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Volume III of the Colorado River Basin State of the Science report focuses on models and methods 
for forecasting weather, climate, and streamflow at the short- to mid-term time scale. Forecasts at 
this time scale are critical to water managers ensuring supply to their customers, farmers making 
planting decisions, ski areas planning staffing needs, utility operators making purchasing decisions, 
and retailers trying to plan inventory, among many others. 

The two chapters in Volume III offer comprehensive descriptions and assessments of the state of 
short-to-mid-term forecasting methods, their skill, the data they require, their applications, and 
their tradeoffs. Results from weather and climate forecasting models feed into streamflow 
forecasting models to generate forecasted inflows for Reclamation’s three primary models. 

Chapter 7 describes the methods used to forecast weather and climate. The chapter is organized 
around the three forecast time frames: weather, 1-14 days; sub-seasonal, 14 days to 3 months; and 
seasonal, 3 months to 1 year. Weather forecasts are the most skillful of the three, and demonstrate 
steady, if small, improvements. The most challenging of these time frames is the sub-seasonal time 
frame; this chapter describes why this is so, and addresses the constraints on future improvements 
to forecasts on this time frame. Seasonal forecasts perform in the middle—they currently lack skill, 
particularly for precipitation, but judicious use of these forecasts, at times and places of good 
predictability, could be beneficial. Accordingly, the bulk of the chapter provides background on the 
tools and techniques that are behind seasonal forecasts and provides a good reference on the 
operational seasonal forecast products. The chapter concludes by describing the implications of the 
current state of seasonal forecasting for the basin, particularly the Upper Basin, and describes 
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initiatives to improve seasonal forecasts. Finally, it surveys the challenges and opportunities for 
forecasting across all three time frames.    

Chapter 8 describes the concepts, approaches and tools used to forecast streamflow. This chapter 
focuses mainly on techniques and models that are relevant to Reclamation operations and planning 
activities—the monthly to seasonal ensemble forecasts that provide critical input to Reclamation’s 
24-Month Study (24MS) and Mid-term Operations Probabilistic Model (MTOM), which are used to 
generate system operations projections (monthly reservoir releases and storages) up to 5 years out 
(Chapter 3). The chapter explains the sources of predictability, in order to provide a basis for 
forming priorities for improvement of forecasts. It describes three types of forecast models, 
dynamical, statistical, and hybrid; two types of forecasts, single-value and ensemble; and two 
forecasting paradigms, in-the-loop and over-the-loop. It provides detailed descriptions of 
operational forecast systems and experimental products across three time frames: short-range 
(days), mid-range (months) and interannual to decadal (Year 2 and beyond). Then, the use of mid-
range streamflow forecasts—the only operational use of streamflow forecasts by Reclamation in the 
basin—in the 24MS and MTOM is described. Reclamation has considerable immediate interest in 
improving operational forecasts for Year 2, but decadal climate prediction currently exhibits poor 
skill, and NWS has not yet made investments toward improving Year 2 predictions. Chapter 8 
describes Reclamation’s own initiative toward improved Year 2 forecasts, the Colorado River Basin 
Streamflow Forecast Testbed, intended to provide an objective approach to compare current and 
experimental streamflow forecasting methods. Finally, Chapter 8 provides a comprehensive review 
of the benefits, limitations, and challenges of a broad array of potential scientific and technological 
improvements to the existing operational streamflow forecast systems.  
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Key points 
• Uncertainty about upcoming weather and climate conditions translates 

into a major source of uncertainty in seasonal streamflow forecasts. 
• Weather forecasts out to 10 days have relatively high skill and are 

progressively improving; they are incorporated into the CBRFC’s 
operational streamflow forecasts. 

• Sub-seasonal (2 weeks to 12 weeks) and seasonal (3 months to 1 year+) 
climate forecasts have much lower skill, especially in the Upper Basin, 
and they are not incorporated in the CBRFC streamflow forecasts. 

• A major research effort has ramped up in the last decade to advance 
sub-seasonal and seasonal forecasting. 

• Sub-seasonal and seasonal forecasts for temperature are generally 
more skillful than forecasts for precipitation, and skill for both is 
generally higher for the Lower Basin than for the Upper Basin. 

• For precipitation, the Climate Prediction Center’s seasonal forecast skill 
in both basins has been positive for winter and spring, suggesting users 
should focus their forecast use on those seasons.    

• There are other opportunities to better utilize the skill that does exist 
in sub-seasonal and seasonal climate forecasts, such as using them to 
“nudge” the streamflow forecast ensemble during post-processing. 

7.1 Overview 

Uncertainty about future weather and climate affects streamflow 
forecasting on multiple timescales. In particular, uncertainty about the 
future weather and climate is one of the largest sources of error in seasonal 
streamflow forecasting. Even if, on April 1, we had perfect knowledge of the 
snowpack, and knew exactly how much of that snow would be translated 
into runoff, we would still have considerable uncertainty in spring-summer 
streamflow forecasts, because the weather that occurs from April through 
July can have a substantial impact on the runoff over that period.  

When weather and climate forecasts have positive skill, i.e., predictive value 
above and beyond a null forecast (i.e., the climatological average 
conditions), there is an opportunity to inform and improve streamflow 
forecasts, and to guide other water resource decision-making. Weather 
forecasts out to roughly 10 days have relatively high skill for both 
temperature and precipitation (Figure 7.1), so CBRFC operational water 
supply forecasts incorporate them, as described in section 7.3. 
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At longer sub-seasonal and seasonal climate forecast periods (>14 days), the 
forecast is generally much lower than the skill for weather forecasts, 
constraining opportunities for improving streamflow forecasts (Figure 7.1). 
The CBRFC operational water supply forecasts do not currently incorporate 
sub-seasonal (2–12 weeks) or seasonal (3 months and longer) climate 
forecasts, due to their low skill.  

The CBRFC’s Hydrologic Ensemble Forecast Service (HEFS) system provides 
a pathway for incorporating additional weather and climate forecasts into 
their streamflow forecasts, if they have sufficient and consistent skill and 
an archive of historical hindcasts to allow validation. CBRFC forecasters 
have tested the incorporation of some sub-seasonal and seasonal climate 
forecasts, as described below and in Chapter 8. 

The overall gap in predictive skill between weather forecasts and longer-
term climate forecasts is reflected in fundamental differences in the way 
the forecasts are presented. First, weather forecasts are for specific daily 

 
Figure 7.1 

Schematic showing typical forecast skill relative to forecast range for three types of weather and 
climate forecasts: short-range weather forecasts; sub-seasonal climate forecasts, and seasonal climate 
forecasts, including potential sources of predictability. Relative skill is based on differing forecast 
averaging periods, shown inside the arrows. (Source: adapted from a figure by Elisabeth Gawthrop 
and Tony Barnston, International Research Institute for Climate and Society). 
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(or more frequent) outcomes, while sub-seasonal and seasonal climate 
forecasts are for outcomes as averaged across weekly, biweekly, monthly, 
or seasonal periods. Second, weather forecasts are usually presented as 
deterministic forecasts: a single temperature value or precipitation amount 
is forecasted. (The exception is the familiar “probability of precipitation” 
forecast, e.g., 40% chance of rain tomorrow.) Sub-seasonal and seasonal 
forecasts are typically presented in probabilistic terms, as a shift in 
likelihood compared to the historical distribution of outcomes, e.g., 60% 
chance of wetter than normal conditions over the winter season, compared 
to a 50% chance across the historical period (assuming a 2-category 
forecast). Sub-seasonal and seasonal forecasts can also be presented as 
deterministic forecasts (e.g., 2.3” of precipitation over the next 1-month 
period) but users should be aware that the specificity and precision of such 
forecasts is far greater than their accuracy and skill.  

Increasingly, “S2S” is used as a shorthand for “sub-seasonal to seasonal 
forecasts,” but the actual forecast periods being referred to can be 
inconsistent. In most technical literature, S2S refers to sub-seasonal 
forecasts; i.e., forecast periods up to one season (<3 months). But S2S has 
also been used to refer to sub-seasonal and seasonal forecasts, or, less 
frequently, sub-seasonal and season 1 (i.e., 3-month) forecasts. To avoid 
confusion, in this chapter we use the terms “sub-seasonal” and “seasonal” 
instead of S2S, except when the latter is part of the name of a project.  

7.2 What makes a weather or climate forecast useful? 

First, a distinction needs to be made between forecast quality, which is 
assessed independently of the use of the forecast, and forecast value, which 
is the utility of the forecast to the user.  

The assessment of forecast quality—verification—has several components. 
The measures of quality need to be evaluated across many (100s or 1000s) 
forecasts produced by the same forecast system in order for the measures 
to be taken as indicative of the quality of current or forthcoming forecasts 
that have not yet been verified (Hudson 2017), which is what the user really 
wants to know.   

• Accuracy is the overall level of agreement between the forecasted and 
predicted values. But accuracy by itself can be misleading, since a 
“naïve” forecast can be quite accurate. For example, since precipitation 
occurs on only 20-30% of all days in most locations in the Upper Basin, 
a consistent daily forecast of “no precipitation” will be accurate 70-80% 
of the time. 

• Skill is more meaningful than accuracy; it measures the accuracy of the 
forecast relative to a baseline “naïve” forecast: the climatological value, 
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a simple persistence forecast, or, if there are multiple forecast “bins,” 
the odds of forecasting the correct bin by chance alone. Positive skill 
(>0 for nearly all skill metrics) means that there is value beyond the 
naïve forecast. There are many different metrics of forecast skill; the 
metrics shown in the figures and tables below, and explained in the 
text, are the anomaly correlation (AC) and Heidke skill score (HSS). Both 
are fairly simplistic and cannot by themselves convey the multiple 
dimensions of forecast quality, or the forecast’s value to the user.  

• Reliability is a measure of forecast quality specific to probabilistic 
forecasts; it is the agreement between the forecast probability and 
observed frequency of outcomes. For example, across all of the days a 
weather forecast system called for a 30% chance of rain, for perfect 
reliability it would have rained on 30% of those days, and so on for 
other percentages. Reliability can likewise be measured for sub-
seasonal and seasonal forecasts; e.g., across all the 3-month seasons for 
which a climate forecast system called for a 60% chance of above-
normal precipitation (assuming only two categories, above and below), 
then for perfect reliability, 60% of those seasons should have observed 
above-average precipitation, and so on.  

• Additional measures of skill specific to probabilistic forecasts 
complement reliability. Resolution measures how well the forecasts can 
distinguish different categories; e.g., do the observed outcomes differ 
between periods with forecasts of 60% chance of above-normal 
precipitation and with forecasts of 70% chance of above-normal 
precipitation. Sharpness is the ability to forecast extreme values 
(probabilities near 0% or 100%) in at least some cases, rather than only 
values clustered around the observed mean probability.  

Broadly speaking, the higher the forecast quality, the more opportunity 
there is for the forecast to be useful, but forecast quality and value to the 
user are not necessarily linked (Hudson 2017). Usefulness also strongly 
depends on the decision context, including the risk tolerance of the user, 
and whether the forecast is used in a decision-support tool (e.g., a 
streamflow forecast model) or considered on its own.  

Deterministic weather forecasts out to 5–10 days have become skillful 
enough that the forecasted conditions can be treated as though they will 
occur, such as with the incorporation of weather forecasts into the CBRFC 
ESP water supply forecasts (see section 7.3). Water managers often use 
weather forecasts to make discrete, yes-or-no decisions with some 
confidence, e.g., releasing water from a nearly full reservoir now to avoid an 
uncontrolled spill a week from now, given the forecast of heavy rainfall over 
the next five days.  
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Sub-seasonal and seasonal climate forecasts will never have that level of 
skill or certainty; relatively low predictability at these time scales may be a 
fundamental property of the climate system (Albers and Newman 2019). But 
if climate forecasts have at least some positive skill or reliability for the 
basin and season of interest, they can potentially be useful. Since climate 
forecasts are typically presented in probabilistic terms, they are suited for 
modeling and decision support frameworks that are themselves 
probabilistic, such as ensemble streamflow prediction. In this case, the 
tendency shown in the climate forecast, if any (e.g., 60% chance of above-
normal precipitation), can be used to weight the historical years used to 
populate the streamflow ensemble.  

