbedded in the Historical Snow Data of Utah." In Proceedings of the Western Snow Conference, 17. Utah State University.
- Julander, Randall P., and Jordan A. Clayton. 2018. "Determining the Proportion of Streamflow That Is Generated by Cold Season Processes versus Summer Rainfall in Utah, USA." Journal of Hydrology: Regional Studies 17 (June): 36–46. https://doi.org/10.1016/j.ejrh.2018.04.005.
- Kain, John S., Stephen M. Goss, and Michael E. Baldwin. 2000. "The Melting Effect as a Factor in Precipitation-Type Forecasting." Weather and Forecasting 15 (6): 700–714. https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.
- Kalnay, Eugenia, Masao Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. "The NCEP/NCAR 40-Year Reanalysis Project." Bulletin of the American Meteorological Society 77 (3): 437–71. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
- Kapnick, Sarah B., Xiaosong Yang, Gabriel A. Vecchi, Thomas L. Delworth, Rich Gudgel, Sergey Malyshev, P. C. D. Milly, Elena Shevliakova, Seth Underwood, and Steven A. Margulis. 2018. "Potential for Western US Seasonal Snowpack Prediction." Proceedings of the National Academy of Sciences 115 (6): 1180–85. https://doi.org/10.1073/pnas.1716760115.
- Karl, Thomas R., H. F. Diaz, and George Kukla. 1988. "Urbanization: Its Detection and Effect in the United States Climate Record." Journal of Climate 1: 1099–1123.
- Karl, Thomas R., Claude N. Williams, Pamela J. Young, and Wayne M. Wendland. 1986. "A Model to Estimate the Time of Observation Bias Associated with Monthly Mean, Maximum, Minimum, and Mean Temperatures for the United States." Journal of Climate and Applied Meteorology 25: 145–60.
- Kay, Jennifer E., C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, et al. 2015. "The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability." Bulletin of the American Meteorological Society 96 (8): 1333–49. https://doi.org/10.1175/BAMS-D-13-00255.1.
- Kendall, Donald R., and John A. Dracup. 1991. "A Comparison of Index-Sequential and AR(1) Generated Hydrologic Sequences." Journal of Hydrology 122 (1): 335–52. https://doi.org/10.1016/0022-1694(91)90187-M.
- Kenney, Douglas S., Christopher Goemans, Roberta Klein, Jessica Lowrey, and Kevin Reidy. 2008. "Residential Water Demand Management: Lessons from Aurora, Colorado." JAWRA Journal of the American Water Resources Association 44 (1): 192–207. https://doi.org/10.1111/j.1752-1688.2007.00147.x.
- Khaliq, M. N., T. B. M. J. Ouarda, J. -C. Ondo, P. Gachon, and B. Bobée. 2006. "Frequency Analysis of a Sequence of Dependent and/or Non-Stationary Hydro-Meteorological Observations: A Review." Journal of Hydrology 329 (3): 534–52. https://doi.org/10.1016/j.jhydrol.2006.03.004.
- Kiang, Julie E., Chris Gazoorian, Hilary McMillan, Gemma Coxon, Jérôme Le Coz, Ida K. Westerberg, Arnaud Belleville, et al. 2018. "A Comparison of Methods for Streamflow Uncertainty Estimation." Water Resources Research 54 (10): 7149–76. https://doi.org/10.1029/2018WR022708.

- Kiang, Julie E., David W. Stewart, Stacey A. Archfield, Emily B. Osborne, and Ken Eng. 2013. "A National Streamflow Network Gap Analysis." Scientific Investigations Report 2013–5013. Scientific Investigations Report. U.S. Geological Survey. https://pubs.usgs.gov/sir/2013/5013/pdf/sir2013-5013.pdf.
- Kidston, Joseph, Adam A. Scaife, Steven C. Hardiman, Daniel M. Mitchell, Neal Butchart, Mark P. Baldwin, and Lesley J. Gray. 2015. "Stratospheric Influence on Tropospheric Jet Streams, Storm Tracks and Surface Weather." Nature Geoscience 8 (6): 433–40. https://doi.org/10.1038/ngeo2424.
- Kirtman, Ben P., Dughong Min, Johnna M. Infanti, James L. Kinter, Daniel A. Paolino, Qin Zhang, Huug M. Van den Dool, et al. 2014. "The North American Multimodel Ensemble: Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction." Bulletin of the American Meteorological Society 95 (4): 585–601. https://doi.org/10.1175/BAMS-D-12-00050.1.
- Klotzbach, Philip J. 2014. "The Madden–Julian Oscillation's Impacts on Worldwide Tropical Cyclone Activity." Journal of Climate 27 (6): 2317–30. https://doi.org/10.1175/JCLI-D-13-00483.1.
- Knaff, John A., and Christopher W. Landsea. 1997. "An El Niño Southern Oscillation CLImatology and PERsistence (CLIPER) Forecasting Scheme." Weather and Forecasting 12 (3): 633–52. https://doi.org/10.1175/1520-0434(1997)012<0633:AENOSO>2.0.CO;2 Cite this publication.
- Knowles, Noah, Michael D. Dettinger, and Daniel R. Cayan. 2006. "Trends in Snowfall versus Rainfall in the Western United States." Journal of Climate 19 (18): 4545–59. https://doi.org/10.1175/JCLI3850.1.
- Knutti, Reto. 2010. "The End of Model Democracy?: An Editorial Comment." Climatic Change 102 (3–4): 395–404. https://doi.org/10.1007/s10584-010-9800-2.
- Knutti, Reto, Reinhard Furrer, Claudia Tebaldi, Jan Cermak, and Gerald A. Meehl. 2010. "Challenges in Combining Projections from Multiple Climate Models." Journal of Climate 23 (10): 2739–58. https://doi.org/10.1175/2009JCLI3361.1.
- Knutti, Reto, David Masson, and Andrew Gettelman. 2013. "Climate Model Genealogy: Generation CMIP5 and How We Got There." Geophysical Research Letters 40 (6): 1194–99. https://doi.org/10.1002/grl.50256.
- Koren, Victor, Michael Smith, and Qingyun Duan. 2003. "Use of a Priori Parameter Estimates in the Derivation of Spatially Consistent Parameter Sets of Rainfall-Runoff Models." In Calibration of Watershed Models, 239–54. American Geophysical Union (AGU). https://doi.org/10.1002/9781118665671.ch18.
- Koster, Randal D., S. P. P. Mahanama, T. J. Yamada, Gianpaolo Balsamo, A. A. Berg, M. Boisserie, P. A. Dirmeyer, et al. 2011. "The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill." Journal of Hydrometeorology 12 (5): 805–22. https://doi.org/10.1175/2011JHM1365.1.
- Kuhn, Eric, and John Fleck. 2019. Science Be Dammed. Tucson: University of Arizona Press.
- Kuiper, Dana, Rose Loehr, Maggie Dunklee, Laurel Grimsted, and Tony Tolsdorf. 2014. "Chapter 6. Data Management." In Part 622 Snow Survey and Water Supply Forecasting National Engineering Handbook. USDA Natural Resources Conservation Service.
- Kumar, Sanjiv, Matthew Newman, Yan Wang, and Ben Livneh. 2019. "Potential Reemergence of Seasonal Soil Moisture Anomalies in North America." Journal of Climate 32 (10): 2707–34. https://doi.org/10.1175/JCLI-D-18-0540.1.
- Kumar, Sujay V., Benjamin F. Zaitchik, Christa D. Peters-Lidard, Matthew Rodell, Rolf Reichle, Bailing Li, Michael Jasinski, et al. 2016. "Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System." Journal of Hydrometeorology 17 (7): 1951–72. https://doi.org/10.1175/JHM-D-15-0157.1.

- Labadie, John W., Fontane Darrell G., Tabios Guillermo Q., and Chou Nine Fang. 1987. "Stochastic Analysis of Dependable Hydropower Capacity." Journal of Water Resources Planning and Management 113 (3): 422–37. https://doi.org/10.1061/(ASCE)0733-9496(1987)113:3(422).
- Lall, Upmanu. 1995. "Recent Advances in Nonparametric Function Estimation: Hydrologic Applications." Reviews of Geophysics 33 (S2): 1093–1102. https://doi.org/10.1029/95RG00343.
- Lall, Upmanu, and Ashish Sharma. 1996. "A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series." Water Resources Research 32 (3): 679–93. https://doi.org/10.1029/95WR02966.
- Lamb, Kenneth W. 2010. "Improving Ensemble Streamflow Prediction Using Interdecadal/Interannual Climate Variability." UNLV Theses, Dissertations, Professional Papers, and Capstones, December, 718.
- Lane, William L., and Donald K. Frevert. 1988. "Applied Stochastic Techniques: LAST Computer Package: User Manual." Manual. Denver, Colorado: Division of Planning Technical Services, Engineering and Research Center, Bureau of Reclamation, U.S. Dept. of the Interior.
- Langousis, Andreas, and Vassilios Kaleris. 2014. "Statistical Framework to Simulate Daily Rainfall Series Conditional on Upper-Air Predictor Variables." Water Resources Research 50 (5): 3907–32. https://doi.org/10.1002/2013WR014936.
- Lanzante, John R., Keith W. Dixon, Mary Jo Nath, Carolyn E. Whitlock, and Dennis Adams-Smith. 2018. "Some Pitfalls in Statistical Downscaling of Future Climate." Bulletin of the American Meteorological Society 99 (4): 791–803. https://doi.org/10.1175/BAMS-D-17-0046.1.
- Lareau, Neil P., and John D. Horel. 2012. "The Climatology of Synoptic-Scale Ascent over Western North America: A Perspective on Storm Tracks." Monthly Weather Review 140 (6): 1761–78. https://doi.org/10.1175/MWR-D-11-00203.1.
- Lee, Taesam S., Jose D. Salas, J. Keedy, D. Frevert, and T. Fulp. 2007. "Stochastic Modeling and Simulation of the Colorado River Flows." In World Environmental and Water Resources Congress 2007, 1–10. Tampa, Florida, United States: American Society of Civil Engineers. https://doi.org/10.1061/40927(243)423.
- Lee, Taesam S., and Jose D. Salas. 2006. "Record Extension of Monthly Flows for the Colorado River System." US Bureau of Reclamation. https://www.usbr.gov/lc/region/g4000/NaturalFlow/Final.RecordExtensionReport.2006.pdf.
- ——. 2011. "Copula-Based Stochastic Simulation of Hydrological Data Applied to Nile River Flows." Hydrology Research 42 (4): 318–30. https://doi.org/10.2166/nh.2011.085.
- Leeper, Ronald D., Jared Rennie, and Michael A. Palecki. 2015. "Observational Perspectives from U.S. Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: Temperature and Precipitation Comparison." Journal of Atmospheric and Oceanic Technology 32 (4): 703–21. https://doi.org/10.1175/JTECH-D-14-00172.1.
- Lehner, Flavio, Clara Deser, Isla R. Simpson, and Laurent Terray. 2018. "Attributing the U.S. Southwest's Recent Shift Into Drier Conditions." Geophysical Research Letters 45 (12): 6251–61. https://doi.org/10.1029/2018GL078312.
- Lehner, Flavio, Andrew W. Wood, J. A. Vano, D. M. Lawrence, Martyn P. Clark, and Justin S. Mankin. 2019. "The Potential to Reduce Uncertainty in Regional Runoff Projections from Climate Models." Nature Climate Change 9: 926–33. https://doi.org/10.1038/s41558-019-0639-x.
- Lehner, Flavio, Andrew W. Wood, Dagmar Llewellyn, Douglas B. Blatchford, Angus G. Goodbody, and Florian Pappenberger. 2017. "Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability in the U.S. Southwest." Geophysical Research Letters 44 (24): 12,208-12,217. https://doi.org/10.1002/2017GL076043.
- Lenaerts, Jan T. M., Brooke Medley, Michiel R. van den Broeke, and Bert Wouters. 2019. "Observing and Modeling Ice Sheet Surface Mass Balance." Reviews of Geophysics 57 (2): 376–420. https://doi.org/10.1029/2018RG000622.

- Letcher, Theodore W., and Justin R. Minder. 2015. "Characterization of the Simulated Regional Snow Albedo Feedback Using a Regional Climate Model over Complex Terrain." Journal of Climate 28 (19): 7576–95. https://doi.org/10.1175/JCLI-D-15-0166.1.
- Leung, L. Ruby, Ying-Hwa Kuo, and Joe Tribbia. 2006. "Research Needs and Directions of Regional Climate Modeling Using WRF and CCSM." Bulletin of the American Meteorological Society 87 (12): 1747–52. https://doi.org/10.1175/BAMS-87-12-1747.
- Li, Dongyue, Melissa L. Wrzesien, Michael Durand, Jennifer Adam, and Dennis P. Lettenmaier. 2017. "How Much Runoff Originates as Snow in the Western United States, and How Will That Change in the Future?" Geophysical Research Letters 44 (12): 6163–72. https://doi.org/10.1002/2017GL073551.
- Li, Haibin, Justin Sheffield, and Eric F. Wood. 2010. "Bias Correction of Monthly Precipitation and Temperature Fields from Intergovernmental Panel on Climate Change AR4 Models Using Equidistant Quantile Matching." Journal of Geophysical Research 115 (D10): D10101. https://doi.org/10.1029/2009JD012882.
- Liang, Xu, Dennis P. Lettenmaier, Eric F. Wood, and Stephen J. Burges. 1994. "A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models." Journal of Geophysical Research: Atmospheres 99 (D7): 14415–28. https://doi.org/10.1029/94JD00483.
- Lin, X., and K. G. Hubbard. 2004. "Sensor and Electronic Biases/Errors in Air Temperature Measurements in Common Weather Station Networks*." Journal of Atmospheric and Oceanic Technology 21 (7): 1025–32. https://doi.org/10.1175/1520-0426(2004)021<1025:SAEEIA>2.0.CO;2.
- Linacre, Edward. 1992. Climate Data and Resources: A Reference and Guide.
- Liston, Glen E., and Kelly Elder. 2006. "A Distributed Snow-Evolution Modeling System (SnowModel)." Journal of Hydrometeorology 7 (6): 1259–76. https://doi.org/10.1175/JHM548.1.
- Liu, Changhai, Kyoko Ikeda, Roy Rasmussen, Mike Barlage, Andrew J. Newman, Andreas F. Prein, Fei Chen, et al. 2017. "Continental-Scale Convection-Permitting Modeling of the Current and Future Climate of North America." Climate Dynamics 49 (1–2): 71–95. https://doi.org/10.1007/s00382-016-3327-9.
- Liu, Yuqiong, A. H. Weerts, Martyn P. Clark, H.-J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.-J. Seo, et al. 2012. "Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities." Hydrology and Earth System Sciences 16 (10): 3863–87. https://doi.org/10.5194/hess-16-3863-2012.
- Livezey, Robert E., and Marina M. Timofeyeva. 2008. "The First Decade of Long-Lead U.S. Seasonal Forecasts: Insights from a Skill Analysis." Bulletin of the American Meteorological Society 89 (6): 843–54. https://doi.org/10.1175/2008BAMS2488.1.
- Livneh, Ben. n.d. "Data Sets: Daily Observational Hydrometeorology Data Set: CONUS Extent with Canadian Extent of the Columbia River Basin." Water and Climate Research Group. https://ciresgroups.colorado.edu/livneh/data/.
- ——. n.d. "Data Sets: Daily Observational Hydrometeorology Data Set: North American Extent." Water and Climate Research Group. https://ciresgroups.colorado.edu/livneh/data/.
- Livneh, Ben, Andrew M. Badger, and Jeffrey J. Lukas. 2017. "Assessing the Robustness of Snow-Based Drought Indicators in the Upper Colorado River Basin under Future Climate Change." In World Environmental and Water Resources Congress 2017, 511–25. Sacramento, California: American Society of Civil Engineers. https://doi.org/10.1061/9780784480618.051.
- Livneh, Ben, Theodore J. Bohn, David W. Pierce, Francisco Munoz-Arriola, Bart Nijssen, Russell Vose, Daniel R. Cayan, and Levi Brekke. 2015. "A Spatially Comprehensive, Hydrometeorological Data Set for Mexico, the U.S., and Southern Canada 1950–2013." Scientific Data 2 (August): 150042. https://doi.org/10.1038/sdata.2015.42.

- Livneh, Ben, Eric A. Rosenberg, Chiyu Lin, Bart Nijssen, Vimal Mishra, Kostas M. Andreadis, Edwin P. Maurer, and Dennis P. Lettenmaier. 2013. "A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States: Update and Extensions." Journal of Climate 26 (23): 9384–92. https://doi.org/10.1175/JCLI-D-12-00508.1.
- Loucks, Daniel P., and Eelco van Beek. 2017. Water Resource Systems Planning and Management. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-44234-1.
- Lukas, Jeffrey J., Joseph J. Barsugli, Nolan J. Doesken, Imtiaz Rangwala, and Klaus Wolter. 2014. "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation." Western Water Assessment, University of Colorado Boulder. https://wwwa.colorado.edu/climate/co2014report/Climate Change CO Report 2014 FINAL.pdf.
- Lukas, Jeffrey J., Elizabeth McNie, Tim Bardsley, Jeffrey S. Deems, and Noah Molotch. 2016. "Snowpack Monitoring for Streamflow Forecasting and Drought Planning." Western Water Assessement.
- Lukas, Jeffrey J., Lisa Wade, and Balaji Rajagopalan. 2013. "Paleohydrology of the Lower Colorado River Basin."
- Lundquist, Jessica D., Mimi Hughes, Brian Henn, Ethan D. Gutmann, Ben Livneh, Jeff Dozier, and Paul Neiman. 2015. "High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily Gridded Datasets across the Sierra Nevada, California." Journal of Hydrometeorology 16 (4): 1773–92. https://doi.org/10.1175/JHM-D-15-0019.1.
- Luo, Lifeng, and Eric F. Wood. 2008. "Use of Bayesian Merging Techniques in a Multimodel Seasonal Hydrologic Ensemble Prediction System for the Eastern United States." Journal of Hydrometeorology 9 (5): 866–84. https://doi.org/10.1175/2008JHM980.1.
- Lute, A. C., John T. Abatzoglou, and Katherine C. Hegewisch. 2015. "Projected Changes in Snowfall Extremes and Interannual Variability of Snowfall in the Western United States." Water Resources Research 51 (2): 960–72. https://doi.org/10.1002/2014WR016267.
- Lynker. 2019. "CRAM Water Resources Modeling Tool." https://www.lynker.com/wp-content/uploads/CRAM-Model-Lynker.pdf.
- Ma, Chenchen. 2017. "Evaluating and Correcting Sensor Change Artifacts in the SNOTEL Temperature Records, Southern Rocky Mountains, Colorado." Ft. Collins, CO: Colorado State University.
- MacDonald, Glen M., and Roslyn A. Case. 2005. "Variations in the Pacific Decadal Oscillation over the Past Millennium." Geophysical Research Letters 32 (8). https://doi.org/10.1029/2005GL022478.
- MacDonald, Glen M., and Abbie H. Tingstad. 2007. "Recent and Multicentennial Precipitation Variability and Drought Occurrence in the Uinta Mountains Region, Utah." Arctic, Antarctic, and Alpine Research 39 (4): 549–55. https://doi.org/10.1657/1523-0430(06-070)[MACDONALD]2.0.CO;2.
- Mahoney, Kelly, Michael Alexander, James D. Scott, and Joseph J. Barsugli. 2013. "High-Resolution Downscaled Simulations of Warm-Season Extreme Precipitation Events in the Colorado Front Range under Past and Future Climates." Journal of Climate 26 (21): 8671–89. https://doi.org/10.1175/JCLI-D-12-00744.1.
- Maloney, Eric D., and Dennis L. Hartmann. 2000. "Modulation of Eastern North Pacific Hurricanes by the Madden–Julian Oscillation." Journal of Climate 13: 10.
- Mamalakis, Antonios, Jin-Yi Yu, James T. Randerson, Amir AghaKouchak, and Efi Foufoula-Georgiou. 2018. "A New Interhemispheric Teleconnection Increases Predictability of Winter Precipitation in Southwestern US." Nature Communications 9 (1). https://doi.org/10.1038/s41467-018-04722-7.
- Mantua, Nathan J., Michael Dettinger, Thomas C. Pagano, and Pedro Restrepo. 2008. "A Description and Evaluation of Hydrologic and Climate Forecast and Data Products That Support Decision-Making for Water Resource Managers." Asheville, NC. https://pdfs.semanticscholar.org/ad74/f7701476a309e366190b246936fe0e150a7d.pdf?_ga=2.1 74838242.1797202885.1563210564-120100695.1562772778.