Climate forecasts can also be used to inform discrete, infrequent yes-or-no 
decisions, such as whether to generate hydropower during the fall and 
winter instead of maximizing water storage, but decision makers must 
accept the significant risk of the forecasted climate tendency not actually 
occurring (Garbrecht and Piechota 2005). Also, there may not be a large 
enough forecasted tendency in a given year or season to influence a 
decision. In many contexts, then, climate forecasts may provide more value 
when used selectively, rather than routinely.   

7.3 Weather forecasts (1 to 14 days out) 

The steady progress in weather forecasting over the last several decades 
has been called a “quiet revolution,” resulting from a steady accumulation 
of knowledge about the atmosphere and technical advances in modeling. 
Forecast skill for the mid-latitude regions in the Northern Hemisphere, 
such as over the Colorado River Basin, has been increasing by about 1 day 
per decade for forecast lead times of 3 to 10 days; today’s 5-day weather 
forecast is as skillful as the 4-day forecast was 10 years ago (Bauer, Thorpe, 
and Brunet 2015). 

The main source of predictability and skill for weather forecasts is the 
accurate description of the initial conditions of the atmosphere (Figure 7.1) 
by coordinated global networks of observations from sensors that are land, 
ocean, and satellite-based, and from airborne sensors. Once initialized with 
those observations, the weather forecast model simulates the evolution of 
the initial synoptic (large scale) weather patterns shown in the 
observations. The skill of weather forecasts, on average, systematically 
declines from day 1 to day 14 (Figure 7.1) as the information contained in the 
initial conditions is gradually lost to chaotic processes underlying the 
motions of the atmosphere. This information loss can be slowed by 
improved initialization of the models (i.e., better observations), and by 
improved modeling of the physical processes, but a marked drop-off in skill 
during weeks 1 and 2 will persist through any conceivable future 
improvements. Producing moderately skillful forecasts at longer lead times 

https://www.zotero.org/google-docs/?hWlLy1
https://www.zotero.org/google-docs/?hWlLy1
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(i.e., sub-seasonal) requires additional information beyond weather 
patterns and associated atmospheric motions, such as the correct 
prediction of changes in the stratosphere, persistence due to land surface 
conditions, and slowly varying ocean-atmosphere patterns (e.g., Madden-
Julian Oscillation, or MJO; and El Niño-Southern Oscillation, or ENSO).  

All operational weather forecasts are based on dynamical, physics-based 
simulation models that run on supercomputers; thus, weather forecasting 
is also referred to as numerical weather prediction (NWP). The domain of 
most weather models is global, though very-high-resolution weather 
models (e.g., Weather Research and Forecasting model, WRF), with regional 
domains such as the western U.S., are also used for short-term forecasts of 
48 hours or less.  

The domain of all weather and climate models is gridded in three 
dimensions, with the vertical dimension representing multiple layers of the 
atmosphere. The models solve the fundamental physical equations for fluid 
motion; conservation of mass, momentum, and energy; and the ideal gas 
law. Many relevant processes occur at scales smaller than the model grid, 
such as cumulus cloud formation, so parameterization schemes are needed 
to properly describe the impact of these sub-grid-scale mechanisms on the 
large-scale flow of the atmosphere (Bauer, Thorpe, and Brunet 2015). The 
initialization of the forecasts with observations is accomplished through 
data assimilation, which typically involves the statistical correction of a 
prior short-term gridded model forecast to the newly available 
observations, in order to provide the most accurate gridded depiction of 
the initial state. 

The primary global weather forecast models used in operational weather 
forecasts in the U.S. include the NOAA National Centers for Environmental 
Prediction (NCEP) Global Forecast System (GFS) model, the European 
Centre for Medium-Range Weather Forecasts (ECMWF) Integrated 
Forecast System (IFS) model (often referred to as the “European model”), 
and the Global Environmental Multiscale (GEM) model (the “Canadian 
model”).  

The evolution of weather patterns over time is highly sensitive to the initial 
state of the atmosphere, and we cannot observe and describe those initial 
conditions perfectly. Consequently, it has become common to run a set, or 
ensemble, of weather predictions from the same model using slightly 
different initial conditions. The spread of the forecasts in the ensemble 
thus captures the uncertainty due to our imperfect knowledge of initial 
conditions. The NOAA Global Ensemble Forecast System (GEFS) based on 
the NOAA GFS forecast model is made up of 21 separate forecasts 
(ensemble members), with output four times a day and forecasts going out 
to 16 days. The ECMWF Ensemble Prediction System comprises 51 forecasts 
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from the ECMWF forecast model using different initial conditions, like 
GEFS, and also with slightly different model equations to represent 
uncertainty due to model structure and parameters (see discussion of 
uncertainty in Chapter 1).  

Even with recent technical progress, these ensemble prediction systems for 
weather (and climate) forecasts inevitably have some bias (the forecasted 
mean is different from the observed mean) and unreliability (the forecasted 
distribution is different from the observed distribution). Thus, statistical 
post-processing of “raw” forecasts, to improve ensemble forecast guidance 
prior to its dissemination, is a critical element of the forecast process. The 
discrepancies between past forecasts and observations are used to adjust 
the raw real-time forecasts.  

Skill of forecasts over weather timescales 
Table 7.1 shows the skill of weeks 1 and 2 forecasts of precipitation and 
temperature for the Upper and Lower Basins from the NOAA NCEP CFSv2 
(Climate Forecast System) model. The skill metric (Anomaly Correlation 
Coefficient; ACC) compares the 14-day average forecasted precipitation and 
temperature with the observed 14-day averages. As noted earlier, and 
shown in Figure 7.1, the skill drops off rapidly within that 14-day period, and 
the skill would be substantially higher if the results were only for week 1.  

Table 7.1 

Skill (Anomaly Correlation; AC) for weeks 1–2 (1–14 days out) of deterministic forecasts from the CFSv2 
model for the calendar year (annual) and the climatological seasons, based on reforecasts for the 1999–
2010 period. A perfect forecast would have an AC skill of 1.0; the climatological average has a skill of 0. 
The skill scores for the eight HUC4 sub-basins each in the Upper Basin and Lower Basin were averaged 
to produce the scores shown here. The CFSv2 forecasts were bias-corrected using quantile mapping. 
(Data: S2S Outlooks for Watersheds; http://hydro.rap.ucar.edu/s2s/) 

Skill (AC) for Weeks 1-2 forecasts, CFSv2 model 

Variable Basin Annual DJF MAM JJA SON 

Precipitation 

Upper 
Basin 

0.59 0.70 0.56 0.51 0.57 

Lower 
Basin 

0.67 0.77 0.59 0.58 0.58 

Temperature 

Upper 
Basin 

0.77 0.74 0.78 0.77 0.79 

Lower 
Basin 

0.80 0.79 0.81 0.74 0.80 

 

http://hydro.rap.ucar.edu/s2s/
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The forecast skill is generally high (about 0.6–0.8), with overall higher skill 
for temperature forecasts than precipitation forecasts. This disparity in 
forecast skill between temperature and precipitation is seen across longer 
time scales as well, which reflects that temperature varies less than 
precipitation over both time and space, and is also more straightforward to 
simulate and predict. Table 7.1 also shows that Lower Basin precipitation 
forecasts are somewhat more skillful than those for the Upper Basin, and 
that precipitation forecast skill in both basins is higher in winter than in 
other seasons. Predictive skill for precipitation also has strong seasonal 
patterns; skill is highest in winter, reflecting that the primary mechanism of 
precipitation (mid-latitude cyclonic storms) is broader scale and better 
simulated than convective precipitation in the warmer seasons.   

CFSv2 is a fully coupled climate forecast model that incorporates the GFS 
weather forecast model (run at lower resolution than for weather 
forecasting) to represent atmospheric motions, an ocean model, and the 
Noah land surface model (Chapter 6). We show the skill of CFSv2 for 
weather timescales (weeks 1–2), instead of that of the GFS or another 
dedicated weather forecast model, to allow direct comparison with the skill 
(i.e., ACC) of the same CFSv2 model over sub-seasonal timescales (weeks 
3-4) later in this chapter (Table 7.2). The skill of the operational GFS model 
over this time period would be higher than CFSv2 due to its higher spatial 
resolution and more optimized capture of initial conditions. 

As mentioned above, the skill of weather forecasts has been increasing at a 
fairly constant rate over the past 20 years, as many improvements have 
been made in observing systems, assimilation schemes, and the models 
themselves. There may be an opportunity for CBRFC streamflow forecasts 
to incorporate weather forecasts, especially for precipitation, at longer lead 
times than is currently done. 

Current use of weather forecasts by the CBRFC 
Currently, the CBRFC ESP water supply forecasts that are key inputs to the 
24MS and MTOM models (Chapter 3) use two types of weather forecasts: 
the 10-day quantitative temperature forecast (QTF) and the 5-day 
quantitative precipitation forecast (QPF). The temperature forecasts come 
from the National Blend of Models (NBM), a nationally consistent suite of 
calibrated forecast guidance based on a blend of both NOAA and non-
NOAA weather model data. The precipitation forecasts are based on the 
NBM and additional guidance from the NOAA Weather Prediction Center. 
The forecast grids are modified by the CBRFC to allow for their 
incorporation into the CBRFC streamflow forecast model (Chapters 6 & 8).  

The QPF predicts a specific, most-probable amount of precipitation that 
will fall over the forecast period; i.e., it is presented as a deterministic 
forecast. Because these short-term forecasts of precipitation have high 
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skill, the CBRFC forecast model treats the QPF as though it represents 
precipitation that has already fallen. When a storm is forecasted to hit the 
basin within 1–5 days from the issuance of an ESP or official streamflow 
forecast, the forecasted storm as shown in the QPF will cause an increase 
in the forecasted seasonal streamflow volume, even though the storm has 
not yet arrived. Likewise, if the QTF shows an unusually warm period in 
mid-winter, the CBRFC model can reduce the modeled lower-elevation 
snowpack and thus decrease the forecasted streamflow volume. Thus, over 
the course of a season, a trace created by the most-probable ESP forecasts 
incorporating the QPF (and QTF) consistently leads, by up to 5 days, a trace 
created by ESP forecasts without the QPF, while having similar fluctuations 
reflecting storms and melt episodes (Figure 7.2). 

 
Figure 7.2 

CBRFC daily ESP forecasts for April–July Lake Powell inflows for the 2018–2019 season issued from 
mid-December through early June. The default forecasts (“With QPF”) that incorporate 5-day 
Quantitative Precipitation Forecasts (QPF) and 10-day Quantitative Temperature Forecasts (QTF) 
show increases in forecasted streamflow volumes about 2–5 days before forecasts with no QPF, 
reflecting the expected gains from forecasted storms that have not yet occurred. (Data: CBRFC) 
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7.4 Sub-seasonal forecasts (2 weeks to 12 weeks) 

Overview 
For the purposes of this section, “sub-seasonal” refers to forecasts of 
meteorological variables at lead times from 2 weeks to 12 weeks in the 
future. This period has been called the “weather-climate prediction gap” 
(Mariotti, Ruti, and Rixen 2018). Short-term weather forecasts depend 
crucially on the initial state of the atmosphere that is input to the forecast 
models, while longer-term seasonal climate forecasts leverage 
predictability that emerges from the slower-evolving components of the 
Earth system including the ocean state, soil moisture, sea-ice conditions 
and other so-called “boundary conditions” for the atmosphere (Figure 7.1). 
The sub-seasonal prediction gap—where both initial and boundary 
conditions can be important—is being closed, albeit slowly, from both sides. 
The first two months of seasonal climate forecasts provides information 
about this time frame, while medium-range weather prediction models 
such as NOAA’s GFS and the ECMWF’s IFS are being extended out to 30–45 
day forecasts and beyond.   

The dynamical models used for sub-seasonal (and seasonal) predictions are 
typically run at lower resolution than for weather forecasts. They simulate 
the interactions between the atmosphere, ocean, land surface, and 
sometimes sea ice components of the climate system. While it is common 
to differentiate “climate models” from “weather models,” these two 
categories overlap a great deal, especially for the models used at a sub-
seasonal time scale—some of which are also used for weather forecasts, 
while others are also used for multi-decadal climate projections (i.e., GCMs; 
Chapter 11). 

When current generation weather forecast models (e.g., GFS, ECMWF IFS) 
are extended beyond 14 days, they develop large systematic forecast errors, 
particularly in their representation of tropical convection and the 
positioning of the mid-latitude jet stream and storm track (World 
Meteorological Organization 2013). Similarly, climate forecast models such 
as NOAA’s CFSv2, which are better tuned to reduce bias in the 
climatological (long-term average) atmospheric circulation, tend to have 
lower performance for short lead times (0–7 days) than the weather 
models. This lower performance is due to many factors: coarser spatial 
resolution, biases that appear in the oceanic and land surface components, 
and the fact that the atmospheric and oceanic initial conditions are not 
optimized as they are for weather models. An active area of research is to 
better incorporate data from the atmosphere, land, ice, and oceans into the 
initial conditions of forecast models, referred to as “coupled data 
assimilation” (World Meteorological Organization 2017). 
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Sub-seasonal forecasting also faces a statistical disadvantage compared to 
seasonal forecasts. Because the forecast periods for the sub-seasonal 
forecasts are shorter than the 3-month season that is the typical period for 
seasonal forecasts, there is less time for the unpredictable component of 
the climate (“noise”) to be averaged out.  

Note, also, that sub-seasonal forecast skill quoted for periods such as 
“weeks 1–2” or “weeks 2–3” will be dominated by the weather forecast skill 
for the early part of that period (Figure 7.1). The same is true for the Climate 
Prediction Center (CPC) revised monthly forecasts that are issued with no 
lead time, i.e., on the last day of the month preceding the forecasted month, 
as opposed to the initial forecasts issued with 8–14 days lead time (See 
“NOAA CPC Outlooks” below).    

Sub-seasonal forecasts of temperature and precipitation are inherently 
suited for probabilistic interpretation and analysis. Accordingly, ensembles 
of numerical weather and climate prediction model forecasts are the tools 
of choice. Such ensembles may be generated by multiple runs of a single 
forecast model, which accounts for the uncertainty due to our imperfect 
knowledge of the initial state of the atmosphere. Ensembles can also be 
comprised of multiple runs from different models, such as with the North 
American Multi-Model Ensemble (NMME); in this case the ensemble also 
captures the uncertainty due to model structure and parameters, similar to 
the CMIP (Coupled Model Intercomparison Project) ensembles of multi-
decadal climate projections (Chapter 11). The NMME, which is used for both 
operational sub-seasonal and seasonal forecasting consists of seven models 
in total: CFSv2, two Canadian models (CanCM4 and GEM-NEMO), two 
NOAA GFDL models (CM2.1 and FLOR), NCAR’s CCSM4, and NASA’s GEOS 
S2S. Studies have shown that the ensemble-average forecasts from NMME 
are more skillful than those from any single model in the ensemble (Becker, 
Van den Dool, and Zhang 2014; Kirtman et al. 2014).  

An effort to generate and archive real-time and retrospective ensembles of 
sub-seasonal forecasts (SubX; Pegion et al. 2019), similar to NMME, is 
described below under “Other activities to improve sub-seasonal 
forecasts.” 

Sources of predictability 
The past decade has seen much progress in identifying and quantifying 
potential sources of sub-seasonal prediction skill (Vigaud, Robertson, and 
Tippett 2017), fueling a broad and active research program on sub-seasonal 
forecasting (e.g., National Academies 2016; World Meteorological 
Organization 2013). For the continental U.S., the potential sources of skill 
with the most promise are the tropical Madden-Julian Oscillation (MJO) 
(Stan et al. 2017), stratospheric variability, and land-atmosphere coupling, 
including the role of soil moisture. The identification of these phenomena is 

NMME Models and 
Variables Summary 

 
Link: 
https://www.ncdc.noaa.go
v/data-access/model-
data/model-
datasets/north-american-
multi-model-ensemble 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble


 

Chapter 7. Weather and Climate Forecasting 266 
 

important because improvement in their representation in climate models 
can lead to improvement of sub-seasonal temperature and precipitation 
forecasts. A technical overview of the current state of the science is found 
in the volume edited by Robertson and Vitart (2019).   

The MJO is a large area of enhanced convection (i.e., thunderstorms) in the 
tropical Indian and Pacific Ocean that generally moves from west to east 
(Zhang 2013 and references therein) and recurs with an irregular 40–70 day 
time period. Numerical models have limited success at forecasting the 
progression of convection associated with the MJO. Some of the strongest 
associations of the MJO with precipitation in the United States are seen in 
California and along the west coast of the U.S. during the wintertime (Zhou 
et al. 2012), including an effect on atmospheric rivers (Guan et al. 2012). 
While the impacts of the MJO in the interior West are less than those on 
the West Coast, the storms of early March 2019 demonstrated that 
atmospheric rivers can bring substantial precipitation to the Colorado River 
Basin.  

Certain stratospheric phenomena have also been identified as a potential 
source of skill for weather forecasting on sub-seasonal scales (Robertson 
and Vitart 2019). The stratosphere is the layer of the atmosphere that lies 
above the troposphere and is very stable, that is, resistant to vertical 
motions such as convection. In the mid-latitudes, the lower boundary of 
the stratosphere lies at about 10 km above the surface, but this boundary 
can be as high as 20 km in the tropics and as low as 7 km in the polar 
winter. There are two stratospheric phenomena of particular interest for 
sub-seasonal prediction: the quasi-biennial oscillation (QBO) in the tropics, 
where the winds above the tropical tropopause change direction in a 
roughly 26-month repeating cycle, and variations in the stratospheric polar 
vortex, including stratospheric sudden warming (SSW) events. See Waugh, 
Sobel, and Polvani (2017) for a primer on the “polar vortex.” 

It is hypothesized that the changing winds due to the QBO may modulate 
the ability of tropical convection to influence the mid-latitude storm track 
and hence precipitation over the western U.S. For example, there is some 
indication that the QBO along with the MJO (see above) may jointly provide 
increased skill in predicting atmospheric river activity (Mundhenk et al. 
2018). For the polar SSWs, the influence is more directly felt on the 
northern edge of the storm tracks and there is empirical evidence that in 
the days and weeks after a SSW there is a greater likelihood of extreme 
cold events (Kidston et al. 2015). However, the surface influence of the SSW 
appears to be primarily focused in Eurasia and the eastern United States, 
not in the Colorado River Basin.  

A better representation of the land surface and its interactions with the 
atmosphere is another potential source of forecast improvement on 

What is the Polar Vortex 
and How Does it 
Influence Weather? 
Waugh, Sobel, and 
Polvani (2017) 
 

 
Link: 
https://journals.ametsoc.o
rg/doi/10.1175/BAMS-D-
15-00212.1 

https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00212.1
https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00212.1
https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00212.1
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sub-seasonal time scales, and one particularly relevant to the Colorado 
River Basin. Most attention here is focused on the role of soil moisture—
both better estimation of the initial state of the soils, and better simulation 
of the evolution of soil moisture anomalies. For sub-seasonal forecasts, soil 
moisture has two primary effects: It can reduce surface temperature by 
directing more of the incoming solar energy to evaporation rather than 
heating, and it can serve as a source of moisture to the atmosphere (Koster 
et al. 2011; Dirmeyer and Halder 2016). The research has tended to focus on 
summer conditions as that is when the impacts of soil moisture are thought 
to be greatest. Indeed, the impacts of having accurate soil moisture 
conditions were shown to be primarily for temperature.  

In the Colorado River Basin and arid West, including initial soil-moisture 
states in the forecast model enhanced sub-seasonal temperature forecast 
skill, particularly when soils were wetter than average (Koster et al. 2011). 
For precipitation, increased forecast skill by including soil-moisture states 
was seen in the upper Great Plains, but not elsewhere. Correlations also 
have been found between soil moisture and the onset of the North 
American Monsoon; the hypothesized mechanism is that wet soils delay the 
seasonal heating of the land surface which is necessary to drive the land–
ocean temperature gradient that then initiates the monsoon (Grantz et al. 
2007). Accordingly, better treatment of soil moisture in forecast models 
may benefit summer precipitation forecasts in the Lower Basin. Simulation 
of the snowpack in forecast models could also result in improved sub-
seasonal to seasonal forecasts both due to the direct effect of snow on 
surface temperature, and to the delayed impact on soil moisture during and 
after the snowmelt season. 

Finally, ENSO’s influence is present on the sub-seasonal time scale, as well 
as on longer time scales (see Chapter 2). Convection in the tropical Indian 
and Pacific Oceans has a significant influence on precipitation and 
temperature in the western United States. Ocean temperature anomalies 
associated with ENSO also lead to tropical convection anomalies that in 
turn alter the position and activity of the storm track in the Pacific. While 
ENSO is usually associated with seasonal forecasts (see next section), it also 
influences the likelihood of temperature and precipitation anomalies on 
sub-seasonal scales. As detailed in Chapter 2, those influences are stronger 
in the Lower Basin than the Upper Basin.  

Operational sub-seasonal forecast products 

NOAA CPC outlooks 
There are relatively few operational forecasts from NOAA in the sub-
seasonal time frame, reflecting the less mature state of sub-seasonal 
climate forecasting relative to weather forecasting, and even relative to 
seasonal climate forecasting. They are described here. First, NOAA CPC 
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produces an operational, 2-category (above or below normal), probabilistic 
temperature outlook for weeks 3–4 (Figure 7.3, left). The outlook is based 
on a blend of dynamical forecast model output, including CFSv2, ECMWF, 
and the SubX model ensemble, as well as the statistical (or empirical) tools 
also used for the CPC seasonal outlooks (Table 7.3). Reforecasts may also be 
used to adjust model output.  

The quantity shown in these maps (Figure 7.3) is interpreted as the 
probability of the average temperature for days 15–30 being above or below 
the 1981–2010 observed average for that two-week period. For locations 
where it is impossible to assign any odds, “EC” or “equal chances” is 
indicated. In contrast, the 6–10 day and 8–14 day outlooks, as well as the 
seasonal outlooks, are 3-category, tercile forecasts (above normal, near 
normal, and below normal). NOAA CPC also produces a two-category 
precipitation outlook for weeks 3–4 (Figure 7.3, right), but this outlook is 
labeled “experimental” because little skill has yet been demonstrated.  

NOAA CPC also produces operational 30-day temperature and 
precipitation outlooks (Figure 7.4), likewise based on a blend of dynamical 
forecast models (NMME ensemble—see next section; CFSv2 and ECMWF) 
and statistical tools and trends. These are issued mid-month, with a “valid” 
period starting at the beginning of the next month (0.5 month lead). With 

 
Figure 7.3 

NOAA CPC operational 2-category (above or below normal) probabilistic temperature outlook for 
weeks 3-4 (left) and experimental 2-category (above or below normal) probabilistic precipitation 
outlook for weeks 3-4 (right). (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/NMME/) 

https://www.cpc.ncep.noaa.gov/products/NMME/
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that 2-week lead time, weather forecast skill is not included in the outlooks. 
Updated 30-day outlooks are issued at the end of the month (0-month 
lead), which do incorporate weather forecast information for weeks 1-2, 
though updated NMME information is not available.   

Finally, a 90-day (3-month) average seasonal forecast is also made (as 
discussed in more detail in the next section), with a 2-week lead time (0.5 
month lead). For each of these forecast periods, CPC provides a discussion 
of the reasoning behind each forecast, including factors such as the MJO 
and soil moisture, as well as a discussion of the guidance from dynamical 
models, including those archived in SubX. 

Assessing forecast skill for sub-seasonal (and seasonal) forecasts 
A single probabilistic forecast cannot, in general, be verified or falsified. But 
we can evaluate the performance of the forecast system by comparing a set 
of many forecasts over a period of years with observations, and by deriving 
statistical metrics of skill. These skill estimates are based on the 
performance of the forecast system in the past, or of a set of hindcasts that 
have been produced as if the current system had been operating over that 
period. This information can guide users about the expected performance 
of the forecasts of the future, but past performance is no guarantee of the 
same skill continuing into the future (Weisheimer and Palmer 2014). 