- Mantua, Nathan J., Steven R. Hare, Yuan Zhang, John M. Wallace, and Robert C. Francis. 1997. "A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production." Bulletin of the American Meteorological Society 78 (6): 1069–79. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
- Maraun, Douglas. 2016. "Bias Correcting Climate Change Simulations a Critical Review." Current Climate Change Reports 2 (4): 211–20. https://doi.org/10.1007/s40641-016-0050-x.
- Maraun, Douglas, Theodore G. Shepherd, Martin Widmann, Giuseppe Zappa, Daniel Walton, José M. Gutiérrez, Stefan Hagemann, et al. 2017. "Towards Process-Informed Bias Correction of Climate Change Simulations." Nature Climate Change 7 (11): 764–73. https://doi.org/10.1038/nclimate3418.
- Marco, J. B., R. Harboe, and J. D. Salas. 1993. Stochastic Hydrology and Its Use in Water Resources Systems Simulation and Optimization. Vol. 237. NATO ASI Series, E. Kluwer Academic Publishers.
- Mariotti, Annarita, Cory Baggett, Elizabeth A. Barnes, Emily Becker, Amy Butler, Dan C. Collins, Paul A. Dirmeyer, et al. 2020. "Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond." Bulletin of the American Meteorological Society, January, BAMS-D-18-0326.1. https://doi.org/10.1175/BAMS-D-18-0326.1.
- Mariotti, Annarita, Paolo M. Ruti, and Michel Rixen. 2018. "Progress in Subseasonal to Seasonal Prediction through a Joint Weather and Climate Community Effort." Npj Climate and Atmospheric Science 1 (1). https://doi.org/10.1038/s41612-018-0014-z.
- Matott, L. Shawn, Beth Hymiak, Camden Reslink, Christine Baxter, and Shirmin Aziz. 2013. "Telescoping Strategies for Improved Parameter Estimation of Environmental Simulation Models." Computers & Geosciences 60 (October): 156–67. https://doi.org/10.1016/j.cageo.2013.07.023.
- Maurer, Edwin P., and David W. Pierce. 2014. "Bias Correction Can Modify Climate Model Simulated Precipitation Changes without Adverse Effect on the Ensemble Mean." Hydrology and Earth System Sciences 18 (3): 915–25. https://doi.org/10.5194/hess-18-915-2014.
- Maurer, Edwin P., Andrew W. Wood, Jennifer C. Adam, Dennis P. Lettenmaier, and Bart Nijssen. 2002. "A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States." Journal of Climate 15 (22): 3237–51. https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2.
- Maxwell, Reed M., Laura E. Condon, Stefan J. Kollet, Kate Maher, Roy Haggerty, and Mary Michael Forrester. 2016. "The Imprint of Climate and Geology on the Residence Times of Groundwater." Geophysical Research Letters 43 (2): 701–8. https://doi.org/10.1002/2015GL066916.
- Maxwell, Reed M., and Norman L. Miller. 2005. "Development of a Coupled Land Surface and Groundwater Model." Journal of Hydrometeorology 6 (3): 233–47. https://doi.org/10.1175/JHM422.1.
- McAfee, Stephanie A. 2014. "Consistency and the Lack Thereof in Pacific Decadal Oscillation Impacts on North American Winter Climate." Journal of Climate 27 (19): 7410–31. https://doi.org/10.1175/JCLI-D-14-00143.1.
- McAfee, Stephanie A., Galina Guentchev, and Jon Eischeid. 2014. "Reconciling Precipitation Trends in Alaska: 2. Gridded Data Analyses." Journal of Geophysical Research: Atmospheres 119 (24): 13,820-13,837. https://doi.org/10.1002/2014JD022461.
- McAfee, Stephanie A., Gregory J. McCabe, Stephen T. Gray, and Gregory T. Pederson. 2019. "Changing Station Coverage Impacts Temperature Trends in the Upper Colorado River Basin." International Journal of Climatology 39 (3): 1517–38. https://doi.org/10.1002/joc.5898.
- McAfee, Stephanie A., Joellen L. Russell, and Paul J. Goodman. 2011. "Evaluating IPCC AR4 Cool-Season Precipitation Simulations and Projections for Impacts Assessment over North America." Climate Dynamics 37 (11–12): 2271–87. https://doi.org/10.1007/s00382-011-1136-8.

- McCabe, Gregory J., and Steven L. Markstrom. 2007. "A Monthly Water-Balance Model Driven By a Graphical User Interface." Open-File Report 2007–1088. U.S. Geological Survey.
- McCabe, Gregory J., Michael A. Palecki, and Julio L. Betancourt. 2004. "Pacific and Atlantic Ocean Influences on Multidecadal Drought Frequency in the United States." Proceedings of the National Academy of Sciences 101 (12): 4136–41. https://doi.org/10.1073/pnas.0306738101.
- McCabe, Gregory J., and David M. Wolock. 2007. "Warming May Create Substantial Water Supply Shortages in the Colorado River Basin." Geophysical Research Letters 34 (22). https://doi.org/10.1029/2007GL031764.
- ———. 2011. "Independent Effects of Temperature and Precipitation on Modeled Runoff in the Conterminous United States." Water Resources Research 47 (11). https://doi.org/10.1029/2011WR010630.
- ——. 2019. "Hydroclimatology of the Mississippi River Basin." JAWRA Journal of the American Water Resources Association 55 (4): 1053–64. https://doi.org/10.1111/1752-1688.12749.
- McCabe, Gregory J., David M. Wolock, Gregory T. Pederson, Connie A. Woodhouse, and Stephanie A. McAfee. 2017. "Evidence That Recent Warming Is Reducing Upper Colorado River Flows." Earth Interactions 21 (10): 1–14. https://doi.org/10.1175/El-D-17-0007.1.
- McGuire, Marketa, Andrew W. Wood, Alan F. Hamlet, and Dennis P. Lettenmaier. 2006. "Use of Satellite Data for Streamflow and Reservoir Storage Forecasts in the Snake River Basin." Journal of Water Resources Planning and Management 132 (2): 97–110. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:2(97).
- McKinnon, Karen A., Andrew Poppick, Etienne Dunn-Sigouin, and Clara Deser. 2017. "An 'Observational Large Ensemble' to Compare Observed and Modeled Temperature Trend Uncertainty Due to Internal Variability." Journal of Climate 30 (19): 7585–98. https://doi.org/10.1175/JCLI-D-16-0905.1.
- McMahon, Thomas A., Richard M. Vogel, Murray C. Peel, and Geoffrey G.S. Pegram. 2007. "Global Streamflows Part 1: Characteristics of Annual Streamflows." Journal of Hydrology 347 (3–4): 243–59. https://doi.org/10.1016/j.jhydrol.2007.09.002.
- McMillan, Hilary, Tobias Krueger, and Jim Freer. 2012. "Benchmarking Observational Uncertainties for Hydrology: Rainfall, River Discharge and Water Quality." Hydrological Processes 26 (26): 4078–4111. https://doi.org/10.1002/hyp.9384.
- McMillan, Hilary, Jan Seibert, Asgeir Petersen-Overleir, Michel Lang, Paul White, Ton Snelder, Kit Rutherford, Tobias Krueger, Robert Mason, and Julie Kiang. 2017. "How Uncertainty Analysis of Streamflow Data Can Reduce Costs and Promote Robust Decisions in Water Management Applications." Water Resources Research 53 (7): 5220–28. https://doi.org/10.1002/2016WR020328.
- Mearns, Linda, S. Sain, L. R. Leung, M. S. Bukovsky, S. McGinnis, S. Biner, D. Caya, et al. 2013. "Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)." Climatic Change 120 (4): 965–75. https://doi.org/10.1007/s10584-013-0831-3.
- Mearns, Linda, Seth McGinnis, Daniel Korytina, Raymond Arritt, Sébastien Biner, Melissa Bukovsky, Hsin-l Chang, et al. 2017. "The NA-CORDEX Dataset." UCAR/NCAR. https://doi.org/10.5065/d6sj1jch.
- Meko, David M., Charles W. Stockton, and W. R. Boggess. 1995. "The Tree-Ring Record of Severe Sustained Drought." Journal of the American Water Resources Association 31 (5): 789–801. https://doi.org/10.1111/j.1752-1688.1995.tb03401.x.
- Meko, David M., and Connie A. Woodhouse. 2011. "Dendroclimatology, Dendrohydrology, and Water Resources Management." In Tree Rings and Climate: Progress and Prospects. Springer.
- Meko, David M., Connie A. Woodhouse, Christopher A. Baisan, Troy Knight, Jeffrey J. Lukas, Malcolm K. Hughes, and Matthew W. Salzer. 2007. "Medieval Drought in the Upper Colorado River Basin." Geophysical Research Letters 34 (10). https://doi.org/10.1029/2007GL029988.

- Meko, David M., Connie A. Woodhouse, and E.R. Bigio. 2017. "Final Report: Southern California Tree-Ring Study." California Department of Water Resources. https://data.ca.gov/dataset/paleo-dendrochronological-tree-ring-hyrdoclimatic-reconstructions-northern-and-southern-14.
- Meko, David M., Connie A. Woodhouse, and K. Morino. 2012. "Dendrochronology and Links to Streamflow." Journal of Hydrology 412–413 (January): 200–209. https://doi.org/10.1016/j.jhydrol.2010.11.041.
- Mendoza, Pablo A., Martyn P. Clark, Michael Barlage, Balaji Rajagopalan, Luis Samaniego, Gab Abramowitz, and Hoshin Vijai Gupta. 2015. "Are We Unnecessarily Constraining the Agility of Complex Process-based Models?" Water Resources Research 51 (1): 716–28.
- Mendoza, Pablo A., Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi D. Brekke, and Jeffrey R. Arnold. 2017. "An Intercomparison of Approaches for Improving Operational Seasonal Streamflow Forecasts." Hydrology and Earth System Sciences 21 (7): 3915–35. https://doi.org/10.5194/hess-21-3915-2017.
- Menne, Matthew J., Imke Durre, Russell S. Vose, Byron E. Gleason, and Tamara G. Houston. 2012. "An Overview of the Global Historical Climatology Network-Daily Database." Journal of Atmospheric and Oceanic Technology 29 (7): 897–910. https://doi.org/10.1175/JTECH-D-11-00103.1.
- Menne, Matthew J., and Claude N. Williams. 2009. "Homogenization of Temperature Series via Pairwise Comparisons." Journal of Climate 22 (7): 1700–1717. https://doi.org/10.1175/2008JCLI2263.1.
- Menne, Matthew J., Claude N. Williams, and Russell S. Vose. 2009. "The U.S. Historical Climatology Network Monthly Temperature Data, Version 2." Bulletin of the American Meteorological Society 90 (7): 993–1008. https://doi.org/10.1175/2008BAMS2613.1.
- Mesinger, Fedor, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley Ebisuzaki, Dušan Jović, et al. 2006. "North American Regional Reanalysis." Bulletin of the American Meteorological Society 87 (3): 343–60. https://doi.org/10.1175/BAMS-87-3-343.
- Michaelsen, Joel. 1987. "Cross-Validation in Statistical Climate Forecast Models." Journal of Climate and Applied Meteorology 26: 1589–1600.
- Michaelsen, Joel, H. A. Loaiciga, L. Haston, and S. Garver. 1990. "Estimating Drought Probabilities in California Using Tree Rings. California Department of Water Resources Report B- 57105."

 University of California, Santa Barbara CA.
- Miller, Matthew P., Susan G. Buto, David D. Susong, and Christine A. Rumsey. 2016. "The Importance of Base Flow in Sustaining Surface Water Flow in the Upper Colorado River Basin." Water Resources Research 52 (5): 3547–62. https://doi.org/10.1002/2015WR017963.
- Miller, W. Paul, R. Alan Butler, Thomas Piechota, James Prairie, Katrina Grantz, and Gina DeRosa. 2012. "Water Management Decisions Using Multiple Hydrologic Models within the San Juan River Basin under Changing Climate Conditions." Journal of Water Resources Planning and Management 138 (5): 412–20. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000237.
- Miller, W. Paul, Gina M. DeRosa, Subhrendu Gangopadhyay, and Juan B. Valdés. 2013. "Predicting Regime Shifts in Flow of the Gunnison River under Changing Climate Conditions: Regime Shifts Over the Gunnison River Basin." Water Resources Research 49 (5): 2966–74. https://doi.org/10.1002/wrcr.20215.
- Miller, W. Paul, Thomas Piechota, Subhrendu Gangopadhyay, and Tom Pruitt. 2011. "Development of Streamflow Projections Under Changing Climate Conditions Over Colorado River Basin Headwaters." Hydrol. Earth Syst. Sci., 21.
- Milly, P. C. D., Julio Betancourt, Malin Falkenmark, Robert M. Hirsch, Zbigniew W. Kundzewicz, Dennis P. Lettenmaier, and Ronald J. Stouffer. 2008. "Stationarity Is Dead: Whither Water Management?" Science 319 (5863): 573–74. https://doi.org/10.1126/science.1151915.

- Milly, P. C. D., Julio Betancourt, Malin Falkenmark, Robert M. Hirsch, Zbigniew W. Kundzewicz, Dennis P. Lettenmaier, Ronald J. Stouffer, Michael D. Dettinger, and Valentina Krysanova. 2015. "On Critiques of 'Stationarity Is Dead: Whither Water Management?'" Water Resources Research 51 (9): 7785–89. https://doi.org/10.1002/2015WR017408.
- Milly, P. C. D., and K. A. Dunne. 2020. "Colorado River Flow Dwindles as Warming-Driven Loss of Reflective Snow Energizes Evaporation." Science, February. https://doi.org/10.1126/science.aay9187.
- Milly, P. C. D., K. A. Dunne, and A. V. Vecchia. 2005. "Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate." Nature 438 (7066): 347–50. https://doi.org/10.1038/nature04312.
- Mitchell, Kenneth E. 2004. "The Multi-Institution North American Land Data Assimilation System (NLDAS): Utilizing Multiple GCIP Products and Partners in a Continental Distributed Hydrological Modeling System." Journal of Geophysical Research 109 (D7). https://doi.org/10.1029/2003JD003823.
- Mizukami, Naoki, Martyn P. Clark, Ethan D. Gutmann, Pablo A. Mendoza, Andrew J. Newman, Bart Nijssen, Ben Livneh, Lauren E. Hay, Jeffrey R. Arnold, and Levi D. Brekke. 2016. "Implications of the Methodological Choices for Hydrologic Portrayals of Climate Change over the Contiguous United States: Statistically Downscaled Forcing Data and Hydrologic Models." Journal of Hydrometeorology 17 (1): 73–98. https://doi.org/10.1175/JHM-D-14-0187.1.
- Mizukami, Naoki, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Ethan D. Gutmann, Bart Nijssen, Oldrich Rakovec, and Luis Samaniego. 2017. "Towards Seamless Large-Domain Parameter Estimation for Hydrologic Models." Water Resources Research 53 (9): 8020–40. https://doi.org/10.1002/2017WR020401.
- Mizukami, Naoki, Martyn P. Clark, K. Sampson, B. Nijssen, Yixin Mao, Hilary McMillan, R. J. Viger, et al. 2016. "MizuRoute Version 1: A River Network Routing Tool for a Continental Domain Water Resources Applications." Geoscientific Model Development 9 (6): 2223–38.
- Mo, Kingtse C. 2003. "Ensemble Canonical Correlation Prediction of Surface Temperature over the United States." Journal of Climate 16 (11): 1665–83. https://doi.org/10.1175/1520-0442(2003)016<1665:ECCPOS>2.0.CO;2.
- Mo, Kingtse C., and Dennis P. Lettenmaier. 2014. "Hydrologic Prediction over the Conterminous United States Using the National Multi-Model Ensemble." Journal of Hydrometeorology 15 (4): 1457–72. https://doi.org/10.1175/JHM-D-13-0197.1.
- Mo, Kingtse C., Jae-Kyung E. Schemm, and Soo-Hyun Yoo. 2009. "Influence of ENSO and the Atlantic Multidecadal Oscillation on Drought over the United States." Journal of Climate 22 (22): 5962–82. https://doi.org/10.1175/2009JCLI2966.1.
- Monteith, J. L. 1965. "Evaporation and Environment." Symposia of the Society for Experimental Biology 19: 205–34.
- Moradkhani, Hamid, and Matthew Meier. 2010. "Long-Lead Water Supply Forecast Using Large-Scale Climate Predictors and Independent Component Analysis." Journal of Hydrologic Engineering 15 (10): 744–62. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000246.
- Moreo, Michael T., and Amy Swancar. 2013. "Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012." Scientific Investigations Report 2013–5229. Scientific Investigations Report. U.S. Geological Survey. https://pubs.usgs.gov/sir/2013/5229/.
- Mote, Philip W., Levi Brekke, Philip B. Duffy, and Ed Maurer. 2011. "Guidelines for Constructing Climate Scenarios." Eos, Transactions American Geophysical Union 92 (31): 257–58. https://doi.org/10.1029/2011EO310001.
- Mote, Philip W., Alan F. Hamlet, Martyn P. Clark, and Dennis P. Lettenmaier. 2005. "Declining Mountain Snowpack in Western North America." Bulletin of the American Meteorological Society 86 (1): 39–50. https://doi.org/10.1175/BAMS-86-1-39.