 
Figure 7.4 

NOAA CPC operational 3-category (above or below normal) probabilistic outlooks for month 1 for 
temperature (left) and precipitation (right). (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/predictions/30day/) 

https://www.cpc.ncep.noaa.gov/products/predictions/30day/
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In general, the skill of climate forecasts varies much more over space and 
time than does the skill of weather forecasts (Mariotti et al. 2020). 
Importantly, some seasons are more amenable to skillful forecasts than 
others, and this will be noted in the text and tables below. There has also 
been recent progress in identifying, in real-time, windows of opportunity 
during which climate forecasts are more likely to be skillful—i.e., times 
when there are particularly large events in the tropics (MJO, ENSO) or the 
stratosphere that are likely to have a large imprint in the weather of the 
extratropics, including the western U.S. (Albers and Newman 2019; Mariotti 
et al. 2020).  

Skill of CPC week 3–4 forecasts for CONUS 
Skill evaluation for the CPC weeks 3-4 operational outlooks is available only 
in aggregate for the conterminous United States (CONUS). In the Heidke 
skill score (HSS), 100 is a perfect forecast, -50 is a completely incorrect 
forecast, and a score above 0 indicates skill versus a random forecast. Over 
the 4-year period from September 2015 to May 2019, the Heidke skill scores 
for the CPC weeks 3-4 outlooks for CONUS averaged about 40 for 
temperature, and about 10 for precipitation. 

Skill of CPC 30-day forecasts for CONUS and the basin 
The skill of the CPC operational 30-day forecasts (at 0.5 month lead time) 
can be explored using CPC’s interactive Verification Web Tool. The skill 
(HSS) of the temperature forecasts CONUS-wide has averaged about 10 
since 2015, though higher, averaging about 20, since 2015. The precipitation 
forecasts have had no skill, on average, since 2005 (HSS = ~0), with no 
improvement in recent years. Across the Upper Basin states of Utah, 
Wyoming, and Colorado, the 30-day temperature forecasts have been more 
skillful than for CONUS (HSS = 24 since 2005; HSS = 28 since 2015).The 
precipitation forecasts for Utah, Wyoming, and Colorado have been more 
skillful than for CONUS (HSS = 7 since 2005), and skill has not increased 
over time.  

Skill of CFSv2 model forecasts for the Colorado River Basin   
As described above, the CFSv2 model forecasts are one of the tools used as 
guidance for the CPC sub-seasonal forecasts. We show the skill of CFSv2 
alone to allow comparison with the skill of the model over the weather 
forecast period (Table 7.1). In general, the AC skill of weeks 3-4 forecasts 
(i.e., for 15–28 days out) from the CFSv2 model is low (<0.2) for both 
precipitation and temperature in the Upper and Lower Basins (Table 7.2). 
Skill is generally lower in the Upper Basin, especially for precipitation (<0.1), 
perhaps reflecting the weaker ENSO signal there.  

CPC Verification Web 
Tool 

 
Link: 
https://vwt.ncep.noaa.
gov/ 

https://vwt.ncep.noaa.gov/
https://vwt.ncep.noaa.gov/
https://vwt.ncep.noaa.gov/
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Table 7.2 

Skill (Anomaly Correlation; AC) for week 3-4 (15-28 days out) forecasts from the CFSv2 model for the 
calendar year (annual) and the climatological seasons, based on reforecasts for the 1999-2010 period. 
The skill scores for the eight HUC4 sub-basins each in the Upper Basin and Lower Basin were averaged 
to the basin-wide scores shown here. The CFSv2 forecasts were bias-corrected using quantile mapping. 
(Data: S2S Outlooks for Watersheds; http://hydro.rap.ucar.edu/s2s/) 

Skill (AC) for Weeks 3-4 forecasts, CFSv2 model 

Variable Basin Annual DJF MAM JJA SON 

Precipitation 

Upper 
Basin 

0.09 0.09 0.07 0.11 0.10 

Lower 
Basin 

0.16 0.18 0.11 0.13 0.14 

Temperature 

Upper 
Basin 

0.16 0.22 0.03 0.22 0.18 

Lower 
Basin 

0.18 0.23 0.10 0.23 0.21 

 

S2S Climate Outlooks for Watersheds 
The “S2S Climate Outlook for Watersheds” effort is a collaboration between 
NCAR, CU Boulder, Reclamation, and NOAA CPC to improve the 
understanding and application of sub-seasonal climate forecast products in 
the hydrology and water management sector, and to test the capacity to 
generate new forecast products (Baker, Wood, and Rajagopalan 2019). The 
map-based web tool (Figure 7.5) shows real-time forecasts from CFSv2 with 
additional post-processing, and also real-time forecasts from the NMME 
ensemble. (Again, CFSv2 and NMME output are key elements of the 
operational CPC weeks 3–4, monthly, and seasonal outlooks, but the CPC 
outlooks incorporate additional guidance.) Reforecasts have been 
generated from both sets of models to allow for verification and skill 
assessment.  

The web tool displays deterministic (single-value) precipitation and 
temperature forecasts from CFSv2 for weeks 1–2, weeks 2–3, and weeks 
3-4, and from the NMME for forecasts of 1-month periods at 3 different 
lead times: 0, 1 month, and 2 months. The forecasted values are expressed 
in anomalies to allow users to more easily assess whether conditions are 
expected to be above or below normal. The interface allows users to select 
any HUC4 watersheds, including the 8 sub-basins of the Upper Basin and 
the 8 sub-basins of the Lower Basin, and see the forecast values (and skill 
scores) specific to that watershed. The tool allows users to view the 
ensemble average of the NMME, as well as the seven model outputs 

http://hydro.rap.ucar.edu/s2s/
http://hydro.rap.ucar.edu/s2s/
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individually; toggling between the outputs of the individual models provides 
some sense of the uncertainty in the forecasts.  

Other activities to improve sub-seasonal forecasts and their use  

SubX 
The NOAA-funded Subseasonal Experiment (SubX) is a coordinated set of 
sub-seasonal prediction efforts and data archiving intended to explore the 
value of a multi-model ensemble for sub-seasonal forecasting (Pegion et al. 
2019). This program was modeled after the NMME for seasonal forecasts 
(see next section). The SubX effort includes historical reforecasts (i.e., 
hindcasts) for 1999–2015 and real-time forecasts from seven modeling 
systems. Real-time forecast maps from the various models and from the 
multi-model ensemble are available on the SubX website.  

 
Figure 7.5 

The S2S Climate Outlooks for Watersheds tool, which allows users to access real-time and archived 
climate model deterministic forecasts for sub-seasonal and seasonal timescales, from CFSv2 and 
NMME, by HUC4 sub-basin (gray outlines in the map), as well as the skill scores for the forecasts. 
(Source: http://hydro.rap.ucar.edu/s2s/) 

Subseasonal 
Experiment—SubX 

 
Link: 
http://cola.gmu.edu/subx/ 

http://cola.gmu.edu/kpegion/subx/
http://hydro.rap.ucar.edu/s2s/
http://cola.gmu.edu/subx/
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Sub-Seasonal Forecast Rodeo 
To promote the development of novel S2S forecasting methodologies, the 
Reclamation R&D program, in collaboration with NOAA and the California 
Department of Water Resources, held a Sub-Seasonal Forecast Rodeo from 
spring 2017 to spring 2018. Six teams of forecasters responded to an open 
public call and competed to produce the most skillful forecasts of 
temperature and precipitation across CONUS for weeks 3–4 (15–28 days 
out) and weeks 5–6 (29–42 days out). The forecasts were issued every two 
weeks for one year, with forecasts from the CFSv2 model used as a 
benchmark. Between one and three teams produced forecasts better than 
CFSv2, depending on the variable and lead time, with the most notable 
improvements seen in precipitation, for which CFSv2 showed almost no 
skill during the year-long contest period. (Note that in any given 1-year-
period, CFSv2 and other forecast models and methods may significantly 
overperform or underperform relative to their longer-term skill, due to 
variability in the climate.) The methods of the winning teams will be made 
publicly available to potentially improve operational sub-seasonal forecasts. 
A second Sub-Seasonal Forecast Rodeo began in summer 2019.  

S2S workshops  
The Western States Water Council and the California Department of Water 
Resources have co-sponsored a series of workshops to further dialogue 
among western states’ water agencies and Reclamation, NOAA, and the 
research community on improving S2S precipitation forecasting to support 
water management decision making in the western U.S. The most recent 
workshop, in May 2018, included presentations on the operational and 
planning needs for seasonal climate forecasting in the Colorado River Basin, 
the mechanisms of cool-season precipitation in the Upper Basin, and 
climate forecasting challenges in the Upper Basin in the context of CBRFC 
streamflow forecasting.  

Implications for the Colorado River Basin 
While there is active research in all the areas of untapped sources of skill, it 
is hard to anticipate what the combined effect of many incremental 
improvements will be, including general improvements in weather and 
climate models and coupled (land-atmosphere-ocean) data assimilation, 
which are ongoing and will continue. The goal of much of this research is to 
push the boundaries of skillful and potentially useful probabilistic weather 
prediction into weeks 3 and 4, and this is where advances in skill are most 
likely to come, albeit from a relatively low baseline at present (e.g., 
Table 7.2).  

Likewise, it is unclear whether any of the proposed pathways to improve 
skill discussed above will result in improved sub-seasonal forecasts specific 
to the Colorado River Basin. Based on the current literature, there is an 
indication that the Lower Basin may benefit from forecast improvements 

Forecast Rodeo II 

Link: 
https://www.drought.g
ov/drought/forecast-
rodeo-ii-leaderboard 

https://www.drought.gov/drought/forecast-rodeo-ii-leaderboard
https://www.drought.gov/drought/forecast-rodeo-ii-leaderboard
https://www.drought.gov/drought/forecast-rodeo-ii-leaderboard
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more than the Upper Basin. In particular, better representing combined 
effects of the MJO and QBO may improve precipitation forecast skill in the 
Lower Basin. The MJO is also known to modulate tropical cyclones in the 
eastern Pacific that occasionally cause heavy precipitation and flooding in 
the Lower Basin (Maloney and Hartmann 2000; Klotzbach 2014). It is 
plausible that the influence of the MJO on atmospheric rivers could, on 
occasion, affect the Upper Basin, but this has yet to be demonstrated. 
Improvement in treatment of the land surface and its influence on the 
atmosphere may lead to improvements in prediction of North American 
Monsoon precipitation that primarily affects the Lower Basin.  

But even without significant improvements in overall forecast skill, there is 
still plenty of room to improve how the current skill of existing forecast 
systems is deployed by users of forecasts. The recent progress toward 
identifying “forecasts of opportunity” (Albers and Newman 2019; Mariotti et 
al. 2020) is a promising step toward more strategic deployment of sub-
seasonal climate forecasts, i.e., consulting them in those locations, and 
during those seasons and specific times, when they are likely to have the 
most skill.  

7.5 Seasonal climate forecasting 

Overview and sources of predictability 
The interest in predicting the climate on seasonal time scales to prepare for 
anomalous conditions is longstanding. The earliest published scientific 
effort in seasonal climate prediction was motivated by back-to-back 
failures of the Indian monsoon in 1876 and 1877 that caused a catastrophic 
drought (Blanford 1884). Blanford’s investigation found that an abundant 
spring snowpack in the Himalayas was counterproductive for the Indian 
monsoon later that summer—an early insight into seasonal land surface 
feedbacks.   

The effort to understand and predict the Indian Monsoon also fostered 
research by Sir Gilbert Walker in the early 1900s into the “Southern 
Oscillation,” which is now understood as the El Niño-Southern Oscillation 
(ENSO) phenomenon (Chapter 2). A major breakthrough in the 
understanding of the functioning and influence of ENSO, and ultimately for 
seasonal climate forecasting, was the insight that ENSO was a coupled 
ocean-atmosphere phenomenon (Bjerknes 1966; 1969). It was later 
recognized that El Niño events resembled each other enough that it made 
sense to average them into a typical or canonical sequence (Rasmusson and 
Carpenter 1982). Such “compositing” became a key tool in unlocking the 
typical ENSO footprint of climate anomalies over North America 
(Ropelewski and Halpert 1987; 1989).  