- Mote, Philip W., Sihan Li, Dennis P. Lettenmaier, Mu Xiao, and Ruth Engel. 2018. "Dramatic Declines in Snowpack in the Western US." Npj Climate and Atmospheric Science 1 (1). https://doi.org/10.1038/s41612-018-0012-1.
- Mundhenk, Bryan D., Elizabeth A. Barnes, Eric D. Maloney, and Cory F. Baggett. 2018. "Skillful Empirical Subseasonal Prediction of Landfalling Atmospheric River Activity Using the Madden–Julian Oscillation and Quasi-Biennial Oscillation." Npj Climate and Atmospheric Science 1 (1): 20177. https://doi.org/10.1038/s41612-017-0008-2.
- Munson, Seth M., Jayne Belnap, and Gregory S. Okin. 2011. "Responses of Wind Erosion to Climate-Induced Vegetation Changes on the Colorado Plateau." Proceedings of the National Academy of Sciences 108 (10): 3854–59. https://doi.org/10.1073/pnas.1014947108.
- Naghettini, Mauro. 2016. Fundamentals of Statistical Hydrology. New York, NY: Springer Science+Business Media. https://doi-org.colorado.idm.oclc.org/10.1007/978-3-319-43561-9.
- Najafi, Mohammad Reza, and Hamid Moradkhani. 2015. "Ensemble Combination of Seasonal Streamflow Forecasts." Journal of Hydrologic Engineering 21 (1): 04015043. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001250.
- NASA. 2019. "Rising to New Challenges for California's Snow Forecasting Program."
- Nash, Linda L., and Peter H. Gleick. 1991. "Sensitivity of Streamflow in the Colorado Basin to Climatic Changes." Journal of Hydrology 125 (3–4): 221–41. https://doi.org/10.1016/0022-1694(91)90030-L.
- Nathanson, Milton. 1978. "Updating the Hoover Dam Documents, 1978." Reclamation. http://www.riversimulator.org/Resources/LawOfTheRiver/HooverDamDocs/UpdatingHoover1978.pdf.
- National Academies, Board on Atmospheric Sciences and Climate, Ocean Studies Board, Division on Earth and Life Studies, and National Academies of Sciences, Engineering, and Medicine. 2016. Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. Washington, D.C.: National Academies Press. https://doi.org/10.17226/21873.
- National Interagency Fire Center. n.d. "Remote Automatic Weather Stations (RAWS)." Remote Automatic Weather Stations. https://raws.nifc.gov/.
- National Oceanic and Atmospheric Administration. 2019. "Cooperative Observer Network." Cooperative Observer Network. 2019. https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/cooperative-observer-network-coop.
- n.d. "Automated Surface Observing System (ASOS)." Automated Surface Observing System. https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-surface-observing-system-asos.
- n.d. "Automated Weather Observing System (AWOS)." Automated Weather Observing System. https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/automated-weather-observing-system-awos.
- National Research Council. 2003. Critical Issues in Weather Modification Research. Washington, D.C.: National Academies Press. https://doi.org/10.17226/10829.
- ——. 2004. Assessing the National Streamflow Information Program. https://doi.org/10.17226/10967.
- ———. 2007. Colorado River Basin Water Management: Evaluating and Adjusting to Hydroclimatic Variability. Washington, D.C.: National Academies Press. https://doi.org/10.17226/11857.
- National Weather Service. n.d. "Automated Surface Observing Systems." ASOS National Program Automated Surface Observing Systems. https://www.weather.gov/asos/asostech.
- ——. n.d. "Cooperative Observer Program (COOP)." Cooperative Observer Program. https://www.weather.gov/coop/overview.

- National Wildfire Coordinating Group. 2014. "Interagency Wildland Fire Weather Station Standards & Guidelines," 50.
- Natural Resource Conservation Service. n.d. "Automated Soil Climate Monitoring." Automated Soil Climate Monitoring. https://www.wcc.nrcs.usda.gov/about/mon_scan.html.
- ——. n.d. "Snow Telemetry (SNOTEL) and Snow Course Data and Products." Snow Telemetry and Snow Course Data and Products. https://www.wcc.nrcs.usda.gov/snow/.
- NCAR, Weather Modification Incorporated, University of Wyoming, Heritage Environmental Consultants, Desert Research Institute (DRI), and University of Alabama. 2014. "The Wyoming Weather Modification Project Pilot Program: Level II Study. Draft Executive Summary." Wyoming Water Development Commission.

 http://wwdc.state.wy.us/weathermod/WYWeatherModPilotProgramExecSummary.html.
- Nearing, Grey S., Benjamin L. Ruddell, Martyn P. Clark, Bart Nijssen, and Christa Peters-Lidard. 2018. "Benchmarking and Process Diagnostics of Land Models." Journal of Hydrometeorology 19 (11): 1835–52. https://doi.org/10.1175/JHM-D-17-0209.1.
- Neff, J. C., A. P. Ballantyne, G. L. Farmer, N. M. Mahowald, J. L. Conroy, C. C. Landry, J. T. Overpeck, T. H. Painter, C. R. Lawrence, and R. L. Reynolds. 2008. "Increasing Eolian Dust Deposition in the Western United States Linked to Human Activity." Nature Geoscience 1 (3): 189–95. https://doi.org/10.1038/ngeo133.
- Newman, Andrew J., Martyn P. Clark, Jason Craig, Bart Nijssen, Andrew W. Wood, Ethan D. Gutmann, Naoki Mizukami, Levi Brekke, and Jeff R. Arnold. 2015. "Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States." Journal of Hydrometeorology 16 (6): 2481–2500. https://doi.org/10.1175/JHM-D-15-0026.1.
- Newman, Andrew J., Martyn P. Clark, Ryan J. Longman, and Thomas W. Giambelluca. 2019. "Methodological Intercomparisons of Station-Based Gridded Meteorological Products: Utility, Limitations, and Paths Forward." Journal of Hydrometeorology 20 (3): 531–47. https://doi.org/10.1175/JHM-D-18-0114.1.
- Newman, Matthew, Michael A. Alexander, Toby R. Ault, Kim M. Cobb, Clara Deser, Emanuele Di Lorenzo, Nathan J. Mantua, et al. 2016. "The Pacific Decadal Oscillation, Revisited." Journal of Climate 29 (12): 4399–4427. https://doi.org/10.1175/JCLI-D-15-0508.1.
- Newman, Matthew, Gilbert P. Compo, and Michael A. Alexander. 2003. "ENSO-Forced Variability of the Pacific Decadal Oscillation." Journal of Climate 16 (23): 3853–57. https://doi.org/10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2.
- Niu, Guo-Yue, Zong-Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, et al. 2011. "The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-Scale Measurements." Journal of Geophysical Research: Atmospheres 116 (D12). https://doi.org/10.1029/2010JD015139.
- NOAA Earth System Research Laboratory. n.d. "Livneh Daily CONUS Near-Surface Gridded Meteorological and Derived Hydrometeorological Data." Livneh Daily CONUS Near-Surface Gridded Meteorological and Derived Hydrometeorological Data. https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html.
- NOAA National Centers for Environmental Information. n.d. "U.S. Climate Reference Network." Accessed November 17, 2019. https://www.ncdc.noaa.gov/crn/.
- NOAA National Environmental, Satellite, Data, and Information Service. 2007. "United States Climate Reference Network Functional Requirements Document." US Department of Commerce. NOAA-CRN/OSD-2003-0009R1UD0.
- Nowak, Kenneth, Martin P. Hoerling, Balaji Rajagopalan, and Edith Zagona. 2012. "Colorado River Basin Hydroclimatic Variability." Journal of Climate 25 (12): 4389–4403. https://doi.org/10.1175/JCLI-D-11-00406.1.

- Nowak, Kenneth, James Prairie, Balaji Rajagopalan, and Upmanu Lall. 2010. "A Nonparametric Stochastic Approach for Multisite Disaggregation of Annual to Daily Streamflow." Water Resources Research 46 (8). https://doi.org/10.1029/2009WR008530.
- NRCS. n.d. "NRCS (Natural Resources Conservation Service) Interactive Map 4.0." Accessed June 21, 2019. https://www.wcc.nrcs.usda.gov/webmap_beta/index.html.
- Oaida, Catalina M., John T. Reager, Konstantinos M. Andreadis, Cédric H. David, Steve R. Levoe, Thomas H. Painter, Kat J. Bormann, Amy R. Trangsrud, Manuela Girotto, and James S. Famiglietti. 2019. "A High-Resolution Data Assimilation Framework for Snow Water Equivalent Estimation across the Western United States and Validation with the Airborne Snow Observatory." Journal of Hydrometeorology 20 (3): 357–78. https://doi.org/10.1175/JHM-D-18-0009.1.
- Okumura, Yuko M., Pedro DiNezio, and Clara Deser. 2017. "Evolving Impacts of Multiyear La Niña Events on Atmospheric Circulation and U.S. Drought." Geophysical Research Letters 44 (22): 11,614-11,623. https://doi.org/10.1002/2017GL075034.
- O'Lenic, Edward A., David A. Unger, Michael S. Halpert, and Kenneth S. Pelman. 2008. "Developments in Operational Long-Range Climate Prediction at CPC." Weather and Forecasting 23 (3): 496–515. https://doi.org/10.1175/2007WAF2007042.1.
- O'Neill, Brian C., Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George Hurtt, Reto Knutti, et al. 2016. "The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6." Geoscientific Model Development 9 (9): 3461–82. https://doi.org/10.5194/gmd-9-3461-2016.
- Ostler, Don A. 2017. "Sixty-Ninth Annual Report of the Upper Colorado River Commission." Annual report 69. Salt Lake City, UT: Upper Colorado River Commission. http://www.ucrcommission.com/RepDoc/UCRCAnnualReports/69_UCRC_Annual_Report.pdf.
- Ouarda, Taha B. M. J., John W. Labadie, and Darrell G. Fontane. 1997. "Indexed Sequential Hydrologic Modeling for Hyropower Capacity Estimation." Journal of the American Water Resources Association 33 (6): 1337–49. https://doi.org/10.1111/j.1752-1688.1997.tb03557.x.
- Oyler, Jared W. n.d. "TopoWx." ScriMHub. http://www.scrimhub.org/resources/topowx/.
- Oyler, Jared W., Ashley Ballantyne, Kelsey Jencso, Michael Sweet, and Steven W. Running. 2015. "Creating a Topoclimatic Daily Air Temperature Dataset for the Conterminous United States Using Homogenized Station Data and Remotely Sensed Land Skin Temperature." International Journal of Climatology 35 (9): 2258–79. https://doi.org/10.1002/joc.4127.
- Oyler, Jared W., Solomon Z. Dobrowski, Ashley P. Ballantyne, Anna E. Klene, and Steven W. Running. 2015. "Artificial Amplification of Warming Trends across the Mountains of the Western United States." Geophysical Research Letters 42 (1): 153–61. https://doi.org/10.1002/2014GL062803.
- Oyler, Jared W., Solomon Z. Dobrowski, Zachary A. Holden, and Steven W. Running. 2016. "Remotely Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the Conterminous United States." Journal of Applied Meteorology and Climatology 55 (7): 1441–57. https://doi.org/10.1175/JAMC-D-15-0276.1.
- Ozdogan, Mutlu, Yang Yang, George Allez, and Chelsea Cervantes. 2010. "Remote Sensing of Irrigated Agriculture: Opportunities and Challenges." Remote Sensing 2 (9): 2274–2304. https://doi.org/10.3390/rs2092274.
- Pagano, Thomas C., and David C. Garen. 2005. "A Recent Increase in Western U.S. Streamflow Variability and Persistence." Journal of Hydrometeorology 6 (2): 173–79. https://doi.org/10.1175/JHM410.1.
- Pagano, Thomas C., David C. Garen, Tom R. Perkins, and Phillip A. Pasteris. 2009. "Daily Updating of Operational Statistical Seasonal Water Supply Forecasts for the Western U.S.1." JAWRA Journal of the American Water Resources Association 45 (3): 767–78. https://doi.org/10.1111/j.1752-1688.2009.00321.x.

- Pagano, Thomas C., David Garen, and Soroosh Sorooshian. 2004. "Evaluation of Official Western U.S. Seasonal Water Supply Outlooks, 1922–2002." Journal of Hydrometeorology 5: 14.
- Pagano, Thomas C., Andrew W. Wood, Kevin Werner, and Rashawn Tama-Sweet. 2014. "Western U.S. Water Supply Forecasting: A Tradition Evolves." Eos, Transactions American Geophysical Union 95 (3): 28–29. https://doi.org/10.1002/2014EO030007.
- Painter, Thomas H., Andrew P. Barrett, Christopher C. Landry, Jason C. Neff, Maureen P. Cassidy, Corey R. Lawrence, Kathleen E. McBride, and G. Lang Farmer. 2007. "Impact of Disturbed Desert Soils on Duration of Mountain Snow Cover." Geophysical Research Letters 34 (12). https://doi.org/10.1029/2007GL030284.
- Painter, Thomas H., Daniel F. Berisford, Joseph W. Boardman, Kathryn J. Bormann, Jeffrey S. Deems, Frank Gehrke, Andrew Hedrick, et al. 2016. "The Airborne Snow Observatory: Fusion of Scanning Lidar, Imaging Spectrometer, and Physically-Based Modeling for Mapping Snow Water Equivalent and Snow Albedo." Remote Sensing of Environment 184 (October): 139–52. https://doi.org/10.1016/j.rse.2016.06.018.
- Painter, Thomas H., Ann C. Bryant, and S. McKenzie Skiles. 2012. "Radiative Forcing of Dust in Mountain Snow from MODIS Surface Reflectance Data." Geophysical Research Letters 39 (L17502).
- Painter, Thomas H., Jeffrey S. Deems, Jayne Belnap, Alan F. Hamlet, Christopher C. Landry, and Bradley Udall. 2010. "Response of Colorado River Runoff to Dust Radiative Forcing in Snow." Proceedings of the National Academy of Sciences 107 (40): 17125–30. https://doi.org/10.1073/pnas.0913139107.
- Painter, Thomas H., Karl Rittger, Ceretha McKenzie, Peter Slaughter, Robert E. Davis, and Jeff Dozier. 2009. "Retrieval of Subpixel Snow Covered Area, Grain Size, and Albedo from MODIS." Remote Sensing of Environment 113 (4): 868–79. https://doi.org/10.1016/j.rse.2009.01.001.
- Painter, Thomas H., S. McKenzie Skiles, Jeffrey S. Deems, W. Tyler Brandt, and Jeff Dozier. 2018. "Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow." Geophysical Research Letters 45 (2): 797–808. https://doi.org/10.1002/2017GL075826.
- Painter, Thomas H., S. McKenzie Skiles, Jeffrey S. Deems, Ann C. Bryant, and Christopher C. Landry. 2012. "Dust Radiative Forcing in Snow of the Upper Colorado River Basin: 1. A 6 Year Record of Energy Balance, Radiation, and Dust Concentrations." Water Resources Research 48 (7). https://doi.org/10.1029/2012WR011985.
- Panofsky, Hans A., and G. Brier. 1968. Some Applications of Statistics to Meteorology. Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences.
- Pederson, Gregory T., Julio L. Betancourt, and Gregory J. McCabe. 2013. "Regional Patterns and Proximal Causes of the Recent Snowpack Decline in the Rocky Mountains, U.S." Geophysical Research Letters 40 (9): 1811–16. https://doi.org/10.1002/grl.50424.
- Pederson, Gregory T., Stephen T. Gray, Connie A. Woodhouse, Julio L. Betancourt, Daniel B. Fagre, Jeremy S. Littell, Emma Watson, Brian H. Luckman, and Lisa J. Graumlich. 2011. "The Unusual Nature of Recent Snowpack Declines in the North American Cordillera." Science 333 (6040): 332–35. https://doi.org/10.1126/science.1201570.
- Pegion, Kathy, Ben P. Kirtman, Emily Becker, Dan C. Collins, Emerson LaJoie, Robert Burgman, Ray Bell, et al. 2019. "The Subseasonal Experiment (SubX): A Multi-Model Subseasonal Prediction Experiment." Bulletin of the American Meteorological Society, July, BAMS-D-18-0270.1. https://doi.org/10.1175/BAMS-D-18-0270.1.
- Pendergrass, Angeline G., Reto Knutti, Flavio Lehner, Clara Deser, and Benjamin M. Sanderson. 2017. "Precipitation Variability Increases in a Warmer Climate." Scientific Reports 7 (1). https://doi.org/10.1038/s41598-017-17966-y.
- Penman, H. L. 1948. "Natural Evaporation from Open Water, Bare Soil and Grass." Proceedings of the Royal Society A 193 (1032). https://doi.org/10.1098/rspa.1948.0037.

- Peterson, Thomas C., David R. Easterling, Thomas R. Karl, Pavel Groisman, Neville Nicholls, Neil Plummer, Simon Torok, et al. 1998. "Homogeneity Adjustments of in Situ Atmospheric Climate Data: A Review." International Journal of Climatology 18 (13): 1493–1517. https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.
- Peterson, Thomas C., Russell Vose, Richard Schmoyer, and Vyachevslav Razuvaëv. 1998. "Global Historical Climatology Network (GHCN) Quality Control of Monthly Temperature Data." International Journal of Climatology 18 (11): 1169–79. https://doi.org/10.1002/(SICI)1097-0088(199809)18:11<1169::AID-JOC309>3.0.CO;2-U.
- Phillips, Morgan. 2013. "Estimates of Sublimation in the Upper Colorado River Basin." Master's, Colorado State University.
- Piechota, Thomas C., Francis H. S. Chiew, John A. Dracup, and Thomas A. McMahon. 1998. "Seasonal Streamflow Forecasting in Eastern Australia and the El Niño–Southern Oscillation." Water Resources Research 34 (11): 3035–44. https://doi.org/10.1029/98WR02406.
- Pierce, David W., Tim P. Barnett, Hugo G. Hidalgo, Tapash Das, Céline Bonfils, Benjamin D. Santer, Govindasamy Bala, et al. 2008. "Attribution of Declining Western U.S. Snowpack to Human Effects." Journal of Climate 21 (23): 6425–44. https://doi.org/10.1175/2008JCLI2405.1.
- Pierce, David W., Tim P. Barnett, B. D. Santer, and P. J. Gleckler. 2009. "Selecting Global Climate Models for Regional Climate Change Studies." Proceedings of the National Academy of Sciences 106 (21): 8441–46. https://doi.org/10.1073/pnas.0900094106.
- Pierce, David W., Daniel R. Cayan, Edwin P. Maurer, John T. Abatzoglou, and Katherine C. Hegewisch. 2015. "Improved Bias Correction Techniques for Hydrological Simulations of Climate Change." Journal of Hydrometeorology 16 (6): 2421–42. https://doi.org/10.1175/JHM-D-14-0236.1.
- Pierce, David W., Daniel R. Cayan, and Bridget L. Thrasher. 2014. "Statistical Downscaling Using Localized Constructed Analogs (LOCA)." Journal of Hydrometeorology 15 (6): 2558–85. https://doi.org/10.1175/JHM-D-14-0082.1.
- Pierce, David W., Julie F. Kalansky, and Daniel R. Cayan. 2018. "Climate, Drought, and Sea Level Scenarios for California's Fourth Climate Change Assessment."
- "Plans & Reports | Upper Colorado Region | Bureau of Reclamation." n.d. Accessed December 12, 2019. https://www.usbr.gov/uc/envdocs/plans.html#CCULR.
- Powell, Anthony. 2015. "Utilizing Probabilistic Forecasts for Colorado River Reservoir Operations Using a Mid-Term Probabilistic Operations Model for Decision Making and Risk Management." In Reno, NV, 11. Reno, NV: Advisory Committee on Water Information.
- Powell Consortium. 1995. "Severe Sustained Drought, Managing the Colorado River System in Time of Water Shortage."
- Prairie, James, and Russell Callejo. 2005. "Natural Flow and Salt Computation Methods, Calendar Years 1971-1995." US Bureau of Reclamation.
- Prairie, James, Kenneth Nowak, Balaji Rajagopalan, Upmanu Lall, and Terrance Fulp. 2008. "A Stochastic Nonparametric Approach for Streamflow Generation Combining Observational and Paleoreconstructed Data: An Approach for Streamflow Generation." Water Resources Research 44 (6). https://doi.org/10.1029/2007WR006684.
- Prairie, James, Balaji Rajagopalan, Terry J. Fulp, and Edith A. Zagona. 2006. "Modified K-NN Model for Stochastic Streamflow Simulation." Journal of Hydrologic Engineering 11 (4): 371–78. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(371).
- Prairie, James, Balaji Rajagopalan, Upmanu Lall, and Terrance Fulp. 2007. "A Stochastic Nonparametric Technique for Space-Time Disaggregation of Streamflows." Water Resources Research 43 (3). https://doi.org/10.1029/2005WR004721.