 

Chapter 7. Weather and Climate Forecasting 275 
 

A general assumption in seasonal climate prediction is that the climate 
system displays preferred and recognizable patterns (footprints) that can 
be revealed through physical reasoning or statistical means. The search for 
analogues (Van den Dool 1994) is driven by the same notion that certain 
circulation patterns are more common than others, such as an enhanced 
southern winter storm track across the U.S. during El Niño. (CPC’s 
empirical climate prediction methods that use the concepts of footprints 
and analogues is discussed in the next section.) 

During the late 20th century, dynamical, fully physical climate models were 
increasingly run to simulate atmospheric conditions forced by (specified) 
anomalous sea surface temperature (SST) states to see whether the models 
could reproduce observed atmospheric behavior. As with short-term 
weather forecasts, the fast changing initial conditions in the atmosphere 
need to be captured to solve that portion of the forecast problem, while 
more slowly evolving conditions of the land and ocean were originally 
modeled as static boundary conditions (Gates et al. 1992).  

Once it became clear that the modeled atmospheric behavior was realistic, 
the next step was to develop coupled ocean-atmosphere models that could 
be used to explore climate changes (i.e., GCMs; Chapter 11). These models 
were tested and refined by predicting ENSO events as well as seasonal 
climate anomalies (e.g., Becker, Van den Dool, and Zhang 2014; Bellenger et 
al. 2014; Weisheimer and Palmer 2014). These coupled Earth system models 
explicitly include evolving, rather than fixed, SST and land surface 
conditions. There are now more than a dozen coupled models that predict 
the state of ENSO in an operational manner, with highly variable, though 
overall positive, forecast skill (Barnston et al. 2012; 2017; Tippett et al. 2017). 
A key development in seasonal forecasting beyond ENSO was the discovery 
that global drought footprints of the swings of the Pacific Decadal 
Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) could be 
reproduced in coupled climate models (Schubert et al. 2009), though this 
discovery has yet to pay dividends for the Colorado River Basin (Chapter 2).  

The current predictability and skill in seasonal forecasts still comes mainly 
from those sources identified during the long history of seasonal 
forecasting: the tendencies associated with key modes of ocean-
atmosphere variability, primarily ENSO, other slowly varying processes 
such as land surface feedbacks, and robust long-term trends (e.g., warming 
temperatures).  

Operational seasonal climate forecasts from NOAA CPC 
NOAA CPC and its predecessors have made a huge cumulative investment 
in developing and refining their seasonal forecasting methodology over 
several decades. While there are many other entities and individuals 
producing seasonal climate forecasts, ranging from the ECMWF to private 
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consulting firms, the CPC forecasts are the most widely used in the U.S., 
across a broad spectrum of users, including in water resources, and serve 
as a benchmark for other efforts.  

Starting in 1995, CPC settled on the current framework of seasonal (3-
month) forecasts (called “outlooks”) with multiple lead times out to 12.5 
months. The two key ingredients supporting this framework were 1) the 
increasing community efforts to monitor and predict ENSO, as synthesized 
in a monthly updated IRI ENSO “plume” (Barnston et al. 2012); and 2) the 
development of the “Optimal Climate Normals” (OCN) methodology that 
takes advantage of longer-term climate variability and trends, whether 
linked to climate change or not. The CPC seasonal forecasts are released 
monthly, on the third Thursday of each month.  

Figure 7.6 shows the January 2020 forecast for February–April 2020 (0.5 
month lead time). These tercile forecasts are made in reference to the 
upper/middle/lower thirds of the 1981-2010 climatology (10 cases each), 
and the color shading shows tilts in the odds of one of the terciles in the 
climatological distribution (33%/33%/33%). For example, the darker 
brown shading for “B(elow)” in the precipitation outlook in Figure 7.6 means 
there is a 40–49% probability of seasonal precipitation for February–April 
being in the lower third of the historical distribution, compared to the 

 
Figure 7.6 

CPC seasonal outlooks for February–April 2020 for temperature (left) and precipitation (right), 
released on January 16, 2020. Darker shading shows tilts in the odds relative to the climatological 
(1981–2010) distribution of outcomes; see the text for further explanation. (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/) 

IRI/CPC ENSO 
Predictions Plume 

 
Link: 
https://iri.columbia.edu
/our-
expertise/climate/forec
asts/enso/current/?ens
o_tab=enso-sst_table 

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://www.cpc.ncep.noaa.gov/products/predictions/90day/
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table


 

Chapter 7. Weather and Climate Forecasting 277 
 

climatological probability of 33% for that outcome. If there is no 
appreciable tilt for any tercile, equal chances (“EC”) are assigned.  

CPC also produces a weekly ENSO status update, and an ENSO blog; both 
can be helpful in interpreting the physical mechanisms behind the seasonal 
forecasts.  

Forecast tools 
CPC uses a broad suite of forecast tools for seasonal forecasts, comprising 
both empirical (statistical) models and dynamical climate forecast models 
(Table 7.3). The two most important empirical tools are based on ENSO and 
Optimal Climate Normals (OCN), respectively. The other tools are 
Canonical Correlation Analysis (CCA), Ensemble CCA (ECCA), Constructed 
Analogues (CA), and Screening Multiple Linear Regression (SMLR). These 
empirical tools and their predecessors were the only quantitative guidance 
used in CPC forecasts prior to 2005; the dynamical tools were added to the 
suite of guidance around 2006. CPC provides a short introduction to all 
tools online.  

Table 7.3 

Forecast tools used by NOAA CPC to inform their seasonal climate forecasts. Type: E = empirical; D = 
dynamical. The empirical tools that use multiple predictors (CCA, ECCA, CA, SMLR) are typically based 
on these four classes of predictors: 200mb global velocity potential (upper air flow information), global 
sea surface temperatures (SST), sea-level pressure north of 40°N, and U.S. soil moisture. (Source: NOAA 
CPC; https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools.php) 

Forecast Tool Type 
Usual 
importance 
to forecasts 

Contribution to 
forecasts 

Comments Reference 

ENSO 
Composites 

E Higher 

Typical climate 
“footprint” of the 
current or forecasted 
ENSO state 

The mainstay of CPC 
seasonal forecasts 

Higgins, Kim, 
and Unger 
(2004) 

Optimal 
Climate 
Normals 
(OCN) 

E Higher 

Recent (15-year) 
trends in temperature 
and precipitation, if 
different from longer-
term (30-year) normal 

During clear-cut El 
Niño or La Niña 
events, ENSO 
composites include 
OCN information in 
a single tool  

Huang, Van 
den Dool, and 
Barnston 
(1996); Van 
den Dool 
(2007)  

CFSv2 model D Higher 
Physically based 
prediction of future 
climate conditions 

Also included in 
NMME 

Saha et al. 
(2014) 

ENSO: Recent 
Evolution, Current 
Status and Predictions 

 
Link: 
https://www.cpc.ncep.noa
a.gov/products/analysis_
monitoring/lanina/enso_e
volution-status-fcsts-
web.pdf 

ENSO Blog 
Link: 
https://www.climate.gov/
news-
features/department/enso
-blog 

https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.climate.gov/news-features/department/enso-blog
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools.php
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.climate.gov/news-features/department/enso-blog
https://www.climate.gov/news-features/department/enso-blog
https://www.climate.gov/news-features/department/enso-blog
https://www.climate.gov/news-features/department/enso-blog
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Forecast Tool Type 
Usual 
importance 
to forecasts 

Contribution to 
forecasts 

Comments Reference 

NMME model 
ensemble 

D Higher 

Physically based 
prediction of future 
climate; ensemble 
shows uncertainty 
due to model 
structure; ensemble 
mean more skillful 
than any one model 

Ensemble of 7 
models: CFSv2 
(NOAA); CanCM4i 
and GEM-NEMO 
(Canada); FLOR and 
CM2.1 (NOAA 
GFDL); CCSM4 
(NCAR); GEOS S2S 
(NASA) 

Kirtman et al. 
(2014) 

Canonical 
Correlation 
Analysis (CCA) 

E Lower 

Influence of multiple 
predictors of future 
climate conditions as 
captured in linear 
relationships 

 
Barnston 
(1994) 

Ensemble 
CCA (ECCA) 

E Lower Same as above 
Only used for 
temperature 

Mo (2003) 

Constructed 
Analogues 
(CA) 

E Lower Same as above 
Most useful when 
analogues are based 
on soil moisture 

Van den Dool 
(1994; 2003) 

Screening 
Multiple 
Linear 
Regression 
(SMLR) 

E Lower Same as above 
Refined version of 
MLR tools used by 
early forecasters  

O’Lenic et al. 
(2008) 

 
As mentioned before, ENSO information and OCN have been the primary 
tools since the 1990s; as new forecast tools were added, each needed to 
have a skill assessment using reforecasts. The dynamical coupled forecast 
models (CFSv2 and the NMME ensemble) were evaluated even more 
critically; they had to reproduce empirical ENSO results before being 
included as guidance. When the consensus among the different tools is 
strong, that information is used to tweak the odds in the forecasts (e.g., 
moving from a 40% to 50% probability for the wettest tercile). Particularly 
strong ENSO signals, or regional trends, like the warming trend in the 
western U.S., will tend to yield high “tilts” in the odds.  

Operational skill of CPC seasonal forecasts 
CPC has archived all 0.5-month lead forecasts since 1995 and their national 
skill scores are online. The long-term (1995–2019) average Heidke skill score 
(HSS) for temperature has been 14, while the average HSS for precipitation 
has been 4, where 100 is perfect skill and 0 is no skill. As with sub-seasonal 
forecasts, seasonal forecasts in general are more skillful for temperature 

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools/briefing/
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools/briefing/
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/cca_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/cca_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/cca_index.php
https://www.cpc.ncep.noaa.gov/soilmst/cas_lead.shtml
https://www.cpc.ncep.noaa.gov/soilmst/cas_lead.shtml
https://www.cpc.ncep.noaa.gov/soilmst/cas_lead.shtml
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/verification/summary/
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than for precipitation. This disparity has been seen across the globe by 
different forecasting groups; e.g., Weisheimer and Palmer (2014) 

(As described earlier in this chapter, Heidke skill is based on “hits”; if 20 of 
60 seasonal forecasts “hit” for the correct tercile—as would be expected by 
chance alone—the skill score is 0; if all 60 are correct, the skill score is 100, 
and if none of them are correct, the score is -50.) 

The skill of the CPC seasonal forecasts has been highly variable over time, 
with several periods during which the temperature forecasts had an HSS 
over 50 and precipitation forecasts had an HSS over 30. Conversely, there 
have been many periods of negative skill (<0), especially for precipitation. 
Most of the variation appears to correspond to the strength of ENSO 
events; when moderate to strong El Niño and La Niña events emerge, the 
ENSO forecast models generally perform better (Barnston et al. 2012), and 
the footprints of ENSO impacts on the western U.S. are more predictable. 
Livezey and Timofeyeva (2008) showed that most of the nationwide skill of 
the first decade (1995–2005) of seasonal CPC forecasts was due to the 
“Super El Niño” of 1997–98, the long-lived La Niña of 1998–2001, and other 
strong ENSO events. During periods when ENSO-neutral conditions 
prevail, seasonal forecasts in the U.S. are generally less skillful.   

Regional skill in the Colorado River Basin 

Skill of operational seasonal outlooks for the Colorado River Basin 
The Upper Basin was identified early on as an area of relatively weak to 
non-existent ENSO signals in precipitation, compared to the ends of the 
ENSO dipole: El Niño wetness in the Southwest and La Niña wetness in the 
Northwest (Redmond and Koch 1991; see Chapter 2). Thus, CPC’s early 
ENSO-related forecasts often left the Upper Basin blank, or EC, except for 
the 1997–98 super El Niño. Wolter et al. (1999) uncovered more nuance in 
the ENSO signal, finding distinct seasonality in the Upper Basin’s response 
to ENSO.   