- Prein, Andreas F., Wolfgang Langhans, Giorgia Fosser, Andrew Ferrone, Nikolina Ban, Klaus Goergen, Michael Keller, et al. 2015. "A Review on Regional Convection-permitting Climate Modeling: Demonstrations, Prospects, and Challenges." Reviews of Geophysics 53 (2): 323–61. https://doi.org/10.1002/2014RG000475.
- PRISM. 2016. "Descriptions of PRISM Spatial Climate Datasets for the Conterminous United States." http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf.
- Quayle, Robert Q., David R. Easterling, Thomas R. Karl, and Pamela J. Hughes. 1991. "Effects of Recent Thermomenter Changes in the Cooperative Station Network." Bulletin of the American Meteorological Society 72 (11): 1718–23.
- Raff, David, Levi Brekke, Kevin Werner, Andy Wood, and Kathleen White. 2013. "Short-Term Water Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information." Technical report CWTS 2013-1. U.S. Army Corps of Engineers. https://www.usbr.gov/research/st/roadmaps/WaterSupply.pdf.
- Rajagopalan, Balaji, Kenneth Nowak, James Prairie, Martin Hoerling, Benjamin Harding, Joseph Barsugli, Andrea Ray, and Bradley Udall. 2009. "Water Supply Risk on the Colorado River: Can Management Mitigate?" Water Resources Research 45 (8). https://doi.org/10.1029/2008WR007652.
- Ralph, F. Martin, Jonathan J. Rutz, Jason M. Cordeira, Michael Dettinger, Michael Anderson, David Reynolds, Lawrence J. Schick, and Chris Smallcomb. 2019. "A Scale to Characterize the Strength and Impacts of Atmospheric Rivers." Bulletin of the American Meteorological Society 100 (2): 269–89. https://doi.org/10.1175/BAMS-D-18-0023.1.
- Rangwala, Imtiaz, Tim Bardsley, Marcus Pescinski, and Jim Miller. 2015. "SNOTEL Sensor Upgrade Has Caused Temperature Record Inhomogeneities for the Intermountain West: Implications for Climate Change Impact Assessments." Research Briefing. University of Colorado Boulder: Western Water Assessement.
- Rangwala, Imtiaz, and James R. Miller. 2010. "Twentieth Century Temperature Trends in Colorado's San Juan Mountains." Arctic, Antarctic, and Alpine Research 42 (1): 89–97. https://doi.org/10.1657/1938-4246-42.1.89.
- Rangwala, Imtiaz, Lesley L. Smith, Gabriel Senay, Joseph J. Barsugli, Stefanie Kagone, and Michael T. Hobbins. 2019. "Landscape Evaporative Response Index (LERI): A High Resolution Monitoring and Assessment of Evapotranspiration across the Contiguous United States." National and Regional Climate Adaptation Science Centers. https://doi.org/10.21429/43r4-3q68.
- "Rapid Refresh (RAP)." n.d. Accessed December 11, 2019. https://rapidrefresh.noaa.gov/.
- Rasmussen, Roy, Bruce Baker, John Kochendorfer, Tilden Meyers, Scott Landolt, Alexandre P. Fischer, Jenny Black, et al. 2012. "How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter Precipitation Test Bed." Bulletin of the American Meteorological Society 93 (6): 811–29. https://doi.org/10.1175/BAMS-D-11-00052.1.
- Rasmussen, Roy, Kyoko Ikeda, Changhai Liu, David Gochis, Martyn P. Clark, Aiguo Dai, Ethan D. Gutmann, et al. 2014. "Climate Change Impacts on the Water Balance of the Colorado Headwaters: High-Resolution Regional Climate Model Simulations." Journal of Hydrometeorology 15 (3): 1091–1116. https://doi.org/10.1175/JHM-D-13-0118.1.
- Rasmussen, Roy, Changhai Liu, Kyoko Ikeda, David Gochis, David Yates, Fei Chen, Mukul Tewari, et al. 2011. "High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over Colorado: A Process Study of Current and Warmer Climate." Journal of Climate 24 (12): 3015–48. https://doi.org/10.1175/2010JCLI3985.1.

- Rasmussen, Roy, Sarah Tessendorf, Lulin Xue, Courtney Weeks, Kyoko Ikeda, Scott Landolt, Dan Breed, Terry Deshler, and Barry Lawrence. 2018. "Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) Using Two Approaches: Traditional Statistics and Ensemble Modeling." Journal of Applied Meteorology and Climatology 57 (11): 2639–60. https://doi.org/10.1175/JAMC-D-17-0335.1.
- Rasmusson, Eugene M., and Thomas H. Carpenter. 1982. "Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño." Monthly Weather Review 110: 354–84. https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.
- Rauber, Robert M., Bart Geerts, Lulin Xue, Jeffrey French, Katja Friedrich, Roy M. Rasmussen, Sarah A. Tessendorf, Derek R. Blestrud, Melvin L. Kunkel, and Shaun Parkinson. 2019. "Wintertime Orographic Cloud Seeding—A Review." Journal of Applied Meteorology and Climatology 58 (10): 2117–40. https://doi.org/10.1175/JAMC-D-18-0341.1.
- Ray, Andrea J., Joseph J. Barsugli, K. B. Averyt, Klaus Wolter, Martin P. Hoerling, Nolan J. Doesken, Bradley Udall, and R. S. Webb. 2008. "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation."
 - https://wwa.colorado.edu/publications/reports/WWA_ClimateChangeColoradoReport_2008.pdf.
- Reclamation. 1969. "Report of the Committee on Probabilities and Test Studies to the Task Force on Operating Criteria for the Colorado River." US Bureau of Reclamation. http://www.riversimulator.org/Resources/USBR/ProbabilitiesOnOperatingCriteriaColoradoRiverBoR1969opt.pdf.
- ——. 1983. "Colorado River Simulation System Hydrology Data Base." US Bureau of Reclamation.
 https://www.usbr.gov/lc/region/g4000/NaturalFlow/Upper%20Basin_CRSS%20Hydrology%20Data_Base_1983.pdf.

 ——. 1985. Colorado River Simulation System CRSS System Overview. Denver, Colorado.
- ———. 1986. "Lake Powell Evaporation." Salt Lake City, UT: Upper Colorado Regional Office.
- ——. 2007a. "Draft EIS Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lakes Powell and Mead, Appendix A – CRSS Model Documentation." https://www.usbr.gov/lc/region/programs/strategies/draftEIS/AppA.pdf.
- ———. 2007b. "Final EIS Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead, Appendix N Analysis of Hydrologic Variability Sensitivity." https://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html.
- ———. 2007c. "Final EIS Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead, Appendix U – Review of Science and Methods for Incorporating Climate Change Information into Reclamation's Colorado River Basin Planning Studies." https://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html#VolIII.
- ———. 2007d. "Final EIS, Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lakes Powell and Mead, Appendix C-Upper Basin States Depletion Schedules." US Bureau of Reclamation. https://www.usbr.gov/lc/region/programs/strategies/FEIS/AppC.pdf.
- ———. 2007e. "Final EIS Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead, Chapter 1-Purpose and Need." https://www.usbr.gov/lc/region/programs/strategies/FEIS/Chp1.pdf.
- ——. 2007f. "Final EIS Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead, Volume 1." https://www.usbr.gov/lc/region/programs/strategies/FEIS/Vol1Front.pdf.

——. 2010. "Colorado River Modeling Work Group Charter."

- https://www.usbr.gov/lc/region/programs/climateresearch/Charter_ModelingWorkGroup.pdf.
- ——. 2011. "West-Wide Climate Risk Assessments: Bias-Corrected and Spatially Downscaled Surface Water Projections." Technical Memorandum No. 86-68210-2011-01.

 2012a. "Colorado River Basin Water Supply and Demand Study, Appendix C11."
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20C%20-
%20Water%20Demand%20Assessment/TR-C_Appendix11_FINAL.pdf.
 2012b. "Colorado River Basin Water Supply and Demand Study, Technical Report B-Water
Supply Assessment." US Bureau of Reclamation.
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20B%20-
%20Water%20Supply%20Assessment/TR-B_Water_Supply_Assessment_FINAL.pdf.
 2012c. "Colorado River Basin Water Supply and Demand Study-Appendix B4, Variable
Infiltration Capacity (VIC) Hydrologic Modeling Methods and Simulations." US Bureau of Reclamation.
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20B%20-%20Water%20Supply%20Assessment/TR-B_Appendix4_FINAL.pdf.
 2012d. "Colorado River Basin Water Supply and Demand Study-Technical Report C." Technical report. US Bureau of Reclamation.
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20C%20-
%20Water%20Demand%20Assessment/TR-C-Water_Demand_Assessmemt_FINAL.pdf.
 2012e. "Colorado River Basin Water Supply and Demand Study." US Bureau of Reclamation.
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Study%20Report/CRBS_Study_Re
port_FINAL.pdf.
 2012f. "Colorado River Basin Water Supply and Demand Study-Technical Report G, CRSS
Modeling Assumptions."
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20G%20-
%20System%20Reliability%20Analysis%20and%20Evaluation%20of%20Options%20and%20Stat
egies/TR-G_Appendix2_FINAL_Dec2012.pdf.
 2014. "Downscaled CMIP3 and CMIP5 Hydrology Projections – Release of Hydrology
Projections, Comparison with Preceding Information and Summary of User Needs." Department
of Interior, US Bureau of Reclamation 2015a. "Colorado River Basin Mid-Term Probabilistic Operations Model (MTOM) Overview and
Description." US Bureau of Reclamation.
 2015b. "Law of the Riverl Lower Colorado Region I Bureau of Reclamation." USBR.Gov. June 30,
2015. https://www.usbr.gov/lc/region/pao/lawofrvr.html.
 2016a. "Downscaled CMIP3 and CMIP5 Climate Projections - Addendum: Release of
Downscaled CMIP5 Climate Projections (LOCA) and Comparison with Preceding Information."
Reclamation. http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/.
 2016b. "SECURE Water Act Section 9503(c)— Reclamation Climate Change and Water 2016."
US Bureau of Reclamation.
 2016c. "Colorado River Accounting and Water Use Report: Arizona, California, and Nevada
Calendar Year 2015." US Bureau of Reclamation.
https://www.usbr.gov/lc/region/g4000/4200Rpts/DecreeRpt/2015/2015.pdf.
 2018. "Colorado River Basin Ten Tribes Partnership Tribal Water Study."
https://www.usbr.gov/lc/region/programs/crbstudy/tws/finalreport.html.
2019a. "AgriMet." Agrimet. 2019. https://www.usbr.gov/pn/agrimet/proginfo.html.
2019b. "Draft -Binational Task 4, Evaluation of Reclamation's 24-Month Study."
 2019c. "Colorado River Basin Drought Contingency Plans-Final Documents." November 2019.
https://www.usbr.gov/dcp/finaldocs.html.
 2019d. "Colorado River Basin Natural Flow and Salt Data." April 1, 2019.
https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html.
 2020. "Exploring Climate and Hydrology Projections from the CMIP5 Archive." US Bureau of
Reclamation.

- Reclamation, and Colorado Basin River Forecast Center. in preparation. "Draft Forecast and Reservoir Operation Modeling Uncertainty Scoping (FROMUS) Report."
- Redmond, Kelly T. 2003. "Climate Variability in the West: Complex Spatial Structure Associated with Topography, and Observational Issues." In Water and Climate in the Western United States, 29–48. University of Colorado Press.
- Redmond, Kelly T., and Roy W. Koch. 1991. "Surface Climate and Streamflow Variability in the Western United States and Their Relationship to Large-Scale Circulation Indices." Water Resources Research 27 (9): 2381–99. https://doi.org/10.1029/91WR00690.
- Reges, Henry W., Nolan Doesken, Julian Turner, Noah Newman, Antony Bergantino, and Zach Schwalbe. 2016. "CoCoRaHS: The Evolution and Accomplishments of a Volunteer Rain Gauge Network." Bulletin of the American Meteorological Society 97 (10): 1831–46. https://doi.org/10.1175/BAMS-D-14-00213.1.
- Reggiani, Paolo, Murugesu Sivapalan, and S. Majid Hassanizadeh. 1998. "A Unifying Framework for Watershed Thermodynamics: Balance Equations for Mass, Momentum, Energy and Entropy, and the Second Law of Thermodynamics." Advances in Water Resources 22 (4): 367–98. https://doi.org/10.1016/S0309-1708(98)00012-8.
- Regonda, Satish Kumar, Balaji Rajagopalan, Martyn P. Clark, and John Pitlick. 2005. "Seasonal Cycle Shifts in Hydroclimatology over the Western United States." Journal of Climate 18 (2): 372–84. https://doi.org/10.1175/JCLI-3272.1.
- Revelle, R. R., and P. E. Waggoner. 1983. "Effects of a Carbon Dioxide-Induced Climatic Change on Water Supplies in the Western United States." Report of the Carbon Dioxide Assessment Committee. Washington, D.C.: National Academy of Sciences, National Academy Press.
- Reynolds, David. 2015. "Literature Review and Scientific Synthesis on the Efficacy of Winter Orographic Cloud Seeding A Report to the Bureau of Reclamation." CIRES. https://wcr.colorado.edu/sites/default/files/project/files/Literature%20Review%20and%20Scientific%20Synthesis%20on%20the%20Efficacy%20of%20Winter%20Orographic%20Cloud%20Seeding_BOR_June%2010%202015_with%20Exec%20Summary_0.pdf.
- Rice, Jennifer L., Connie A. Woodhouse, and Jeffrey J. Lukas. 2009. "Science and Decision Making: Water Management and Tree-Ring Data in the Western United States." JAWRA Journal of the American Water Resources Association 45 (5): 1248–59. https://doi.org/10.1111/j.1752-1688.2009.00358.x.
- Ritchie, Justin, and Hadi Dowlatabadi. 2017. "Why Do Climate Change Scenarios Return to Coal?" Energy 140 (December): 1276–91. https://doi.org/10.1016/j.energy.2017.08.083.
- Robertson, Andrew W., and Frédéric Vitart. 2019. Sub-Seasonal to Seasonal Prediction. Elsevier.
- Robertson, D. E., P. Pokhrel, and Q. J. Wang. 2013. "Improving Statistical Forecasts of Seasonal Streamflows Using Hydrological Model Output." Hydrology and Earth System Sciences 17 (2): 579–93. https://doi.org/10.5194/hess-17-579-2013.
- Ropelewski, Chester F., and Michael S. Halpert. 1987. "Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation (ENSO)." Monthly Weather Review 115: 1606–26. https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.
- ———. 1989. "Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation." Journal of Climate 2: 268–84. https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.
- Rosenberg, Eric A., E. A. Clark, A. C. Steinemann, and Dennis P. Lettenmaier. 2013. "On the Contribution of Groundwater Storage to Interannual Streamflow Anomalies in the Colorado River Basin." Hydrology and Earth System Sciences 17 (4): 1475–91. https://doi.org/10.5194/hess-17-1475-2013.

- Rosenberg, Eric A., Andrew W. Wood, and Anne C. Steinemann. 2011. "Statistical Applications of Physically Based Hydrologic Models to Seasonal Streamflow Forecasts." Water Resources Research 47 (3). https://doi.org/10.1029/2010WR010101.
- ———. 2013. "Informing Hydrometric Network Design for Statistical Seasonal Streamflow Forecasts." Journal of Hydrometeorology 14 (5): 1587–1604. https://doi.org/10.1175/JHM-D-12-0136.1.
- Rumsey, Christine A., Matthew P. Miller, David D. Susong, Fred D. Tillman, and David W. Anning. 2015. "Regional Scale Estimates of Baseflow and Factors Influencing Baseflow in the Upper Colorado River Basin." Journal of Hydrology: Regional Studies 4 (September): 91–107. https://doi.org/10.1016/j.ejrh.2015.04.008.
- Running, Steven, and Peter Thornton. 1996. "Generating Daily Surfaces of Temperature and Precipitation over Complex Topography." In GIS and Environmental Modeling: Progress and Research Issues., 93–98. https://scholarworks.umt.edu/ntsg_pubs/60.
- Rupp, David E., John T. Abatzoglou, Katherine C. Hegewisch, and Philip W. Mote. 2013. "Evaluation of CMIP5 20th Century Climate Simulations for the Pacific Northwest USA." Journal of Geophysical Research: Atmospheres 118 (19): 10,884-10,906. https://doi.org/10.1002/jgrd.50843.
- Rupp, David E., John T. Abatzoglou, and Philip W. Mote. 2017. "Projections of 21st Century Climate of the Columbia River Basin." Climate Dynamics 49 (5–6): 1783–99. https://doi.org/10.1007/s00382-016-3418-7.
- Saha, Suranjana, Shrinivas Moorthi, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, David Behringer, et al. 2014. "The NCEP Climate Forecast System Version 2." Journal of Climate 27 (6): 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1.
- Salas, Jose D., J. W. Delleur, V. Yevjevich, and W. L. Lane. 1980. Applied Modeling of Hydrologic Time Series. Littleton, Colorado: Water Resources Publications.
- Salas, Jose D. 1992. "Analysis and Modeling of Hydrologic Time Series." In Handbook of Hydrology, David R. Maidment, Editor in Chief. McGraw-Hill, Inc.
- Salas, Jose D., Donald Frevert, Jeffrey Rieker, David King, Steffen Meyer, William Lane, and Edith Zagona. 2001. "New Developments on the SAMS Stochastic Hydrology Package." In Bridging the Gap, 1–6. The Rosen Plaza Hotel, Orlando, Florida, United States: American Society of Civil Engineers. https://doi.org/10.1061/40569(2001)143.
- Samaniego, Luis, Rohini Kumar, and Sabine Attinger. 2010. "Multiscale Parameter Regionalization of a Grid-Based Hydrologic Model at the Mesoscale." Water Resources Research 46 (5). https://doi.org/10.1029/2008WR007327.
- Sammis, Theodore W., Junming Wang, and David R. Miller. 2011. "The Transition of the Blaney-Criddle Formula to the Penman-Monteith Equation in the Western United States," 12.
- Sanderson, Benjamin M., Michael Wehner, and Reto Knutti. 2017. "Skill and Independence Weighting for Multi-Model Assessments." Geoscientific Model Development 10 (6): 2379–95. https://doi.org/10.5194/gmd-10-2379-2017.
- Scanlon, Bridget R., Zizhan Zhang, Robert C. Reedy, Donald R. Pool, Himanshu Save, Di Long, Jianli Chen, David M. Wolock, Brian D. Conway, and Daniel Winester. 2015. "Hydrologic Implications of GRACE Satellite Data in the Colorado River Basin." Water Resources Research 51 (12): 9891–9903. https://doi.org/10.1002/2015WR018090.
- Scanlon, Bridget R., Zizhan Zhang, Himanshu Save, Alexander Y. Sun, Hannes Müller Schmied, Ludovicus P. H. van Beek, David N. Wiese, et al. 2018. "Global Models Underestimate Large Decadal Declining and Rising Water Storage Trends Relative to GRACE Satellite Data." Proceedings of the National Academy of Sciences 115 (6): E1080–89. https://doi.org/10.1073/pnas.1704665115.