Maps of skill for the CPC seasonal precipitation outlooks issued from 1995–
2019 are shown in Figure 7.7, for the four 3-month seasons of the water 
year. For the Upper Basin, skill has been highest in late winter (JFM) and 
spring (AMJ), hitting Heidke skill scores of up to 20 along the southern 
periphery of the Upper Basin. In contrast, late summer and fall forecasts 
have shown no overall skill across the 1995–2019 period. For the Lower 
Basin, skill has been highest in late winter (JFM), with skill scores up to 40 in 
western New Mexico and at least 30 in nearly all of the Lower Basin. This 
seasonal peak in skill mainly reflects the footprint of ENSO events being 
expressed most strongly in late winter. There has been less skill or no skill 
in the other three seasons, except for northwestern Arizona in spring.  

CPC Verification 
Summary 

 
Link: 
https://www.cpc.ncep.n
oaa.gov/products/verifi
cation/summary/ 

https://www.cpc.ncep.noaa.gov/products/verification/summary/
https://www.cpc.ncep.noaa.gov/products/verification/summary/
https://www.cpc.ncep.noaa.gov/products/verification/summary/
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During the most recent decade (2010–2019) skill during late winter (JFM) 
over the Lower Basin has been higher than during the full period as shown 
in Figure 7.7. Also, during 2010–2019, skill during spring (AMJ) has been 
much higher in both the Upper and Lower Basins than during the full 
period. This recent performance may reflect improvements in the forecast 
system and thus might be expected to continue. Figure 7.8 shows maps of 
skill for the CPC seasonal temperature outlooks issued from 1995–2019, for 
the four, 3-month seasons of the water year. For both the Upper Basin and 
Lower Basin, positive skill is seen in all four seasons, with somewhat higher 
skill for the Lower Basin. The HSS is over 50 for large portions of the Lower 
Basin in all four seasons, and portions of the Upper Basin in spring and 
summer. Much of the skill in temperature outlooks in the western U.S. is 
due to the consistent increasing trends in seasonal and annual 
temperature, as captured in the OCN tool. 

 
Figure 7.7 

Maps of CPC seasonal precipitation forecast skill (Heidke Skill Score; HSS) from 1995–2019, using 
seasons that correspond to quarters of the water year: October-December (upper left); January-
March (upper right); April-June (lower right); and July-September (lower left). Positive skill (orange 
colors) in the Upper Basin is limited to winter-spring (JFM and AMJ; (HSS=10-20). In the Lower Basin, 
positive skill is seen mainly in winter (JFM) and is higher (30–40) than in the Upper Basin. (Source: 
NOAA CPC; https://www.cpc.ncep.noaa.gov/products/verification/summary/) 

https://www.cpc.ncep.noaa.gov/products/verification/summary/
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Skill of NMME model forecasts for the Colorado River Basin   
As described above, the NMME dynamical model ensemble is one of the 
tools now used by CPC forecasters to inform operational seasonal forecasts 
for the Upper and Lower Basin. In Table 7.4, the skill scores for NMME 
forecasts for season 1 (1–90 days out) are shown for the Upper and Lower 
Basin. As with the sub-seasonal model forecasts from NMME and CFSv2, 
temperature is forecasted more skillfully than precipitation, and the Lower 
Basin seasonal climate is more skillfully forecasted than in the Upper Basin.  

 
Figure 7.8 

Maps of CPC seasonal temperature forecast skill (Heidke Skill Score; HSS) from 1995–2019, using 
seasons that correspond to quarters of the water year: October-December (upper left); January-
March (upper right); April-June (lower right); and July-September (lower left). Positive skill (orange 
and red colors) is seen in both the Upper Basin and Lower Basin in all seasons, with the highest 
overall skill in late summer (July-September). (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/verification/summary/) 

https://www.cpc.ncep.noaa.gov/products/verification/summary/
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Table 7.4 

Skill (Anomaly Correlation; AC) for Season 1 (1–90 days out) forecasts from the NMME forecast ensemble 
(7 models, including CFSv2) across the calendar year (annual) and for the climatological seasons, based 
on reforecasts for the 1981–2010 period. The skill scores for the eight HUC4 sub-basins each in the 
Upper Basin and Lower Basin were averaged to the basin-wide scores shown here. (Data: S2S Outlooks 
for Watersheds; http://hydro.rap.ucar.edu/s2s/) 

Skill (AC) for Season 1 forecasts, NMME ensemble 

Variable Basin Annual DJF MAM JJA SON 

Precipitation 

Upper 
Basin 

0.19 0.19 0.29 0.11 0.15 

Lower 
Basin 

0.27 0.41 0.28 0.09 0.20 

Temperature 

Upper 
Basin 

0.19 0.12 0.25 0.24 0.20 

Lower 
Basin 

0.31 0.28 0.31 0.30 0.36 

 
As with the operational CPC forecasts—which incorporate the NMME along 
with other guidance (Figure 7.7)—the NMME results in Table 7.4 indicate 
that predictability in seasonal precipitation is greater in the winter and 
spring than in the summer and fall, with a spring peak in the Upper Basin 
and winter peak in the Lower Basin—which is helpful, since the former two 
seasons best correspond to snowpack accumulation and water-year runoff. 
However, even in winter and spring, seasonal forecast skill is still relatively 
low.  

Activities to improve seasonal forecast skill in the Colorado River 
Basin 

SWcasts—precipitation outlooks for the interior Southwest 
Since ENSO only explains a fraction of seasonal climate variability in the 
interior Southwest (Utah, Colorado, New Mexico, Arizona), and since 
SNOTEL information was not incorporated into climate divisions (nor CPC 
forecasts), Wolter (2002) embarked on an effort in the late 1990s to create 
statistical seasonal forecasts (SWCasts) that increased the pool of 
predictors beyond ENSO, and improve the temperature and precipitation 
predictands by including SNOTEL data (Chapter 5). To create forecast 
zones within the 4-state region, SNOTEL and weather stations were 
grouped into core regions using statistical analyses to select the most 
similar ones, with one set of 6–10 regions each for four meteorological 
seasons.  

For potential predictors, previously established teleconnection indices (e.g., 
ENSO indices, North Atlantic Oscillation, etc.), as well as tropical Pacific or 

http://hydro.rap.ucar.edu/s2s/
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Indian Ocean, and Gulf of Mexico SSTs were considered. Some predictors 
had been discovered a century ago, such as key sea-level pressure regions 
in the Pacific and Indian oceans. Inspired by Knaff and Landsea (1997) and 
similar to O’Lenic et al. (2008), SWcasts employs Screening Multiple Linear 
Regression (SMLR) as a statistical forecast tool. Over the following 16 years 
of forecasts, the balance of “hits” versus “misses” was sufficiently positive to 
translate into positive skill scores. During this period, forecast skill for the 
Upper Basin (in CO and UT) was worst during fall and best during winter 
and summer. While there were pockets of exceptional skill during winter 
(southeast CO) and summer (central NM and northern UT), overall skill 
scores were not significantly higher than for the CPC operational seasonal 
forecasts (Figure 7.7).  

While the production and issuance of SWcasts ended in 2018, a renewed 
effort at regional statistical forecasts could capitalize on two decades of 
additional training data for both predictors and predictands, and improved 
forecast schemes.   

Seasonal forecasts of SWE using GCMs 
Kapnick et al. (2018) drew widespread attention with their claim of skillful 
prediction of regional snowpack (SWE) conditions up to 8 months in 
advance using a suite of coupled climate models (i.e., GCMs) developed by 
NOAA GFDL to generate hindcasts for the 1981–2015 period. While they 
show skill over the western U.S. overall (average correlation of 0.48) and in 
many sub-regions, the lowest skill (correlation of about 0.30) was found in 
their Colorado Rockies sub-region, which comprises western Colorado and 
is the source of about 70% of Upper Basin streamflow. So the relevance of 
their findings for the Colorado River Basin is more limited than for other 
regions. Overall, their spatial patterns of skill in predicting snowpack, 
temperature, precipitation, and storm tracks strongly suggest that they 
have largely rediscovered the well-known ENSO influence on western U.S. 
hydroclimate, rather than a truly novel capability of GCMs.  

Year 2 predictability during La Niña events 
Wolter and Timlin (2011) diagnosed that La Niña events have a much higher 
propensity for multi-year extension than El Niño events. More importantly, 
there is a strong tendency for a second-year La Niña to be significantly 
drier in the Upper Colorado River Basin than the first year. Two of the most 
severe multi-year droughts since 1950 (mid-1950s and early 2000s) were 
anchored by such long-lived La Niñas. This tendency was seen again in the 
two-year La Niña events of 2011–2013 and 2016–2018. Okumura, DiNezio, 
and Deser (2017) independently confirmed this observation of a drier 
second year during La Niña. However, this only covers a subset of years, 
and two-year La Niñas are not guaranteed once a La Niña event sets in. 
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Implications for the Colorado River Basin 
The fundamental challenge inhibiting skillful seasonal climate forecasting in 
the Upper Basin is the same as that at the start of CPC’s operational 
forecasts almost 25 years ago: Seasonal forecasting skill across the western 
U.S.—and in most of the world—is largely predicated on ENSO signals, 
especially for precipitation, but those ENSO signals are overall weak or 
cancel out on the scale of the entire Upper Basin, and across the fall–
winter-spring seasons when most of the water supply is generated. 
However, there appears to be enough skill for there to be a benefit using 
climate forecast model output to slightly tilt or weight the ensemble of 
CBRFC seasonal streamflow forecasts for the Upper Basin, as was done in 
work by Baker (2019) (Chapter 8.) For the Lower Basin, seasonal climate 
forecast skill is generally higher than in the Upper Basin, but still much 
lower than for weather forecasts.  

As with sub-seasonal forecasts, perhaps the shortest pathway to 
“improvement” is for forecast users to judiciously and selectively use 
seasonal climate forecasts, consulting them only during those seasons, and 
during those ENSO states (i.e., moderate to strong El Niño and La Niña 
events) in which more predictability and skill is seen (Figure 7.7 and 
Table 7.4). A potentially helpful information source in this regard is the 
NOAA PSD ENSO climate risk tool that shows which climate divisions have 
significantly increased or decreased risk of seasonal wet and dry extremes 
(>80th percentile) during moderate to strong ENSO events. During some 
strong ENSO events, the CBRFC has used ENSO information to adjust 
streamflow forecasts in the Lower Basin through trace-weighting (see 
Chapter 8). 

7.6 Challenges and opportunities 

While there are still many challenges being tackled by the weather 
forecasting research community to obtain greater understanding and 
predictive skill, the level of performance and skill is already relatively high, 
and progressing well. Thus, from the perspective of water supply 
forecasting and management, the most pressing challenges and most 
compelling opportunities are at sub-seasonal and seasonal timescales. In 
the Colorado River Basin, and the Upper Basin especially, the limited skill of 
sub-seasonal and seasonal forecasts for precipitation and even 
temperature constrains usability.  

There is no single pathway toward improvement in the skill and usability of 
climate forecasts for the basin. There are, though, broad families of ongoing 
activities that in combination can lead to such improvement. It is probably 
neither feasible nor desirable to coordinate all of these activities, since 
many of them connect with efforts at broader scales; what is important is 

Risk of Seasonal 
Climate Extremes in the 
U.S. Related to ENSO 

 
 
Link: 
https://www.esrl.noaa.g
ov/psd/enso/climateris
ks/ 

https://www.esrl.noaa.gov/psd/enso/climaterisks/
https://www.esrl.noaa.gov/psd/enso/climaterisks/
https://www.esrl.noaa.gov/psd/enso/climaterisks/
https://www.esrl.noaa.gov/psd/enso/climaterisks/
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that researchers, funders, and stakeholders are at least made aware of the 
suite of activities, for example, through the Western States Water Council-
California Department of Water Resources workshop series. And, given the 
history and current state of climate forecasting, no one should expect easy 
wins producing large gains in skill or usability; incremental improvement is 
the likeliest outcome of any effort.  

Challenge  
Limitations in our understanding of the connections between atmospheric 
and oceanic circulation patterns and processes, and Colorado River Basin 
precipitation variability in space and time, constrain the skill of climate 
forecast models in forecasting conditions for the basin. 

Opportunities 
• Support further research into these climate system dynamics to 

identify key patterns and variables. 
• Support further research into better representing those key patterns 

and variables in dynamical climate forecast models and statistical 
forecast tools. 

Challenge 
The CBRFC and other streamflow forecasting units may not be able to 
capitalize on the skill that does exist in sub-seasonal and seasonal climate 
forecasts for the basin. 

Opportunities 
• Support ongoing CBRFC efforts to pilot the inclusion of sub-seasonal 

and seasonal forecasts in their forecast system (see Chapter 8). 
• Support further research into post-processing of CBRFC forecasts to 

generate climate-forecast-informed, use-specific streamflow forecasts 
(see Chapter 8). 

Challenge 
The limited skill and probabilistic nature of climate forecasts may not mesh 
well with decision frameworks so water managers are unable to extract 
value from the forecast information. 

Opportunities 
• Continue to support engagement between water managers and CPC 

and other climate forecasters to facilitate shared understanding of 
decision needs and forecast capabilities. 

• Study decision making by users and sectors that make better use of 
climate forecasts (e.g., crop futures traders), to assess transferability of 
tools and practices. 

• Develop decision support tools that bridge climate forecasts to the 
water resource decision space. 
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Challenge  
The skill of climate forecasts is highly variable over both space and time, 
complicating the consistent use of forecasts. 

Opportunities  
• Selectively consult forecasts during those seasons when they have 

shown the most skill for the basin. 
• Support research to identify “forecasts of opportunity” specific to the 

basin, i.e., conditions of the ocean, atmosphere, and land surface during 
which forecasts are more likely to have skill and impact. 
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Glossary 
ablation 
The loss of snow from the snowpack due to melting, evaporation, or wind. 

absolute error 
The difference between the measured and actual values of x. 

albedo 
The percentage of incoming light that is reflected off of a surface. 

aleatory uncertainty 
Uncertainty due to randomness in the behavior of a system (i.e., natural variability) 

anomaly 
A deviation from the expected or normal value. 

atmospheric river (AR) 
A long and concentrated plume of low-level (<5,000’) moisture originating in the tropical Pacific. 

autocorrelation 
Correlation between consecutive values of the same time series, typically due to time-dependencies in 

the dataset. 

bank storage 
Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative 

water levels. 

bias correction 
Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using 

observations in a reference period. 

boundary conditions 
Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, sea-

ice and snowpack conditions) and can help forecast the future climate state when included in a model. 

calibration 
The process of comparing a model with the real system, followed by multiple revisions and comparisons 

so that the model outputs more closely resemble outcomes in the real system. 

climate forcing 
A factor causing a difference between the incoming and outgoing energy of the Earth’s climate system, 

e.g., increases in greenhouse-gas concentrations. 

climatology 
In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., “compared 

to climatology”). Synonymous with climate normal. 
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coefficient of variation (CV) 
A common measure of variability in a dataset; the standard deviation divided by the mean. 

consumptive use 
The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage 

and is thus unavailable for subsequent use. 

convection 
The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is 

warmer than the surrounding atmosphere. 

covariate 
A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., 

precipitation).  

cross-correlation 
A method for estimating to what degree two variables or datasets are correlated. 

cumulative distribution function (CDF) 
A function describing the probability that a random variable, such as streamflow, is less than or equal to 
a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-

exceedance. 

Darcy’s Law 
The mathematical expression that describes fluid flow through a porous medium (e.g., soil). 

datum 
The base, or 0.0-foot gage-height (stage), for a stream gage. 

dead pool 
The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or 

released downstream. 

deterministic 
Referring to a system or model in which a given input always produces the same output; the input strictly 

determines the output. 

dewpoint 
The local temperature that the air would need to be cooled to (assuming atmospheric pressure and 

moisture content are constant) in order to achieve a relative humidity (RH) of 100%. 

dipole 
A pair of two equal and opposing centers of action, usually separated by a distance. 

discharge 
Volume of water flowing past a given point in the stream in a given period of time; synonymous with 

streamflow. 
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distributed 
In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins 

into grid cells. Contrast with lumped model. 

downscaling 
Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.  

dynamical 
In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most 

of the relevant processes. 

environmental flow 
Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to 

sustain the river’s ecosystem. 

epistemic uncertainty 
Uncertainty due to incomplete knowledge of the behavior of a system. 

evapotranspiration 
A combination of evaporation from the land surface and water bodies, and transpiration of water from 

plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well. 

fixed lapse rate 
A constant rate of change of an atmospheric variable, usually temperature, with elevation. 

flow routing 
The process of determining the flow hydrograph at sequential points along a stream based on a known 

hydrograph upstream. 

forcing  - see climate forcing or weather forcing 
 
forecast 
A prediction of future hydrologic or climate conditions based on the initial (current) conditions and 

factors known to influence the evolution of the physical system. 

Gaussian filter 
A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-

shaped statistical distribution. 

gridded data 
Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or 

otherwise derived from a set of point observations. 

heat flux 
The rate of heat energy transfer from one surface or layer of the atmosphere to the next. 

hindcast 
A forecast run for a past date or period, using the same model version as for real-time forecasts; used for 

model calibration and to “spin up” forecast models. Same as reforecast. 
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hydraulic conductivity 
A measure of the ease with which water flows through a medium, such as soil or sediment. 

hydroclimate 
The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for 

a watershed or region. 

hydrograph 
A graph of the volume of water flowing past a location per unit time. 

hydrometeorology 
A branch of meteorology and hydrology that studies the transfer of water and energy between the land 

surface and the lower atmosphere. 

imaging spectrometer 
An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved 

image of an object or area. 

in situ 
Referring to a ground-based measurement site that is fixed in place. 

inhomogeneity 
A change in the mean or variance of a time-series of data (such as weather observations) that is caused 

by changes in the observing station or network, not in the climate itself. 

Interim Guidelines  
The Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake 

Powell and Lake Mead, signed by the Secretary of the Interior in December 2007. The guidelines expire 

in 2026. https://www.usbr.gov/lc/region/programs/strategies.html 

internal variability 
Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth’s oceans and 

atmosphere. 

interpolation 
The process of calculating the value of a function or set of data between two known values. 

isothermal 
A dynamic in which temperature remains constant while other aspects of the system change. 

jet stream 
A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer 

and colder air masses. 

kriging 
A smoothing technique that calculates minimum error-variance estimates for unsampled values. 

kurtosis 
A measure of the sharpness of the peak of a probability distribution. 

https://www.usbr.gov/lc/region/programs/strategies.html
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lag-1 autocorrelation 
Serial correlation between data values at adjacent time steps. 

lapse rate 
The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is 

adiabatic when no heat exchange occurs between the given air parcel and its surroundings. 

latency 
The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions. 

latent heat flux 
The flow of heat from the Earth’s surface to the atmosphere that involves evaporation and condensation 

of water; the energy absorbed/released during a phase change of a substance. 

Law of the River 
A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines 

that apportions the water and regulates the use and management of the Colorado River among the 

seven basin states and Mexico. 

LiDAR (or lidar) 
Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the 

variable distances from the sensor to the land surface. 

longwave radiation 
Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 

micrometers. 

Lower Basin 
The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are 
downstream of the Colorado River Compact point at Lee Ferry, Arizona. 

lumped model 
In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single 

unit, averaging spatial characteristics across that unit. Contrast with distributed model. 

Markov chain 
A mathematical system in which transitions from one state to another are dependent on the current state 

and time elapsed. 

megadrought 
A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature 
have varied. 

metadata 
Data that gives information about other data or describes its own dataset. 



Glossary 503 
 

mid-latitude cyclone 
A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, 

and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east 

and are effective at producing precipitation over broad areas.   

Minute 319 
The binding agreement signed in 2012 by the International Boundary and Water Commission, United 

States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin 

operations and water allocation, and humanitarian measures. 

Modoki 
An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as 

“CP” El Niño. 

multicollinearity 
A condition in which multiple explanatory variables that predict variation in a response variable are 

themselves correlated with each other. 

multiple linear regression 
A form of regression in which a model is created by fitting a linear equation over the observed data, 

typically for two or more explanatory (independent) variables and a response (dependent) variable. 

multivariate  
Referring to statistical methods in which there are multiple response (dependent) variables being 

examined. 

natural flow 
Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or 

diversion. Equivalent to naturalized flow, virgin flow, and undepleted flow. 

naturalized flow – see natural flow 

nearest neighbor method 
A nonparametric method that examines the distances between a data point (e.g., a sampled value) and 

the closest data points to it in x-y space (“nearest neighbors,” e.g., historical values) and thereby 
obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest 

neighbors (i.e., K-NN). 

nonparametric 
A statistical method that assumes no underlying mathematical function for a sample of observations. 

orographic lift 
A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or 

mountains. This mechanism leads to increased condensation and precipitation over higher terrain. 

p 
A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test 
of statistical significance. 
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paleohydrology 
The study of hydrologic events and processes prior to the instrumental (gaged) record, typically using 

environmental proxies such as tree rings. 

parameterized 
Referring to a key variable or factor that is represented in a model by an estimated value (parameter) 

based on observations, rather than being explicitly modeled through physical equations. 

parametric 
A statistical method that assumes an underlying mathematical function, specified by a set of 

characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations. 

persistence 
In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. 

Hydrologic time series with persistence are autocorrelated. 

phreatophytes 
Plants with deep root systems that are dependent on water from the water table or adjacent soil 

moisture reserves. 

pluvial 
An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought. 

principal components regression (PCR) 
A statistical technique for analyzing and developing multiple regressions from data with multiple 

potential explanatory variables. 

prior appropriation 
“First in time, first in right.” The prevailing doctrine of water rights for the western United States; a legal 

system that determines water rights by the earliest date of diversion or storage for beneficial use. 

probability density function (PDF) 
A function, or curve, that defines the shape of a probability distribution for a continuous random 

variable. 

projection 
A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on 

specified other conditions occurring during the forecast period, typically a particular scenario of 

greenhouse gas emissions.  

quantiles 
Divisions of the range of observations of a variable into equal-sized groups. 

r  
Correlation coefficient. The strength and direction of a linear relationship between two variables. 
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R2  
Coefficient of determination. The proportion of variance in a dependent variable that's explained by 
the independent variables in a regression model. 

radiometer 
An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy 

emitted from the sun and reflected by clouds, and longwave energy emitted from the earth’s surface. 

raster 
A digital image or computer mapping format consisting of rows of colored pixels. 

reanalysis 
An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling 

environment to produce consistent fields of variables over the entire period of analysis. 

reference evapotranspiration  
An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the 

water need for irrigation. 

regression 
A statistical technique used for modeling the linear relationship between two or more variables, e.g., 

snowpack and seasonal streamflow. 

relative humidity (RH) 
The amount of moisture in the atmosphere relative to the amount that would be present if the air were 

saturated. RH is expressed in percent, and is a function of both moisture content and air temperature. 

remote sensing 
The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other 

platforms distant from the object(s) being sensed. 

residual  
The difference between the observed value and the estimated value of the quantity of interest. 

resolution 
The level of detail in model output; the ability to distinguish two points in space (or time) as separate.  

spatial resolution - Resolution across space, i.e., the ability to separate small details in a spatial 

representation such as in an image or model. 

temporal resolution - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time 

step. 

return flow 
The water diverted from a river or stream that returns to a water source and is available for consumptive 

use by others downstream. 
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runoff 
Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is 

routed and measured within channels is streamflow. 

runoff efficiency 
The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through 

evapotranspiration. 

sensible heat flux 
The flow of heat from the Earth’s surface to the atmosphere without phase changes in the water, or the 

energy directly absorbed/released by an object without a phase change occurring. 

shortwave radiation 
Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength 

spectrum is between 0.2 and 3.0 micrometers. 

skew 
The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) 

distribution. 

skill 
The accuracy of the forecast relative to a baseline “naïve” forecast, such as the climatological average 

for that day. A forecast that performs better than the baseline forecast is said to have positive skill.    

smoothing filter 
A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. 