- Schaake, John C., Qingyun Duan, Vazken Andréassian, Stewart Franks, Alan Hall, and George Leavesley. 2006. "The Model Parameter Estimation Experiment (MOPEX)." Journal of Hydrology, The model parameter estimation experiment, 320 (1): 1–2. https://doi.org/10.1016/j.jhydrol.2005.07.054.
- Schaake, John C., Qingyun Duan, Victor Koren, Kenneth E. Mitchell, Paul R. Houser, Eric F. Wood, Alan Robock, et al. 2004. "An Intercomparison of Soil Moisture Fields in the North American Land Data Assimilation System (NLDAS)." Journal of Geophysical Research 109 (D1): D01S90. https://doi.org/10.1029/2002JD003309.
- Schaefer, Garry L., and Ron F. Paetzold. 2001. "SNOTEL (SNOwpack TELemetry) and SCAN (Soil Climate Analysis Network)." In Proc. Intl. Workshop on Automated Weather Stations for Applications in Agriculture and Water Resources Management:, 7. Lincoln, NE.
- Schlesinger, Michael E., and Navin Ramankutty. 1994. "Low-Frequency Oscillation." Nature 372 (6506): 508–9. https://doi.org/10.1038/372508a0.
- Schneider, Dominik, and Noah P. Molotch. 2016. "Real-Time Estimation of Snow Water Equivalent in the Upper Colorado River Basin Using MODIS-Based SWE Reconstructions and SNOTEL Data."

 Water Resources Research 52 (10): 7892–7910. https://doi.org/10.1002/2016WR019067.
- Schneider, Stephen H. 2002. "Can We Estimate the Likelihood of Climatic Changes at 2100?" Climatic Change 52 (4): 441–51. https://doi.org/10.1023/A:1014276210717.
- Schubert, Siegfried, David Gutzler, Hailan Wang, Aiguo Dai, Tom Delworth, Clara Deser, Kirsten Findell, et al. 2009. "A U.S. CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results." Journal of Climate 22 (19): 5251–72. https://doi.org/10.1175/2009JCLI3060.1.
- Schulman, Edmund. 1945. "Tree-Ring Hydrology of the Colorado Basin." University of Arizona Bulletin 15 (4): 51.
- ——. 1956. Dendroclimatic Changes in Semiarid America. University of Arizona Press, Tucson.
- Scott, David W. 2015. Multivariate Density Estimation: Theory, Practice, and Visualization. Somerset, UNITED STATES: John Wiley & Sons, Incorporated. http://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1895499.
- Seager, Richard, Robert Burgman, Yochanan Kushnir, Amy Clement, Ed Cook, Naomi Naik, and Jennifer Miller. 2008. "Tropical Pacific Forcing of North American Medieval Megadroughts: Testing the Concept with an Atmosphere Model Forced by Coral-Reconstructed SSTs." Journal of Climate 21 (23): 6175–90. https://doi.org/10.1175/2008JCLI2170.1.
- Seager, Richard, Naomi Naik, and Gabriel A. Vecchi. 2010. "Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming." Journal of Climate 23 (17): 4651–68. https://doi.org/10.1175/2010JCLI3655.1.
- Seager, Richard, M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H.-P. Huang, et al. 2007. "Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America." Science 316 (5828): 1181–84. https://doi.org/10.1126/science.1139601.
- Seager, Richard, Mingfang Ting, Cuihua Li, Naomi Naik, Ben Cook, Jennifer Nakamura, and Haibo Liu. 2013. "Projections of Declining Surface-Water Availability for the Southwestern United States." Nature Climate Change 3 (5): 482–86. https://doi.org/10.1038/nclimate1787.
- SEI. 2019. "WEAP (Water Evaluation and Planning)." 2019. https://www.weap21.org.
- Senay, Gabriel B., Michael Budde, James Verdin, and Assefa Melesse. 2007. "A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields." Sensors 7 (6): 979–1000. https://doi.org/10.3390/s7060979.
- Seo, Dong-Jun, Lee Cajina, Robert Corby, and Tracy Howieson. 2009. "Automatic State Updating for Operational Streamflow Forecasting via Variational Data Assimilation." Journal of Hydrology 367 (3–4): 255–75. https://doi.org/10.1016/j.jhydrol.2009.01.019.

- Seo, Dong-Jun, Victor Koren, and Neftali Cajina. 2003. "Real-Time Variational Assimilation of Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting." Journal of Hydrometeorology 4: 627–41.
- Serinaldi, Francesco, and Chris G. Kilsby. 2015. "Stationarity Is Undead: Uncertainty Dominates the Distribution of Extremes." Advances in Water Resources 77 (March): 17–36. https://doi.org/10.1016/j.advwatres.2014.12.013.
- Serreze, Mark C., Martyn P. Clark, Richard L. Armstrong, David A. McGinnis, and Roger S. Pulwarty. 1999. "Characteristics of the Western United States Snowpack from Snowpack Telemetry (SNOTEL) Data." Water Resources Research 35 (7): 2145–60. https://doi.org/10.1029/1999WR900090.
- Seyfried, M. S., and B. P. Wilcox. 1995. "Scale and the Nature of Spatial Variability: Field Examples Having Implications for Hydrologic Modeling." Water Resources Research 31 (1): 173–84. https://doi.org/10.1029/94WR02025.
- Sharifazari, Salman, and Shahab Araghinejad. 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts." Water Resources Management 29 (14): 5309–22. https://doi.org/10.1007/s11269-015-1119-3.
- Sharma, Ashish, David G. Tarboton, and Upmanu Lall. 1997. "Streamflow Simulation: A Nonparametric Approach." Water Resources Research 33 (2): 291–308. https://doi.org/10.1029/96WR02839.
- Shelton, M. L. 2009. Hydroclimatology: Perspectives and Applications. Cambridge University Press. https://books.google.com/books?id=7a2TspPRWmsC.
- Shen, Chaopeng. 2018. "A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists." Water Resources Research 54 (11): 8558–93. https://doi.org/10.1029/2018WR022643.
- Shepherd, Theodore G., Emily Boyd, Raphael A. Calel, Sandra C. Chapman, Suraje Dessai, Ioana M. Dima-West, Hayley J. Fowler, et al. 2018. "Storylines: An Alternative Approach to Representing Uncertainty in Physical Aspects of Climate Change." Climatic Change 151 (3–4): 555–71. https://doi.org/10.1007/s10584-018-2317-9.
- Sheppard, Paul R., Andrew C. Comrie, Gregory D. Packin, Kurt Angersbach, and Malcolm K. Hughes. 2002. "The Climate of the US Southwest." Climate Research 21: 219–38. https://doi.org/10.3354/cr021219.
- Siler, Nicholas, Cristian Proistosescu, and Stephen Po-Chedley. 2019. "Natural Variability Has Slowed the Decline in Western U.S. Snowpack since the 1980s." Geophysical Research Letters 46 (1): 346–55. https://doi.org/10.1029/2018GL081080.
- Singh, V. P. 1995. Computer Models of Watershed Hydrology. Highlands Ranch, CO: Water Resources Publications.
- Sitterson, Jan, Chris Knightes, Rajbir Parmar, Kurt Wolfe, Muluken Muche, and Brian Avant. 2017. "An Overview of Rainfall-Runoff Model Types." Washington, D.C.: U.S. Environmental Protection Agency. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339328&Lab=NERL.
- Sivapalan, Murugesu, Günter Blöschl, Lu Zhang, and Rob Vertessy. 2003. "Downward Approach to Hydrological Prediction." Hydrological Processes 17 (11): 2101–11. https://doi.org/10.1002/hyp.1425.
- Skamarock, William C., and Joseph B. Klemp. 2008. "A Time-Split Nonhydrostatic Atmospheric Model for Weather Research and Forecasting Applications." Journal of Computational Physics 227 (7): 3465–85. https://doi.org/10.1016/j.jcp.2007.01.037.
- Skiles, S. McKenzie, Mark Flanner, Joseph M. Cook, Marie Dumont, and Thomas H. Painter. 2018. "Radiative Forcing by Light-Absorbing Particles in Snow." Nature Climate Change 8 (11): 964–71. https://doi.org/10.1038/s41558-018-0296-5.

- Skiles, S. McKenzie, Thomas H. Painter, Jayne Belnap, Lacey Holland, Richard L. Reynolds, Harland L. Goldstein, and John Lin. 2015. "Regional Variability in Dust-on-Snow Processes and Impacts in the Upper Colorado River Basin." Hydrological Processes 29 (26): 5397–5413. https://doi.org/10.1002/hyp.10569.
- Skiles, S. McKenzie, Thomas H. Painter, Jeffrey S. Deems, Ann C. Bryant, and Christopher C. Landry. 2012. "Dust Radiative Forcing in Snow of the Upper Colorado River Basin: 2. Interannual Variability in Radiative Forcing and Snowmelt Rates." Water Resources Research 48 (7). https://doi.org/10.1029/2012WR011986.
- Slater, Andrew G. 2016. "Surface Solar Radiation in North America: A Comparison of Observations, Reanalyses, Satellite, and Derived Products." Journal of Hydrometeorology 17 (1): 401–20. https://doi.org/10.1175/JHM-D-15-0087.1.
- "SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 Km EASE-Grid Soil Moisture, Version 2." 2018. NASA National Snow and Ice Data Center DAAC. https://doi.org/10.5067/ke1csvxmi95y.
- Sospedra-Alfonso, Reinel, Joe R. Melton, and William J. Merryfield. 2015. "Effects of Temperature and Precipitation on Snowpack Variability in the Central Rocky Mountains as a Function of Elevation." Geophysical Research Letters 42 (11): 4429–38. https://doi.org/10.1002/2015GL063898.
- Srinivas, V. V., and K. Srinivasan. 2005. "Hybrid Moving Block Bootstrap for Stochastic Simulation of Multi-Site Multi-Season Streamflows." Journal of Hydrology 302 (1): 307–30. https://doi.org/10.1016/j.jhydrol.2004.07.011.
- Srivastav, Roshan K., and Slobodan P. Simonovic. 2014. "An Analytical Procedure for Multi-Site, Multi-Season Streamflow Generation Using Maximum Entropy Bootstrapping." Environmental Modelling & Software 59 (September): 59–75. https://doi.org/10.1016/j.envsoft.2014.05.005.
- Stahle, David W., Edward R. Cook, Malcolm K. Cleaveland, Matthew D. Therrell, David M. Meko, Henri D. Grissino-Mayer, Emma Watson, and Brian H. Luckman. 2000. "Tree-Ring Data Document 16th Century Megadrought over North America." Eos, Transactions American Geophysical Union 81 (12): 121. https://doi.org/10.1029/00EO00076.
- Stahle, David W., Falko K. Fye, Edward R. Cook, and R. Daniel Griffin. 2007. "Tree-Ring Reconstructed Megadroughts over North America since a.d. 1300." Climatic Change 83 (1–2): 133–49. https://doi.org/10.1007/s10584-006-9171-x.
- Stainforth, David A., Thomas E. Downing, Richard Washington, Ana Lopez, and Mark New. 2007. "Issues in the Interpretation of Climate Model Ensembles to Inform Decisions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1857): 2163–77. https://doi.org/10.1098/rsta.2007.2073.
- Stan, Cristiana, David M. Straus, Jorgen S. Frederiksen, Hai Lin, Eric D. Maloney, and Courtney Schumacher. 2017. "Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales: The Subseasonal to Seasonal (S2S) Teleconnection Sub-Project." Reviews of Geophysics 55 (4): 902–37. https://doi.org/10.1002/2016RG000538.
- Staschus, Konstantin, and Jerson Kelman. 1988. "Probabilistic Dependable Hydro Capacity: The Benefits of Synthetic Hydrology." In Computerized Decision Support Systems for Water Managers. New York, NY: American Society of Civil Engineers. http://www.kelman.com.br/pdf/probabilistic_dependable/probabilistic%20dependable%20hydro.pdf.
- Steinschneider, Scott, Rachel McCrary, Linda O. Mearns, and Casey Brown. 2015. "The Effects of Climate Model Similarity on Probabilistic Climate Projections and the Implications for Local, Risk-Based Adaptation Planning: INTERMODEL CORRELATION AND RISK." Geophysical Research Letters 42 (12): 5014–44. https://doi.org/10.1002/2015GL064529.
- Stewart, Iris T., Daniel R. Cayan, and Michael D. Dettinger. 2005. "Changes toward Earlier Streamflow Timing across Western North America." Journal of Climate 18 (8): 1136–55. https://doi.org/10.1175/JCLI3321.1.

- Stockton, Charles W. 1975. "Long Term Streamflow Records Reconstructed from Tree-Rings." University of Arizona Press, Tucson.
- Stockton, Charles W., and W. R. Boggess. 1979. "Geohydrological Implications of Climate Change on Water Resource Development." Fort Belvoir, VA: U.S. Army Coastal Engineering Research Center.
- Stockton, Charles W., and G. C. Jacoby. 1976. "Long-Term Surface-Water Supply and Streamflow Trends in the Upper Colorado River Basin. Lake Powell Research Project Bulletin No. 18, Institute of Geophysics and Planetary Physics." University of California at Los Angeles.
- Strachan, Scotty. 2016. "Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA." Dissertation, University of Nevada, Reno.
- Strachan, Scotty, and Christopher Daly. 2017. "Testing the Daily PRISM Air Temperature Model on Semiarid Mountain Slopes: Testing PRISM Temperature in Mountains." Journal of Geophysical Research: Atmospheres 122 (11): 5697–5715. https://doi.org/10.1002/2016JD025920.
- Stratus Consulting. 2005. "Compendium on Methods and Tools to Evaluate Impacts of, and Vulnerability and Adaptation to, Climate Change-Final Draft Report." UNFCCC Secretariat. https://unfccc.int/files/adaptation/methodologies_for/vulnerability_and_adaptation/application/pdf/consolidated_version_updated_021204.pdf.
- Sveinsson, O. G. B., Jose D. Salas, W. L. Lane, and D. K. Frevert. 2007. "Stochastic Analysis, Modeling, and Simulation (SAMS) Version 2007." Manual.
- Switanek, Matthew B., and Peter A. Troch. 2011. "Decadal Prediction of Colorado River Streamflow Anomalies Using Ocean-Atmosphere Teleconnections." Geophysical Research Letters 38 (23): n/a-n/a. https://doi.org/10.1029/2011GL049644.
- Tapley, Byron D., Bettadpur Srinivas, John C. Ries, Paul F. Thompson, and Michael M. Watkins. 2004. "GRACE Measurements of Mass Variability in the Earth System." Science 305 (5683): 503–5. https://doi.org/10.1126/science.1099192.
- Tarboton, David G. 1994. "The Source Hydrology of Severe Sustained Drought in the Southwestern United States." Journal of Hydrology 161 (1–4): 31–69. https://doi.org/10.1016/0022-1694(94)90120-1.
- ——. 1995. "Hydrologic Scenarios for Severe Sustained Drought in the Southwestern United States." Water Resources Bulletin 35 (5).
- Tarboton, David G., Ashish Sharma, and Upmanu Lall. 1998. "Disaggregation Procedures for Stochastic Hydrology Based on Nonparametric Density Estimation." Water Resources Research 34 (1): 107–19. https://doi.org/10.1029/97WR02429.
- Tebaldi, Claudia, and Reto Knutti. 2007. "The Use of the Multi-Model Ensemble in Probabilistic Climate Projections." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 (1857): 2053–75. https://doi.org/10.1098/rsta.2007.2076.
- Technical Committee on Standardization of Reference Evapotranspiration. 2005. The ASCE Standardized Reference Evapotranspiration Equation. Edited by Richard G. Allen, Ivan A. Walter, Ronald L. Elliott, Terry A. Howell, Daniel Itenfisu, Marvin E. Jensen, and Richard L. Snyder. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784408056.
- Tessendorf, Sarah A., Jeffrey R. French, Katja Friedrich, Bart Geerts, Robert M. Rauber, Roy M. Rasmussen, Lulin Xue, et al. 2019. "A Transformational Approach to Winter Orographic Weather Modification Research: The SNOWIE Project." Bulletin of the American Meteorological Society 100 (1): 71–92. https://doi.org/10.1175/BAMS-D-17-0152.1.
- Texas A&M University. 2019a. "Hydrologic Modeling Inventory Website." TAMU Hydrologic Modeling Inventory. 2019. https://hydrologicmodels.tamu.edu/.
- ———. 2019b. "Water Rights Analysis Package." 2019. https://ceprofs.civil.tamu.edu/rwurbs/wrap.htm.

- Thirel, Guillaume, E. Martin, J.-F. Mahfouf, S. Massart, S. Ricci, and F. Habets. 2010. "A Past Discharges Assimilation System for Ensemble Streamflow Forecasts over France Part 1: Description and Validation of the Assimilation System." Hydrology and Earth System Sciences 14 (8): 1623–37. https://doi.org/10.5194/hess-14-1623-2010.
- Thirel, Guillaume, E. Martin, J.-F. Mahfouf, S. Massart, S. Ricci, F. Regimbeau, and F. Habets. 2010. "A Past Discharge Assimilation System for Ensemble Streamflow Forecasts over France Part 2: Impact on the Ensemble Streamflow Forecasts." Hydrology and Earth System Sciences 14 (8): 1639–53. https://doi.org/10.5194/hess-14-1639-2010.
- Thober, Stephan, Rohini Kumar, Justin Sheffield, Juliane Mai, David Schäfer, and Luis Samaniego. 2015. "Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME)." Journal of Hydrometeorology 16 (6): 2329–44. https://doi.org/10.1175/JHM-D-15-0053.1.
- Thornton, Peter E., Hubert Hasenauer, and Michael A. White. 2000. "Simultaneous Estimation of Daily Solar Radiation and Humidity from Observed Temperature and Precipitation: An Application over Complex Terrain in Austria." Agricultural and Forest Meteorology 104 (4): 255–71. https://doi.org/10.1016/S0168-1923(00)00170-2.
- Thornton, Peter E., and Steven W. Running. 1999. "An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity, and Precipitation." Agricultural and Forest Meteorology 93 (4): 211–28. https://doi.org/10.1016/S0168-1923(98)00126-9.
- Thornton, Peter E., Steven W. Running, and Michael A. White. 1997. "Generating Surfaces of Daily Meteorological Variables over Large Regions of Complex Terrain." Journal of Hydrology 190 (3–4): 214–51. https://doi.org/10.1016/S0022-1694(96)03128-9.
- Thornton, Peter E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, Russell S. Vose, and R. B. Cook. 2016. "Daymet: Daily Surface Weather Data on a 1-Km Grid for North America, Version 3." ORNL DAAC Distributed Active Archive Center for Biogeochemical Dynamics. 2016.
- Thrasher, Bridget, Jun Xiong, Weile Wang, Forrest Melton, Andrew Michaelis, and Ramakrishna Nemani. 2013. "Downscaled Climate Projections Suitable for Resource Management." Eos, Transactions American Geophysical Union 94 (37): 321–23. https://doi.org/10.1002/2013EO370002.
- Tighi, Shana Goffman. 2006. "Uncertainty Analysis: Mid-Term Operational Model for the Lower Colorado River." Master's, University of Nevada, Las Vegas.
- Timm, Oliver Elison, Thomas W. Giambelluca, and Henry F. Diaz. 2015. "Statistical Downscaling of Rainfall Changes in Hawai'i Based on the CMIP5 Global Model Projections: Downscaled Rainfall Changes in Hawai'i." Journal of Geophysical Research: Atmospheres 120 (1): 92–112. https://doi.org/10.1002/2014JD022059.
- Tippett, Michael K., Meghana Ranganathan, Michelle L'Heureux, Anthony G. Barnston, and Timothy DelSole. 2017. "Assessing Probabilistic Predictions of ENSO Phase and Intensity from the North American Multimodel Ensemble." Climate Dynamics, May. https://doi.org/10.1007/s00382-017-3721-y.
- Tipton, Royce, and Olin Kalmbach. 1965. "Water Supplies of the Colorado River--Available for Use by the States of the Upper Division and for Use from the Main Stem by the States of Arizona, California and Nevada in the Lower Basin." Engineering. Denver, Colorado: Upper Colorado River Commission. https://www.colorado.edu/resources/colorado-river/docs/management/Tipton1965.pdf.
- Tokarska, Katarzyna B., Martin B. Stolpe, Sebastian Sippel, Erich M. Fischer, Christopher J. Smith, Flavio Lehner, and Reto Knutti. 2020. "Past Warming Trend Constrains Future Warming in CMIP6 Models." Science Advances 6 (12). https://doi.org/10.1126/sciadv.aaz9549.
- Tolson, B. A., and C. A. Shoemaker. 2006. "The Dynamically Dimensioned Search (DDS) Algorithm as a Robust Optimization Tool in Hydrologic Modeling." In AGU Fall Meeting Abstracts, 41:H41I-07. http://adsabs.harvard.edu/abs/2006AGUFM.H41I..07T.

- Tootle, Glenn A., Singh Ashok K., Thomas C. Piechota, and Farnham Irene. 2007. "Long Lead-Time Forecasting of U.S. Streamflow Using Partial Least Squares Regression." Journal of Hydrologic Engineering 12 (5): 442–51. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(442).
- Topping, David J., John C. Schmidt, and L.E. Vierra Jr. 2003. "Computation and Analysis of the Instantaneous-Discharge Record for the Colorado River at Lees Ferry, Arizona: May 8, 1921, through September 30, 2000." USGS Numbered Series 1677. Professional Paper. Reston, VA: U.S. Geological Survey. http://pubs.er.usgs.gov/publication/pp1677.
- Tourre, Yves M., Balaji Rajagopalan, Yochanan Kushnir, Mathew Barlow, and Warren B. White. 2001. "Patterns of Coherent Decadal and Interdecadal Climate Signals in the Pacific Basin during the 20th Century." Geophysical Research Letters 28 (10): 2069–72. https://doi.org/10.1029/2000GL012780.
- Towler, Erin, Debasish PaiMazumder, and James Done. 2018. "Toward the Application of Decadal Climate Predictions." Journal of Applied Meteorology and Climatology 57 (3): 555–68. https://doi.org/10.1175/JAMC-D-17-0113.1.
- Udall, Bradley, and Jonathan Overpeck. 2017. "The Twenty-First Century Colorado River Hot Drought and Implications for the Future." Water Resources Research 53 (3): 2404–18. https://doi.org/10.1002/2016WR019638.
- URS. 2013. "Assessing Agricultural Consumptive Use in the Upper Colorado River Basin Phase I." http://www.ucrcommission.com/RepDoc/Studies/Assessing%20_Ag_CU_PhaseI.pdf.
- ——. 2016. "Assessing Agricultural Consumptive Use in the Upper Colorado River Basin Phase II." http://www.ucrcommission.com/RepDoc/Studies/Assessing%20_Ag_CU_PhaseII.pdf.
- US Army Corps of Engineers. 1971. "HEC-4 Monthly Streamflow Simulation User's Manual." United States Army Corps of Engineers, Department of Hydrologic Engineering Center. https://www.hec.usace.army.mil/publications/ComputerProgramDocumentation/HEC-4_UsersManual_(CPD-4).pdf.
- ——. 2012. "HEC-ResPRM." 2012. https://www.hec.usace.army.mil/software/hec-resprm/.
- US Geological Survey. 1977. "Water Resources Data for Colorado, Water Year 1975. Volume 2, Colorado River Basin." U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-75-2. U.S. Geological Survey.
- ———. 2018a. "Federal Priorities Streamgages (FPS) Mapper." 2018. https://water.usgs.gov/networks/fps/.
- ——. 2018b. "USGS Water-Year Summary for Site 09315000." 2018.
- https://waterdata.usqs.gov/nwis/wys_rpt/?site_no=09315000.
- ———. 2018c. "USGS Water-Year Summary for Site 09380000." 2018.
 - https://waterdata.usgs.gov/nwis/wys_rpt/?site_no=09380000&agency_cd=USGS.
- U.S. Secretary of the Interior. 2007. "Record of Decision Colorado River Interim Guidelines for Lower Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead." U.S. Department of the Interior.
 - https://www.usbr.gov/lc/region/programs/strategies/RecordofDecision.pdf.
- USGCRP. 2017. "Climate Science Special Report: Fourth National Climate Assessment, Volume I." Washington, D.C.: U.S Global Change Research Program. doi: 10.7930/J0J964J6.
- Van den Dool, Huug M. 1994. "Searching for Analogues, How Long Must We Wait?" Tellus A 46 (3): 314–24. https://doi.org/10.1034/j.1600-0870.1994.t01-2-00006.x.
- ———. 2003. "Performance and Analysis of the Constructed Analogue Method Applied to U.S. Soil Moisture over 1981–2001." Journal of Geophysical Research 108 (D16): 8617. https://doi.org/10.1029/2002JD003114.

- ——. 2007. Empirical Methods in Short-Term Climate Prediction. Oxford; New York: Oxford University Press.
- Vano, Julie A., Jeffrey R. Arnold, Bart Nijssen, Martyn P. Clark, Andrew W. Wood, Ethan D. Gutmann, Nans Addor, Joseph Hamman, and Flavio Lehner. 2018. "DOs and DON'Ts for Using Climate Change Information for Water Resource Planning and Management: Guidelines for Study Design." Climate Services 12 (December): 1–13. https://doi.org/10.1016/j.cliser.2018.07.002.
- Vano, Julie A., Tapash Das, and Dennis P. Lettenmaier. 2012. "Hydrologic Sensitivities of Colorado River Runoff to Changes in Precipitation and Temperature*." Journal of Hydrometeorology 13 (3): 932–49. https://doi.org/10.1175/JHM-D-11-069.1.
- Vano, Julie A., and Dennis P. Lettenmaier. 2014. "A Sensitivity-Based Approach to Evaluating Future Changes in Colorado River Discharge." Climatic Change 122 (4): 621–34. https://doi.org/10.1007/s10584-013-1023-x.
- Vano, Julie A., Bradley Udall, Daniel R. Cayan, Jonathan T. Overpeck, Levi D. Brekke, Tapash Das, Holly C. Hartmann, et al. 2014. "Understanding Uncertainties in Future Colorado River Streamflow." Bulletin of the American Meteorological Society 95 (1): 59–78. https://doi.org/10.1175/BAMS-D-12-00228.1.
- Verdin, Andrew, Balaji Rajagopalan, William Kleiber, Guillermo Podestá, and Federico Bert. 2018. "A Conditional Stochastic Weather Generator for Seasonal to Multi-Decadal Simulations." Journal of Hydrology 556 (January): 835–46. https://doi.org/10.1016/j.jhydrol.2015.12.036.
- Vigaud, N., Andrew W. Robertson, and M. K. Tippett. 2017. "Multimodel Ensembling of Subseasonal Precipitation Forecasts over North America." Monthly Weather Review 145 (10): 3913–28. https://doi.org/10.1175/MWR-D-17-0092.1.
- Vliet, Michelle T. H. van, David Wiberg, Sylvain Leduc, and Keywan Riahi. 2016. "Power-Generation System Vulnerability and Adaptation to Changes in Climate and Water Resources." Nature Climate Change 6 (4): 375–80. https://doi.org/10.1038/nclimate2903.
- Vogel, Jason M. 2015. "Actionable Science in Practice: Co-Producing Climate Change Information for Water Utility Vulnerability Assessments." Water Utility Climate Alliance.
- Vogel, Richard M. 2017. "Stochastic Watershed Models for Hydrologic Risk Management." Water Security 1 (July): 28–35. https://doi.org/10.1016/j.wasec.2017.06.001.
- Vose, Russell S., Scott Applequist, Mike Squires, Imke Durre, Matthew J. Menne, Claude N. Williams, Chris Fenimore, Karin Gleason, and Derek Arndt. 2014. "Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions." Journal of Applied Meteorology and Climatology 53 (5): 1232–51. https://doi.org/10.1175/JAMC-D-13-0248.1.
- Vuuren, Detlef P. van, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, George C. Hurtt, et al. 2011. "The Representative Concentration Pathways: An Overview." Climatic Change 109 (1–2): 5–31. https://doi.org/10.1007/s10584-011-0148-z.
- Walton, Daniel, and Alex Hall. 2018. "An Assessment of High-Resolution Gridded Temperature Datasets over California." Journal of Climate 31 (10): 3789–3810. https://doi.org/10.1175/JCLI-D-17-0410.1.
- Wang, Q. J., D. E. Robertson, and F. H. S. Chiew. 2009. "A Bayesian Joint Probability Modeling Approach for Seasonal Forecasting of Streamflows at Multiple Sites." Water Resources Research 45 (5). https://doi.org/10.1029/2008WR007355.
- Wang, Shih-Yu, Robert R. Gillies, Oi-Yu Chung, and Chaopeng Shen. 2018. "Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake." Journal of Hydrometeorology 19 (4): 659–65. https://doi.org/10.1175/JHM-D-17-0081.1.
- Wang, Shih-Yu, Robert R. Gillies, Lawrence E. Hipps, and Jiming Jin. 2011. "A Transition-Phase Teleconnection of the Pacific Quasi-Decadal Oscillation." Climate Dynamics 36 (3–4): 681–93. https://doi.org/10.1007/s00382-009-0722-5.

- Waring, R. H., N. C. Coops, W. Fan, and J. M. Nightingale. 2006. "MODIS Enhanced Vegetation Index Predicts Tree Species Richness across Forested Ecoregions in the Contiguous U.S.A." Remote Sensing of Environment 103 (2): 218–26. https://doi.org/10.1016/j.rse.2006.05.007.
- Water Resources and Climate Change Workgroup. 2016. "Looking Forward: Priorities for Managing Freshwater Resources in a Changing Climate." Interagency Climate Change Adaptation Task Force.
- Waugh, Darryn W., Adam H. Sobel, and Lorenzo M. Polvani. 2017. "What Is the Polar Vortex and How Does It Influence Weather?" Bulletin of the American Meteorological Society 98 (1): 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1.
- Weerts, Albrecht H., Ghada Y. El Serafy, Stef Hummel, Juzer Dhondia, and Herman Gerritsen. 2010. "Application of Generic Data Assimilation Tools (DATools) for Flood Forecasting Purposes." Computers & Geosciences 36 (4): 453–63. https://doi.org/10.1016/j.cageo.2009.07.009.
- Weisbecker, Leo. 1974. Snowpack, Cloud-Seeding, and the Colorado River: A Technology Assessment of Weather Modification. University of Oklahoma Press.
- Weisheimer, A., and T. N. Palmer. 2014. "On the Reliability of Seasonal Climate Forecasts." Journal of The Royal Society Interface 11 (96): 20131162. https://doi.org/10.1098/rsif.2013.1162.
- Welles, Edwin, and Soroosh Sorooshian. 2009. "Scientific Verification of Deterministic River Stage Forecasts." Journal of Hydrometeorology 10 (2): 507–20. https://doi.org/10.1175/2008JHM1022.1.
- Welles, Edwin, Soroosh Sorooshian, Gary Carter, and Billy Olsen. 2007. "Hydrologic Verification: A Call for Action and Collaboration." Bulletin of the American Meteorological Society 88 (4): 503–12. https://doi.org/10.1175/BAMS-88-4-503.
- Werner, Kevin, David Brandon, Martyn P. Clark, and Subhrendu Gangopadhyay. 2004. "Climate Index Weighting Schemes for NWS ESP-Based Seasonal Volume Forecasts." Journal of Hydrometeorology 5 (6): 1076–90. https://doi.org/10.1175/JHM-381.1.
- ———. 2005. "Incorporating Medium-Range Numerical Weather Model Output into the Ensemble Streamflow Prediction System of the National Weather Service." Journal of Hydrometeorology 6 (2): 101–14. https://doi.org/10.1175/JHM411.1.
- Western Regional Climate Center. n.d. "RAWS USA Climate Archive." RAWS USA Climate Archive.
- Westrick, Kenneth J., Pascal Storck, and Clifford F. Mass. 2002. "Description and Evaluation of a Hydrometeorological Forecast System for Mountainous Watersheds." Weather and Forecasting 17 (2): 250–62. https://doi.org/10.1175/1520-0434(2002)017<0250:DAEOAH>2.0.CO;2.
- Wetterhall, F., and F. Di Giuseppe. 2018. "The Benefit of Seamless Forecasts for Hydrological Predictions over Europe." Hydrol. Earth Syst. Sci. 22 (6): 3409–20. https://doi.org/10.5194/hess-22-3409-2018.
- Wheeler, Kevin G., David E. Rosenberg, and John C. Schmidt. 2019. "Water Resource Modeling of the Colorado River: Present and Future Strategies," 47.
- Wilby, Robert L., C. W. Dawson, and E. M. Barrow. 2002. "SDSM a Decision Support Tool for the Assessment of Regional Climate Change Impacts." Environmental Modelling & Software 17 (2): 145–57. https://doi.org/10.1016/S1364-8152(01)00060-3.
- Wilby, Robert L., and T. M. L. Wigley. 1997. "Downscaling General Circulation Model Output: A Review of Methods and Limitations." Progress in Physical Geography: Earth and Environment 21 (4): 530–48. https://doi.org/10.1177/030913339702100403.
- Wilby, Robert L., Hany Hassan, and Keisuke Hanaki. 1998. "Statistical Downscaling of Hydrometeorological Variables Using General Circulation Model Output." Journal of Hydrology 205 (1–2): 1–19. https://doi.org/10.1016/S0022-1694(97)00130-3.
- Williams, Mark W., Eran Hood, Noah P. Molotch, Nel Caine, Rory Cowie, and Fengjing Liu. 2015. "The 'Teflon Basin' Myth: Hydrology and Hydrochemistry of a Seasonally Snow-Covered Catchment." Plant Ecology & Diversity 8 (5–6): 639–61. https://doi.org/10.1080/17550874.2015.1123318.

- Wilson, Rob, Edward Cook, Rosanne D'Arrigo, Nadja Riedwyl, Michael N. Evans, Alexander Tudhope, and Rob Allan. 2010. "Reconstructing ENSO: The Influence of Method, Proxy Data, Climate Forcing and Teleconnections." Journal of Quaternary Science 25 (1): 62–78. https://doi.org/10.1002/jqs.1297.
- Wise, Erika K. 2010. "Spatiotemporal Variability of the Precipitation Dipole Transition Zone in the Western United States." Geophysical Research Letters 37 (7): n/a-n/a. https://doi.org/10.1029/2009GL042193.
- ———. 2015. "Tropical Pacific and Northern Hemisphere Influences on the Coherence of Pacific Decadal Oscillation Reconstructions." International Journal of Climatology 35 (1): 154–60. https://doi.org/10.1002/joc.3966.
- Wisser, Dominik, Steve Frolking, Ellen M. Douglas, Balazs M. Fekete, Charles J. Vörösmarty, and Andreas H. Schumann. 2008. "Global Irrigation Water Demand: Variability and Uncertainties Arising from Agricultural and Climate Data Sets." Geophysical Research Letters 35 (24). https://doi.org/10.1029/2008GL035296.
- Wolter, Klaus. 2002. "Climate Projections: Assessing Water Year (WY) 2002 Forecasts and Developing WY 2003 Forecasts." CWRRI Information Series Report. Fort Collins, Colorado: Colorado Water Resources Research Institute.
- Wolter, Klaus, Randall Dole, and Catherine A. Smith. 1999. "Short-Term Climate Extremes over the Continental U.S. and ENSO. Part I: Seasonal Temperatures." Journal of Climate 12: 3255–72. https://doi.org/10.1175/1520-0442(1999)012<3255:STCEOT>2.0.CO;2.
- Wolter, Klaus, and Michael S. Timlin. 2011. "El Niño/Southern Oscillation Behaviour since 1871 as Diagnosed in an Extended Multivariate ENSO Index (MEI.Ext)." International Journal of Climatology 31 (7): 1074–87. https://doi.org/10.1002/joc.2336.
- Wood, Andrew W., L. Ruby Leung, V. Sridhar, and Dennis P. Lettenmaier. 2004. "Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs." Climatic Change 62 (1–3): 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e.
- Wood, Andrew W. 2008. "The University of Washington Surface Water Monitor: An Experimental Platform for National Hydrologic Assessment and Prediction." Proceedings of the AMS 22nd Conference on Hydrology, New Orleans.

 http://www.hydro.washington.edu/forecast/monitor/info/Wood_SWMonitor_AMS08.pdf.
- Wood, Andrew W., S. Arumugam, and Pablo A. Mendoza. 2018. "The Post-Processing of Seasonal Streamflow Forecasts, Chapter 7.3 in the Handbook of Hydrometeorological Ensemble Forecasting." In Handbook of Hydrometeorological Ensemble Forecasting. Springer-Verlag GmbH, Berlin Heidelberg. https://link.springer.com/referenceworkentry/10.1007/978-3-642-40457-3 37-2.
- Wood, Andrew W., Arun Kumar, and Dennis P. Lettenmaier. 2005. "A Retrospective Assessment of National Centers for Environmental Prediction Climate Model–Based Ensemble Hydrologic Forecasting in the Western United States." Journal of Geophysical Research: Atmospheres 110 (D4). https://doi.org/10.1029/2004JD004508.
- Wood, Andrew W., and Dennis P. Lettenmaier. 2006. "A Test Bed for New Seasonal Hydrologic Forecasting Approaches in the Western United States." Bulletin of the American Meteorological Society 87 (12): 1699–1712. https://doi.org/10.1175/BAMS-87-12-1699.
- Wood, Andrew W., Edwin P. Maurer, Arun Kumar, and Dennis P. Lettenmaier. 2002. "Long-Range Experimental Hydrologic Forecasting for the Eastern United States." Journal of Geophysical Research: Atmospheres 107 (D20): ACL 6-1-ACL 6-15. https://doi.org/10.1029/2001JD000659.
- Wood, Andrew W., Thomas C. Pagano, Maury Roos, and Michael Anderson. 2016. "Tracing the Origins of ESP: HEPEX Historical Hydrology Series, Edition 1." HEPEX (blog). April 26, 2016. https://hepex.irstea.fr/tracing-the-origins-of-esp/.

- Wood, Andrew W., and John C. Schaake. 2008. "Correcting Errors in Streamflow Forecast Ensemble Mean and Spread." Journal of Hydrometeorology 9 (1): 132–48. https://doi.org/10.1175/2007JHM862.1.
- Wood, Eric F., Joshua K. Roundy, Tara J. Troy, Rens van Beek, Marc Bierkens, Eleanor Blyth, Ad de Roo, et al. 2012. "Reply to Comment by Keith J. Beven and Hannah L. Cloke on 'Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water.'" Water Resources Research 48 (1). https://doi.org/10.1029/2011WR011202.
- Woodbury, M., M. Baldo, D. Yates, and L. Kaatz. 2012. "Joint Front Range Climate Change Vulnerability Study." Denver: Water Research Foundation.
- Woodhouse, Connie A. 2003. "A 431-Yr Reconstruction of Western Colorado Snowpack from Tree Rings." Journal of Climate 16: 11.
- ———. 2012. "A Catalogue of 20th and 21st Century Droughts for the Upper Colorado River Basin." Bureau of Reclamation, Lower Colorado Region. https://cwoodhouse.faculty.arizona.edu/content/catalogue-20th-and-21st-century-droughts-upper-colorado-river-basin.
- Woodhouse, Connie A., Stephen T. Gray, and David M. Meko. 2006. "Updated Streamflow Reconstructions for the Upper Colorado River Basin." Water Resources Research 42 (5). https://doi.org/10.1029/2005WR004455.
- Woodhouse, Connie A., Kenneth E. Kunkel, David R. Easterling, and Edward R. Cook. 2005. "The Twentieth-Century Pluvial in the Western United States." Geophysical Research Letters 32 (7): n/a-n/a. https://doi.org/10.1029/2005GL022413.
- Woodhouse, Connie A., and Jeffrey J. Lukas. 2006. "Drought, Tree Rings and Water Resource Management in Colorado." Canadian Water Resources Journal 31 (4): 297–310. https://doi.org/10.4296/cwrj3104297.
- Woodhouse, Connie A., Jeffrey J. Lukas, Kiyomi Morino, David M. Meko, and Katherine K. Hirschboeck. 2016. "Using the Past to Plan for the Future—the Value of Paleoclimate Reconstructions for Water Resource Planning." In Water Policy and Planning in a Variable and Changing Climate. Drought and Water Crises. CRC Press. https://doi.org/10.1201/b19534.
- Woodhouse, Connie A., David M. Meko, Glen M. MacDonald, Dave W. Stahle, and Edward R. Cook. 2010. "A 1,200-Year Perspective of 21st Century Drought in Southwestern North America." Proceedings of the National Academy of Sciences 107 (50): 21283–88. https://doi.org/10.1073/pnas.0911197107.
- Woodhouse, Connie A., and Jonathan T. Overpeck. 1998. "2000 Years of Drought Variability in the Central United States." Bulletin of the American Meteorological Society 79 (12): 2693–2714. https://doi.org/10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2.
- Woodhouse, Connie A., and Gregory T. Pederson. 2018. "Investigating Runoff Efficiency in Upper Colorado River Streamflow over Past Centuries." Water Resources Research 54 (1): 286–300. https://doi.org/10.1002/2017WR021663.
- Woodhouse, Connie A., Gregory T. Pederson, Kiyomi Morino, Stephanie A. McAfee, and Gregory J. McCabe. 2016. "Increasing Influence of Air Temperature on Upper Colorado River Streamflow." Geophysical Research Letters 43 (5): 2174–81. https://doi.org/10.1002/2015GL067613.
- World Meteorological Organization. 2008. Guide to Meteorological Instruments and Methods of Observation. Geneva, Switzerland: World Meteorological Organization.
- ——. 2013. "Sub-Seasonal to Seasonal Prediction Research Implementation Plan." Geneva. http://s2sprediction.net/static/documents.
- ———. 2017. "Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challengesand Recommendations." WWRP 2017-3. https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf

.

- Wu, Limin, Dong-Jun Seo, Julie Demargne, James D. Brown, Shuzheng Cong, and John C. Schaake. 2011. "Generation of Ensemble Precipitation Forecast from Single-Valued Quantitative Precipitation Forecast for Hydrologic Ensemble Prediction." Journal of Hydrology 399 (3–4): 281–98. https://doi.org/10.1016/j.jhydrol.2011.013.
- Wurbs, Ralph. 1994. "Computer Models for Water Resources Planning and Management." IWR Report 94-NDS-7. Institute for Water Resources, US Army Corps of Engineers. https://apps.dtic.mil/dtic/tr/fulltext/u2/a295807.pdf.
- ———. 2012. "Reservoir/River System Management Models." Texas Water Journal 3 (1): 16.
- Xia, Youlong, Kenneth Mitchell, Michael Ek, Justin Sheffield, Brian Cosgrove, Eric Wood, Lifeng Luo, et al. 2012. "Continental-Scale Water and Energy Flux Analysis and Validation for the North American Land Data Assimilation System Project Phase 2 (NLDAS-2): 1. Intercomparison and Application of Model Products." Journal of Geophysical Research: Atmospheres 117 (D3): n/a-n/a. https://doi.org/10.1029/2011JD016048.
- Xiao, Mu, Bradley Udall, and Dennis P. Lettenmaier. 2018. "On the Causes of Declining Colorado River Streamflows." Water Resources Research 54 (9): 6739–56. https://doi.org/10.1029/2018WR023153.
- Yang, Daqing, Barry E. Goodison, Shig Ishida, and Carl S. Benson. 1998. "Adjustment of Daily Precipitation Data at 10 Climate Stations in Alaska: Application of World Meteorological Organization Intercomparison Results." Water Resources Research 34 (2): 241–56. https://doi.org/10.1029/97WR02681.
- Yapo, Patrice Ogou, Hoshin Vijai Gupta, and Soroosh Sorooshian. 1998. "Multi-Objective Global Optimization for Hydrologic Models." Journal of Hydrology 204 (1): 83–97. https://doi.org/10.1016/S0022-1694(97)00107-8.
- Yaseen, Zaher Mundher, Ahmed El-shafie, Othman Jaafar, Haitham Abdulmohsin Afan, and Khamis Naba Sayl. 2015. "Artificial Intelligence Based Models for Stream-Flow Forecasting: 2000–2015." Journal of Hydrology 530 (November): 829–44. https://doi.org/10.1016/j.jhydrol.2015.10.038.
- Yeager, Stephen G., G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. Karspeck, et al. 2018. "Predicting Near-Term Changes in the Earth System: A Large Ensemble of Initialized Decadal Prediction Simulations Using the Community Earth System Model." Bulletin of the American Meteorological Society 99 (9): 1867–86. https://doi.org/10.1175/BAMS-D-17-0098.1.
- Yu, Jin-Yi, and Yuhao Zou. 2013. "The Enhanced Drying Effect of Central-Pacific El Niño on US Winter." Environmental Research Letters 8 (1): 014019. https://doi.org/10.1088/1748-9326/8/1/014019.
- Yuan, Xing, Eric F. Wood, Joshua K. Roundy, and Ming Pan. 2013. "CFSv2-Based Seasonal Hydroclimatic Forecasts over the Conterminous United States." Journal of Climate 26 (13): 4828–47. https://doi.org/10.1175/JCLI-D-12-00683.1.
- Zachariassen, John, Karl F. Zeller, Ned Nikolov, and Tom McClelland. 2003. "A Review of the Forest Service Remote Automated Weather Station (RAWS) Network." RMRS-GTR-119. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-119.
- Zagona, Edith, Terrance J. Fulp, Richard Shane, Timothy Magee, and H. Morgan Goranflo. 2001. "Riverware: A Generalized Tool for Complex Reservoir System Modeling." JAWRA Journal of the American Water Resources Association 37 (4): 913–29. https://doi.org/10.1111/j.1752-1688.2001.tb05522.x.
- Zagona, Edith. 2010. "Riverware's Integrated Modeling and Analysis Tools for Long-Term Planning under Uncertainty," 12.
- Zeng, Xubin, Patrick Broxton, and Nicholas Dawson. 2018. "Snowpack Change from 1982 to 2016 over Conterminous United States." Geophysical Research Letters, December. https://doi.org/10.1029/2018GL079621.

- Zhang, Chidong. 2013. "Madden–Julian Oscillation: Bridging Weather and Climate." Bulletin of the American Meteorological Society 94 (12): 1849–70. https://doi.org/10.1175/BAMS-D-12-00026.1.
- Zhang, Lanhui, Chansheng He, Mingmin Zhang, and Yi Zhu. 2019. "Evaluation of the SMOS and SMAP Soil Moisture Products under Different Vegetation Types against Two Sparse in Situ Networks over Arid Mountainous Watersheds, Northwest China." Science China Earth Sciences 62 (4): 703–18. https://doi.org/10.1007/s11430-018-9308-9.
- Zhao, R. J., Y. L. Zhang, L. R. Fang, X. R. Liu, and Q. S. Zhang. 1980. "The Xinanjiang Model." In Hydrological Forecasting Proceedings Oxford Symposium, 129:351–56.
- Zhou, Shuntai, Michelle L'Heureux, Scott Weaver, and Arun Kumar. 2012. "A Composite Study of the MJO Influence on the Surface Air Temperature and Precipitation over the Continental United States." Climate Dynamics 38 (7–8): 1459–71. https://doi.org/10.1007/s00382-011-1001-9.

Glossary

ablation

The loss of snow from the snowpack due to melting, evaporation, or wind.

absolute error

The difference between the measured and actual values of x.

albedo

The percentage of incoming light that is reflected off of a surface.

aleatory uncertainty

Uncertainty due to randomness in the behavior of a system (i.e., natural variability)

anomaly

A deviation from the expected or normal value.

atmospheric river (AR)

A long and concentrated plume of low-level (<5,000') moisture originating in the tropical Pacific.

autocorrelation

Correlation between consecutive values of the same time series, typically due to time-dependencies in the dataset.

bank storage

Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative water levels.

bias correction

Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using observations in a reference period.

boundary conditions

Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, seaice and snowpack conditions) and can help forecast the future climate state when included in a model.

calibration

The process of comparing a model with the real system, followed by multiple revisions and comparisons so that the model outputs more closely resemble outcomes in the real system.

climate forcing

A factor causing a difference between the incoming and outgoing energy of the Earth's climate system, e.g., increases in greenhouse-gas concentrations.

climatology

In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., "compared to climatology"). Synonymous with climate normal.

coefficient of variation (CV)

A common measure of variability in a dataset; the standard deviation divided by the mean.

consumptive use

The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage and is thus unavailable for subsequent use.

convection

The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is warmer than the surrounding atmosphere.

covariate

A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., precipitation).

cross-correlation

A method for estimating to what degree two variables or datasets are correlated.

cumulative distribution function (CDF)

A function describing the probability that a random variable, such as streamflow, is less than or equal to a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-exceedance.

Darcy's Law

The mathematical expression that describes fluid flow through a porous medium (e.g., soil).

datum

The base, or 0.0-foot gage-height (stage), for a stream gage.

dead pool

The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or released downstream.

deterministic

Referring to a system or model in which a given input always produces the same output; the input strictly determines the output.

dewpoint

The local temperature that the air would need to be cooled to (assuming atmospheric pressure and moisture content are constant) in order to achieve a relative humidity (RH) of 100%.

dipole

A pair of two equal and opposing centers of action, usually separated by a distance.

discharge

Volume of water flowing past a given point in the stream in a given period of time; synonymous with streamflow.

distributed

In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins into grid cells. Contrast with **lumped** model.

downscaling

Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.

dynamical

In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most of the relevant processes.

environmental flow

Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to sustain the river's ecosystem.

epistemic uncertainty

Uncertainty due to incomplete knowledge of the behavior of a system.

evapotranspiration

A combination of evaporation from the land surface and water bodies, and transpiration of water from plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well.

fixed lapse rate

A constant rate of change of an atmospheric variable, usually temperature, with elevation.

flow routing

The process of determining the flow hydrograph at sequential points along a stream based on a known hydrograph upstream.

forcing - see climate forcing or weather forcing

forecast

A prediction of future hydrologic or climate conditions based on the initial (current) conditions and factors known to influence the evolution of the physical system.

Gaussian filter

A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-shaped statistical distribution.

gridded data

Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or otherwise derived from a set of point observations.

heat flux

The rate of heat energy transfer from one surface or layer of the atmosphere to the next.

hindcast

A forecast run for a past date or period, using the same model version as for real-time forecasts; used for model calibration and to "spin up" forecast models. Same as **reforecast**.

hydraulic conductivity

A measure of the ease with which water flows through a medium, such as soil or sediment.

hydroclimate

The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for a watershed or region.

hydrograph

A graph of the volume of water flowing past a location per unit time.

hydrometeorology

A branch of meteorology and hydrology that studies the transfer of water and energy between the land surface and the lower atmosphere.

imaging spectrometer

An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved image of an object or area.

in situ

Referring to a ground-based measurement site that is fixed in place.

inhomogeneity

A change in the mean or variance of a time-series of data (such as weather observations) that is caused by changes in the observing station or network, not in the climate itself.

Interim Guidelines

The Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake Powell and Lake Mead, signed by the Secretary of the Interior in December 2007. The guidelines expire in 2026. https://www.usbr.gov/lc/region/programs/strategies.html

internal variability

Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth's oceans and atmosphere.

interpolation

The process of calculating the value of a function or set of data between two known values.

isothermal

A dynamic in which temperature remains constant while other aspects of the system change.

jet stream

A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer and colder air masses.

kriging

A smoothing technique that calculates minimum error-variance estimates for unsampled values.

kurtosis

A measure of the sharpness of the peak of a probability distribution.

lag-1 autocorrelation

Serial correlation between data values at adjacent time steps.

lapse rate

The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is adiabatic when no heat exchange occurs between the given air parcel and its surroundings.

latency

The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions.

latent heat flux

The flow of heat from the Earth's surface to the atmosphere that involves evaporation and condensation of water; the energy absorbed/released during a phase change of a substance.

Law of the River

A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines that apportions the water and regulates the use and management of the Colorado River among the seven basin states and Mexico.

LiDAR (or lidar)

Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the variable distances from the sensor to the land surface.

longwave radiation

Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 micrometers.

Lower Basin

The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are downstream of the Colorado River Compact point at Lee Ferry, Arizona.

lumped model

In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single unit, averaging spatial characteristics across that unit. Contrast with **distributed** model.

Markov chain

A mathematical system in which transitions from one state to another are dependent on the current state and time elapsed.

megadrought

A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature have varied.

metadata

Data that gives information about other data or describes its own dataset.

mid-latitude cyclone

A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east and are effective at producing precipitation over broad areas.

Minute 319

The binding agreement signed in 2012 by the International Boundary and Water Commission, United States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin operations and water allocation, and humanitarian measures.

Modoki

An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as "CP" El Niño.

multicollinearity

A condition in which multiple explanatory variables that predict variation in a response variable are themselves correlated with each other.

multiple linear regression

A form of regression in which a model is created by fitting a linear equation over the observed data, typically for two or more explanatory (independent) variables and a response (dependent) variable.

multivariate

Referring to statistical methods in which there are multiple response (dependent) variables being examined.

natural flow

Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or diversion. Equivalent to **naturalized flow**, **virgin flow**, and **undepleted flow**.

naturalized flow - see natural flow

nearest neighbor method

A nonparametric method that examines the distances between a data point (e.g., a sampled value) and the closest data points to it in x-y space ("nearest neighbors," e.g., historical values) and thereby obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest neighbors (i.e., K-NN).

nonparametric

A statistical method that assumes no underlying mathematical function for a sample of observations.

orographic lift

A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or mountains. This mechanism leads to increased condensation and precipitation over higher terrain.

р

A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test of statistical significance.

paleohydrology

The study of hydrologic events and processes prior to the instrumental (gaged) record, typically using environmental proxies such as tree rings.

parameterized

Referring to a key variable or factor that is represented in a model by an estimated value (**parameter**) based on observations, rather than being explicitly modeled through physical equations.

parametric

A statistical method that assumes an underlying mathematical function, specified by a set of characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations.

persistence

In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. Hydrologic time series with persistence are **autocorrelated**.

phreatophytes

Plants with deep root systems that are dependent on water from the water table or adjacent soil moisture reserves.

pluvial

An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought.

principal components regression (PCR)

A statistical technique for analyzing and developing multiple regressions from data with multiple potential explanatory variables.

prior appropriation

"First in time, first in right." The prevailing doctrine of water rights for the western United States; a legal system that determines water rights by the earliest date of diversion or storage for beneficial use.

probability density function (PDF)

A function, or curve, that defines the shape of a probability distribution for a continuous random variable.

projection

A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on specified other conditions occurring during the forecast period, typically a particular scenario of greenhouse gas emissions.

quantiles

Divisions of the range of observations of a variable into equal-sized groups.

r

Correlation coefficient. The strength and direction of a linear relationship between two variables.

\mathbb{R}^2

Coefficient of determination. The proportion of variance in a dependent variable that's explained by the independent variables in a regression model.

radiometer

An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy emitted from the sun and reflected by clouds, and longwave energy emitted from the earth's surface.

raster

A digital image or computer mapping format consisting of rows of colored pixels.

reanalysis

An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling environment to produce consistent fields of variables over the entire period of analysis.

reference evapotranspiration

An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the water need for irrigation.

regression

A statistical technique used for modeling the linear relationship between two or more variables, e.g., snowpack and seasonal streamflow.

relative humidity (RH)

The amount of moisture in the atmosphere relative to the amount that would be present if the air were saturated. RH is expressed in percent, and is a function of both moisture content and air temperature.

remote sensing

The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other platforms distant from the object(s) being sensed.

residual

The difference between the observed value and the estimated value of the quantity of interest.

resolution

The level of detail in model output; the ability to distinguish two points in space (or time) as separate.

spatial resolution - Resolution across space, i.e., the ability to separate small details in a spatial representation such as in an image or model.

temporal resolution - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time step.

return flow

The water diverted from a river or stream that returns to a water source and is available for consumptive use by others downstream.

runoff

Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is routed and measured within channels is *streamflow*.

runoff efficiency

The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through evapotranspiration.

sensible heat flux

The flow of heat from the Earth's surface to the atmosphere without phase changes in the water, or the energy directly absorbed/released by an object without a phase change occurring.

shortwave radiation

Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength spectrum is between 0.2 and 3.0 micrometers.

skew

The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) distribution.

skill

The accuracy of the forecast relative to a baseline "naïve" forecast, such as the climatological average for that day. A forecast that performs better than the baseline forecast is said to have positive skill.

smoothing filter

A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. Common signal smoothing techniques include moving average and Gaussian algorithms.

snow water equivalent (SWE)

The depth, often expressed in inches, of liquid water contained within the snowpack that would theoretically result if you melted the snowpack instantaneously.

snow course

A linear site used from which manual measurements are taken periodically, to represent snowpack conditions for larger area. Courses are typically about 1,000' long and are situated in areas protected from wind in order to get the most accurate snowpack measurements.

snow pillow

A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the weight pressing down on the pillow.

stationarity

The condition in which the statistical properties of the sample data, including their probability distribution and related parameters, are stable over time.

statistically significant

Unlikely to occur by chance alone, as indicated by one of several statistical tests.

stepwise regression

The process of building a regression model from a set of values by entering and removing predictor variables in a step-by-step manner.

stochastic method

A statistical method in which randomness is considered and included in the model used to generate output; the same input may produce different outputs in successive model runs.

stratosphere

The region of the upper atmosphere extending from the top of the troposphere to the base of the mesosphere; it begins about 11–15 km above the surface in the mid-latitudes.

streamflow

Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acrefeet for flow volume. Synonymous with **discharge**.

sublimation

When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase without going through the intermediate liquid phase; a major source of snowpack loss over the course of the season.

surface energy balance

The net balance of the exchange of energy between the Earth's surface and the atmosphere.

teleconnection

A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin).

temperature inversion

When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient of temperature decreasing with height.

tercile

Any of the two points that divide an ordered distribution into three parts, each containing a third of the population.

tilt

A shift in probabilities toward a certain outcome.

transpiration

Water discharged into the atmosphere from plant surfaces.

troposphere

The layer of the atmosphere from the Earth's surface up to the tropopause (~11–15 km) below the stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor content, and sensible weather (clouds, rain, etc.).

undercatch

When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with snow, especially under windy conditions.

unregulated flow

Observed streamflow adjusted for some, but not all upstream activities, depending on the location and application.

Upper Basin

The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are upstream of the Colorado River Compact point at Lee Ferry, Arizona.

validation

The process of comparing a model and its behavior and outputs to the real system, after calibration.

variance

An instance of difference in the data set. In regard to statistics, variance is the square of the standard deviation of a variable from its mean in the data set.

wavelet analysis

A method for determining the dominant frequencies constituting the overall time-varying signal in a dataset.

Acronyms & Abbreviations

24MS

24-Month Study Model

AET

actual evapotranspiration

AgriMET

Cooperative Agricultural Weather Network

AgWxNet

Agricultural Weather Network

AHPS

Advanced Hydrologic Prediction Service

ALEXI

Atmosphere-Land Exchange Inversion

AMJ

April-May-June

AMO

Atlantic Multidecadal Oscillation

ANN

artificial neural network

AOP

Annual Operating Plan

AR

atmospheric river

AR-1

first-order autoregression

ARkStorm

Atmospheric River 1,000-year Storm

ASCE

American Society of Civil Engineers

ASO

Airborne Snow Observatory

ASOS

Automated Surface Observing System

AVHRR

Advanced Very High-Resolution

Radiometer

AWOS

Automated Weather Observing System

BCCA

Bias-Corrected Constructed Analog

BCSD

Bias-Corrected Spatial Disaggregation

(downscaling method)

BCSD5

BCSD applied to CMIP5

BOR

United States Bureau of Reclamation

BREB

Bowen Ratio Energy Balance method

C3S

Copernicus Climate Change Service

CA

Constructed Analogues

CADSWES

Center for Advanced Decision Support for

Water and Environmental Systems

CADWR

California Department of Water Resources

CanCM4i

Canadian Coupled Model, 4th generation

(global climate model)

CBRFC

Colorado Basin River Forecast Center

CCA

Canonical Correlation Analysis

CCSM4

Community Climate System Model, version 4 (global climate model)

CDEC

California Data Exchange Center

CDF

cumulative distribution function

CESM

Community Earth System Model (global climate model)

CFS

Climate/Coupled Forecast System

CFSv2

Coupled Forecast System version 2 (NOAA climate forecast model)

CHPS

Community Hydrologic Prediction System

CIMIS

California Irrigation Management Information System

CIR

crop irrigation requirement

CIRES

Cooperative Institute for Research in Environmental Sciences

CLIMAS

Climate Assessment for the Southwest

CLM

Community Land Model

CM2.1

Coupled Physical Model, version 2.1 (global climate model)

CMIP

Coupled Model Intercomparison Project (coordinated archive of global climate model output)

CNRFC

California-Nevada River Forecast Center

CoAgMET

Colorado Agricultural Meteorological Network

CoCoRaHS

Community Collaborative Rain, Hail and Snow Network

CODOS

Colorado Dust-on-Snow

CONUS

contiguous United States (the lower 48 states)

COOP

Cooperative Observer Program

CP

Central Pacific

CPC

Climate Prediction Center

CRB

Colorado River Basin

CRBPP

Colorado River Basin Pilot Project

CRPSS

Continuous Ranked Probability Skill Score

CRSM

Colorado River Simulation Model

CRSP

Colorado River Storage Project

CRSS

Colorado River Simulation System

CRWAS

Colorado River Water Availability Study

CSAS

CRWAS

Center for Snow and Avalanche Studies

CTSM

Community Terrestrial Systems Model

CU

consumptive use

CUL

consumptive uses and losses

CV

coefficient of variation

CVP/SWP

Central Valley Project/State Water Project

CWCB

Colorado Water Conservation Board

CWEST

Center for Water, Earth Science and

Technology

DA

data assimilation

Daymet v.3

daily gridded surface meteorological data

DCP

Drought Contingency Plan

DEM

digital elevation model

DEOS

Delaware Environmental Observing System

DHSVM

Distributed Hydrology Soil Vegetation

Model

DJF

December-January-February

DMDU

Decision Making Under Deep Uncertainty

DMI

Data Management Interface

DOD

Department of Defense

DOE

Department of Energy

DOW

Doppler [radar] on Wheels

DRI

Desert Research Institute

DTR

diurnal temperature range

EC

eddy-covariance method

EC

Environment Canada

ECCA

ensemble canonical correlation analysis

ECMWF

European Centre for Medium-Range

Weather Forecasts

EDDI

Evaporative Demand Drought Index

EFAS

European Flood Awareness System

EIS

Environmental Impact Statement

En-GARD

Ensemble Generalized Analog Regression Downscaling

ENSO

El Niño-Southern Oscillation

EOF

empirical orthogonal function

ΕP

Eastern Pacific

ERC

energy release component

ESI

Evaporative Stress Index

ESM

coupled Earth system model

ESP

ensemble streamflow prediction

ESRL

Earth System Research Laboratory

ET

evapotranspiration

 ET_0

Reference (crop) evapotranspiration

EVI

Enhanced Vegetation Index

FAA

Federal Aviation Administration

FAWN

Florida Automated Weather Network

FEWS

Famine Early Warning System

FEWS

Flood Early Warning System

FIRO

forecast-informed reservoir operations

FLOR

Forecast-oriented Low Ocean Resolution (global climate model)

FORTRAN

Formula Translation programming language

FPS

Federal Priority Streamgages

FROMUS

Forecast and Reservoir Operation Modeling Uncertainty Scoping

fSCA

fractional snow covered area

FWS

U.S. Fish and Wildlife Service

GCM

global climate model, or general circulation model

GEFS

Global Ensemble Forecast System

GEM

Global Environmental Multiscale model

GEOS

Goddard Earth Observing System (global climate model)

GeoTiff

Georeferenced Tagged Image File Format

GFDL

Geophysical Fluid Dynamics Laboratory

GFS

Global Forecast System model

GHCN

Global Historical Climatology Network

GHCN-D

Global Historical Climate Network-Daily

GHG

greenhouse gas

GIS

geographic information system

GLOFAS

Global Flood Awareness System

GLOFFIS

Global Flood Forecast Information System

GOES

Geostationary Operational Environmental Satellite

GRACE

Gravity Recovery and Climate Experiment

GRIB

gridded binary or general regularlydistributed information in binary form

gridMET

Gridded Surface Meteorological dataset

GSSHA

Gridded Surface/Subsurface Hydrologic Analysis

GW

groundwater

HCCD

Historical Canadian Climate Data

HCN

Historical Climatology Network

HDA

hydrologic data assimilation

HDSC

Hydrometeorological Design Studies

Center

HEFS

Hydrologic Ensemble Forecast Service

HESP

Hierarchical Ensemble Streamflow

Prediction

HL-RDHM

Hydrologic Laboratory-Research Distributed

Hydrologic Model

HMT

Hydromet Testbed

HP

hydrological processor

HRRR

High Resolution Rapid Refresh (weather

model)

HSS

Heidke Skill Score

HTESSEL

Land-surface Hydrology Tiled ECMWF

Scheme for Surface Exchanges over Land

HUC

Hydrologic Unit Code

HUC4

A 4-digit Hydrologic Unit Code, referring to

large sub-basins (e.g., Gunnison River)

HUC12

A 12-digit Hydrologic Unit Code, referring

to small watersheds

ICAR

Intermediate Complexity Atmospheric

Research model

ICS

intentionally created surplus

IDW

inverse distance weighting

IFS

integrated forecast system

IHC

initial hydrologic conditions

INSTAAR

Institute of Arctic and Alpine Research

IPCC

Intergovernmental Panel on Climate

Change

IPO

Interdecadal Pacific Oscillation

IRI

International Research Institute

iRON

Interactive Roaring Fork Observing Network

ISM

Index Sequential Method

JFM

January-February-March

JJA

June-July-August

K-NN

K-Nearest Neighbor

Landsat

Land Remote-Sensing Satellite (System)

LAST

Lane's Applied Stochastic Techniques

LERI

Landscape Evaporative Response Index

lidar

light detection and ranging

LOCA

Localized Constructed Analog

LSM

land surface model

M&I

municipal and industrial (water use

category)

MACA

Multivariate Adaptive Constructed Analog

maf

million acre-feet

MAM

March-April-May

MEFP

Meteorological Ensemble Forecast

Processor

METRIC

Mapping Evapotranspiration at high

Resolution with Internalized Calibration

MJO

Madden-Julian Oscillation

MMEFS

Met-Model Ensemble Forecast System

MOCOM

Multi-Objective Complex evolution

MODDRFS

MODIS Dust Radiative Forcing in Snow

MODIS

Moderate Resolution Imaging

Spectroradiometer

MODIS LST (MYD11A2)

Moderate Resolution Imaging

Spectroradiometer Land Surface

Temperature (MYD11A2)

MODSCAG

MODIS Snow Covered Area and Grain-size

MPR

Multiscale Parameter Regionalization

MRM

Multiple Run Management

MT-CLIM (or MTCLIM)

Mountain Climate simulator

MTOM

Mid-Term Probabilistic Operations Model

NA-CORDEX

North American Coordinated Regional

Downscaling Experiment

NAM

North American Monsoon

NAO

North Atlantic Oscillation

NARCCAP

North American Regional Climate Change

Assessment Program

NARR

North American Regional Reanalysis

nasa

National Aeronautics and Space

Administration

NASA JPL

NASA Jet Propulsion Laboratory

NCAR

National Center for Atmospheric Research

NCCASC

North Central Climate Adaptation Science

Center

NCECONET

North Carolina Environment and Climate

Observing Network

NCEI

National Centers for Environmental

Information

NCEP

National Centers for Environmental

Prediction

nClimDiv

new Climate Divisional (NOAA climate

dataset)

NDBC

National Data Buoy Center

NDVI

Normalized Difference Vegetation Index

NDWI

Normalized Difference Water Index

NEMO

Nucleus for European Modelling of the

Ocean (global ocean model)

NevCan

Nevada Climate-ecohydrological

Assessment Network

NGWOS

Next-Generation Water Observing System

NHMM

Bayesian Nonhomogenous Hidden Markov

Model

NICENET

Nevada Integrated Climate and

Evapotranspiration Network

NIDIS

National Integrated Drought Information

System

NLDAS

North American Land Data Assimilation

System

NMME

North American Multi-Model Ensemble

NN_{R1}

NCEP/NCAR Reanalysis

NOAA

National Oceanic and Atmospheric

Administration

NOAH

Neural Optimization Applied Hydrology

Noah-MP

Noah-Multi-parameterization Model

NOHRSC

National Operational Hydrologic Remote

Sensing Center

NPP

Nonparametric paleohydrologic method

NRCS

Natural Resource Conservation Service

NSF

National Science Foundation

NSIDC

National Snow and Ice Data Center

NSMN

National Soil Moisture Network

NVDWR

Nevada Department of Water Resources

NWCC

National Water and Climate Center

NWIS

National Water Information System

NWM

National Water Model

NWP

numerical weather prediction

NWS

National Weather Service

NWSRFS

National Weather Service River Forecast

System

NZI

New Zealand Index

OCN

Optimal Climate Normals

OHD

Office of Hydrologic Development

OK Mesonet

Oklahoma Mesoscale Network

ONI

Oceanic Niño Index

DAWO

Office of Weather and Air Quality

OWP

Office of Water Prediction

PC

principal components

PCA

principal components analysis

PCR

principal components regression

PDO

Pacific Decadal Oscillation

PDSI

Palmer Drought Severity Index

PET

potential evapotranspiration

PGW

pseudo-global warming

PRISM

Parameter-elevation Relationships on

Independent Slopes Model

PSD

Physical Sciences Division

QBO

Quasi-Biennial Oscillation

QDO

Quasi-Decadal Oscillation

QΜ

quantile mapping

QPE

Quantitative Precipitation Estimate

QPF

Quantitative Precipitation Forecast

QTE

Quantitative Temperature Estimate

QTF

Quantitative Temperature Forecast

radar

radio detection and ranging

RAP

Rapid Refresh (weather model)

RAWS

Remote Automated Weather Station

Network

RCM

Regional Climate Model

RCP

Representative Concentration Pathway

RE

reduction-of-error

RFC

River Forecast Center

RFS

River Forecasting System

RH

relative humidity

RiverSMART

RiverWare Study Manager and Research

Tool

RMSE

root mean squared error

S/I

seasonal to interannual

S2S

subseasonal to seasonal

Sac-SMA

Sacramento Soil Moisture Accounting

Model

SAMS

Stochastic Analysis Modeling and

Simulation

SCA

snow-covered area

SCAN

Soil Climate Analysis Network

SCE

Shuffled Complex Evolution

SCF

seasonal climate forecast

SE

standard error

SECURE

Science and Engineering to

Comprehensively Understand and

Responsibly Enhance Water

SFWMD

South Florida Water Management District

SM

soil moisture

SMA

Soil Moisture Accounting

SMAP

Soil Moisture Active Passive

SMHI

Swedish Meteorological and Hydrological

Institute

SMLR

Screening Multiple Linear Regression

SMOS

Soil Moisture and Ocean Salinity

SNODAS

Snow Data Assimilation System

SNOTEL

Snow Telemetry

SOI

Southern Oscillation Index

SON

September-October-November

SPoRT

Short-term Prediction Research Transition

SRES

Special Report on Emissions Scenarios

SRP

Salt River Project

SSEBOP

Simplified Surface Energy Balance

SSEBOP ET

Simplified Surface Energy Balance

Evapotranspiration

SSP

Societally Significant Pathway

SST

sea surface temperatures

SSW

stratospheric sudden warming

SubX

Subseasonal Experiment

SUMMA

Structure for Unifying Multiple Modeling

Alternatives

SVD

singular value decomposition

SW

surface water

SWANN

Snow-Water Artificial Neural Network

Modeling System

SWcasts

Southwest Forecasts

SWE

snow water equivalent

SWOT

Surface Water and Ocean Topography

SWS

Statistical Water Supply

Tair

air temperature

Tdew

dew point temperature

TopoWx

Topography Weather (climate dataset)

TVA

Tennessee Valley Authority

UC

Upper Colorado Region (Reclamation)

UCAR

University Corporation for Atmospheric

Research

UCBOR

Upper Colorado Bureau of Reclamation

UCRB

Upper Colorado River Basin

UCRC

Upper Colorado River Commission

UCRSFIG

Upper Colorado Region State-Federal

Interagency Group

USACE

U.S. Army Corps of Engineers

USBR

U.S. Bureau of Reclamation

USCRN

U.S. Climate Reference Network

USDA

U.S. Department of Agriculture

USGCRP

U.S. Global Change Research Program

USGS

U.S. Geological Survey

USHCN

United States Historical Climatology

Network

VIC

Variable Infiltration Capacity (model)

VIIRS

Visible Infrared Imaging Radiometer Suite

VPD

vapor pressure deficit

WBAN

Weather Bureau Army Navy

WCRP

World Climate Research Program

WFO

Weather Forecast Office

WPC

Weather Prediction Center

WRCC

Western Regional Climate Center

WRF

Weather Research and Forecasting

WRF-Hydro

WRF coupled with additional models to

represent hydrologic processes

WSF

water supply forecast

WSWC

Western States Water Council

WUCA

Water Utility Climate Alliance

WWA

Western Water Assessment

WWCRA

West-Wide Climate Risk Assessments

WWMPP

Wyoming Weather Modification Pilot

Project