Common signal smoothing techniques include moving average and Gaussian algorithms. 

snow water equivalent (SWE) 
The depth, often expressed in inches, of liquid water contained within the snowpack that would 

theoretically result if you melted the snowpack instantaneously. 

snow course 
A linear site used from which manual measurements are taken periodically, to represent snowpack 

conditions for larger area. Courses are typically about 1,000’ long and are situated in areas protected 

from wind in order to get the most accurate snowpack measurements. 

snow pillow 
A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has 

accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the 

weight pressing down on the pillow. 

stationarity 
The condition in which the statistical properties of the sample data, including their probability 

distribution and related parameters, are stable over time. 

statistically significant 
Unlikely to occur by chance alone, as indicated by one of several statistical tests. 
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stepwise regression 
The process of building a regression model from a set of values by entering and removing predictor 

variables in a step-by-step manner. 

stochastic method 
A statistical method in which randomness is considered and included in the model used to generate 

output; the same input may produce different outputs in successive model runs.  

stratosphere 
The region of the upper atmosphere extending from the top of the troposphere to the base of the 

mesosphere; it begins about 11–15 km above the surface in the mid-latitudes. 

streamflow 
Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acre-

feet for flow volume. Synonymous with discharge. 

sublimation 
When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase 

without going through the intermediate liquid phase; a major source of snowpack loss over the course of 

the season. 

surface energy balance 
The net balance of the exchange of energy between the Earth’s surface and the atmosphere. 

teleconnection 
A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the 

tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin). 

temperature inversion 
When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient 

of temperature decreasing with height. 

tercile 
Any of the two points that divide an ordered distribution into three parts, each containing a third of the 

population. 

tilt 
A shift in probabilities toward a certain outcome. 

transpiration 
Water discharged into the atmosphere from plant surfaces. 

troposphere 
The layer of the atmosphere from the Earth's surface up to the tropopause (~11–15 km) below the 

stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor 

content, and sensible weather (clouds, rain, etc.). 
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undercatch 
When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with 

snow, especially under windy conditions. 

unregulated flow 
Observed streamflow adjusted for some, but not all upstream activities, depending on the location and 

application. 

Upper Basin 
The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are 

upstream of the Colorado River Compact point at Lee Ferry, Arizona.  

validation 
The process of comparing a model and its behavior and outputs to the real system, after calibration.  

variance 
An instance of difference in the data set. In regard to statistics, variance is the square of the standard 

deviation of a variable from its mean in the data set. 

wavelet analysis 
A method for determining the dominant frequencies constituting the overall time-varying signal in a 

dataset.
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Acronyms & Abbreviations 
24MS 
24-Month Study Model 

AET 
actual evapotranspiration 

AgriMET 
Cooperative Agricultural Weather Network 

AgWxNet  
Agricultural Weather Network 

AHPS  
Advanced Hydrologic Prediction Service 

ALEXI  
Atmosphere-Land Exchange Inversion 

AMJ 
April-May-June 

AMO  
Atlantic Multidecadal Oscillation 

ANN  
artificial neural network 

AOP  
Annual Operating Plan 

AR 
atmospheric river 

AR-1  
first-order autoregression 

ARkStorm  
Atmospheric River 1,000-year Storm 

ASCE  
American Society of Civil Engineers 

ASO  
Airborne Snow Observatory 

ASOS  
Automated Surface Observing System 

AVHRR  
Advanced Very High-Resolution 

Radiometer 

AWOS  
Automated Weather Observing System 

BCCA 
Bias-Corrected Constructed Analog 

BCSD 
Bias-Corrected Spatial Disaggregation 

(downscaling method) 

BCSD5 
BCSD applied to CMIP5 

BOR  
United States Bureau of Reclamation 

BREB  
Bowen Ratio Energy Balance method 

C3S  
Copernicus Climate Change Service 

CA  
Constructed Analogues 

CADSWES 
Center for Advanced Decision Support for 

Water and Environmental Systems 

CADWR 
California Department of Water Resources 

CanCM4i 
Canadian Coupled Model, 4th generation 

(global climate model) 

CBRFC  
Colorado Basin River Forecast Center 
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CCA  
Canonical Correlation Analysis 

CCSM4  
Community Climate System Model, version 

4 (global climate model) 

CDEC  
California Data Exchange Center 

CDF  
cumulative distribution function 

CESM  
Community Earth System Model (global 

climate model) 

CFS  
Climate/Coupled Forecast System 

CFSv2  
Coupled Forecast System version 2 (NOAA 

climate forecast model) 

CHPS  
Community Hydrologic Prediction System 

CIMIS  
California Irrigation Management 

Information System 

CIR 
crop irrigation requirement 

CIRES 
Cooperative Institute for Research in 

Environmental Sciences 

CLIMAS 
Climate Assessment for the Southwest 

CLM  
Community Land Model 

CM2.1 
Coupled Physical Model, version 2.1 (global 

climate model) 

CMIP  
Coupled Model Intercomparison Project 

(coordinated archive of global climate 

model output) 

CNRFC 
California-Nevada River Forecast Center 

CoAgMET  
Colorado Agricultural Meteorological 

Network 

CoCoRaHS  
Community Collaborative Rain, Hail and 

Snow Network 

CODOS 
Colorado Dust-on-Snow 

CONUS  
contiguous United States (the lower 48 

states) 

COOP  
Cooperative Observer Program 

CP  
Central Pacific 

CPC  
Climate Prediction Center 

CRB  
Colorado River Basin 

CRBPP 
Colorado River Basin Pilot Project 

CRPSS 
Continuous Ranked Probability Skill Score 

CRSM  
Colorado River Simulation Model 

CRSP 
Colorado River Storage Project 
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CRSS  
Colorado River Simulation System 

CRWAS  
Colorado River Water Availability Study 

CSAS 

CRWAS  
Center for Snow and Avalanche Studies 

CTSM  
Community Terrestrial Systems Model 

CU 
consumptive use 

CUL  
consumptive uses and losses 

CV  
coefficient of variation 

CVP/SWP  
Central Valley Project/State Water Project 

CWCB  
Colorado Water Conservation Board 

CWEST  
Center for Water, Earth Science and 

Technology 

DA  
data assimilation 

Daymet v.3  
daily gridded surface meteorological data 

DCP 
Drought Contingency Plan 

DEM  
digital elevation model 

DEOS  
Delaware Environmental Observing System 

DHSVM  
Distributed Hydrology Soil Vegetation 

Model 

DJF  
December-January-February 

DMDU  
Decision Making Under Deep Uncertainty 

DMI  
Data Management Interface 

DOD  
Department of Defense 

DOE  
Department of Energy 

DOW  
Doppler [radar] on Wheels 

DRI  
Desert Research Institute 

DTR  
diurnal temperature range 

EC  
eddy-covariance method 

EC 
Environment Canada 

ECCA  
ensemble canonical correlation analysis 

ECMWF  
European Centre for Medium-Range 

Weather Forecasts 

EDDI  
Evaporative Demand Drought Index 

EFAS  
European Flood Awareness System 
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EIS  
Environmental Impact Statement 

En-GARD  
Ensemble Generalized Analog Regression 

Downscaling 

ENSO  
El Niño-Southern Oscillation 

EOF  
empirical orthogonal function 

EP  
Eastern Pacific 

ERC 
energy release component 

ESI  
Evaporative Stress Index 

ESM  
coupled Earth system model 

ESP  
ensemble streamflow prediction 

ESRL  
Earth System Research Laboratory 

ET  
evapotranspiration 

ET0  
Reference (crop) evapotranspiration 

EVI  
Enhanced Vegetation Index 

FAA  
Federal Aviation Administration 

FAWN  
Florida Automated Weather Network 

FEWS  
Famine Early Warning System 

FEWS 
Flood Early Warning System 

FIRO  
forecast-informed reservoir operations 

FLOR 
Forecast-oriented Low Ocean Resolution 

(global climate model) 

FORTRAN  
Formula Translation programming 

language 

FPS  
Federal Priority Streamgages 

FROMUS  
Forecast and Reservoir Operation Modeling 

Uncertainty Scoping 

fSCA  
fractional snow covered area 

FWS 
U.S. Fish and Wildlife Service 

GCM  
global climate model, or general circulation 

model 

GEFS  
Global Ensemble Forecast System 

GEM  
Global Environmental Multiscale model 

GEOS 
Goddard Earth Observing System (global 

climate model) 

GeoTiff  
Georeferenced Tagged Image File Format 

GFDL  
Geophysical Fluid Dynamics Laboratory 
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GFS  
Global Forecast System model 

GHCN  
Global Historical Climatology Network 

GHCN-D  
Global Historical Climate Network-Daily 

GHG  
greenhouse gas 

GIS  
geographic information system 

GLOFAS  
Global Flood Awareness System 

GLOFFIS 
Global Flood Forecast Information System 

GOES  
Geostationary Operational Environmental 

Satellite 

GRACE  
Gravity Recovery and Climate Experiment 

GRIB  
gridded binary or general regularly-

distributed information in binary form 

gridMET  
Gridded Surface Meteorological dataset 

GSSHA  
Gridded Surface/Subsurface Hydrologic 

Analysis 

GW  
groundwater 

HCCD  
Historical Canadian Climate Data 

HCN  
Historical Climatology Network 

HDA  
hydrologic data assimilation 

HDSC  
Hydrometeorological Design Studies 

Center 

HEFS  
Hydrologic Ensemble Forecast Service 

HESP  
Hierarchical Ensemble Streamflow 

Prediction 

HL-RDHM  
Hydrologic Laboratory-Research Distributed 

Hydrologic Model 

HMT  
Hydromet Testbed 

HP  
hydrological processor 

HRRR  
High Resolution Rapid Refresh (weather 

model) 

HSS  
Heidke Skill Score 

HTESSEL  
Land-surface Hydrology Tiled ECMWF 

Scheme for Surface Exchanges over Land 

HUC  
Hydrologic Unit Code 

HUC4  
A 4-digit Hydrologic Unit Code, referring to 

large sub-basins (e.g., Gunnison River) 

HUC12  
A 12-digit Hydrologic Unit Code, referring 

to small watersheds 
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ICAR  
Intermediate Complexity Atmospheric 

Research model 

ICS  
intentionally created surplus 

IDW  
inverse distance weighting 

IFS  
integrated forecast system 

IHC  
initial hydrologic conditions 

INSTAAR  
Institute of Arctic and Alpine Research 

IPCC  
Intergovernmental Panel on Climate 

Change 

IPO  
Interdecadal Pacific Oscillation 

IRI  
International Research Institute 

iRON  
Interactive Roaring Fork Observing Network 

ISM  
Index Sequential Method 

JFM 
January-February-March 

JJA  
June-July-August 

K-NN  
K-Nearest Neighbor 

Landsat  
Land Remote-Sensing Satellite (System) 

LAST  
Lane’s Applied Stochastic Techniques 

LERI  
Landscape Evaporative Response Index 

lidar  
light detection and ranging  

LOCA  
Localized Constructed Analog 

LSM  
land surface model 

M&I  
municipal and industrial (water use 

category) 

MACA 
Multivariate Adaptive Constructed Analog 

maf  
million acre-feet 

MAM  
March-April-May 

MEFP  
Meteorological Ensemble Forecast 

Processor 

METRIC  
Mapping Evapotranspiration at high 

Resolution with Internalized Calibration 

MJO  
Madden-Julian Oscillation 

MMEFS  
Met-Model Ensemble Forecast System 

MOCOM 
Multi-Objective Complex evolution 

MODDRFS  
MODIS Dust Radiative Forcing in Snow 
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MODIS  
Moderate Resolution Imaging 

Spectroradiometer 

MODIS LST (MYD11A2)  
Moderate Resolution Imaging 

Spectroradiometer Land Surface 

Temperature (MYD11A2) 

MODSCAG  
MODIS Snow Covered Area and Grain-size 

MPR 
Multiscale Parameter Regionalization 

MRM  
Multiple Run Management 

MT-CLIM (or MTCLIM) 
Mountain Climate simulator 

MTOM  
Mid-Term Probabilistic Operations Model 

NA-CORDEX  
North American Coordinated Regional 

Downscaling Experiment 

NAM  
North American Monsoon 

NAO  
North Atlantic Oscillation 

NARCCAP  
North American Regional Climate Change 

Assessment Program 

NARR  
North American Regional Reanalysis 

NASA  
National Aeronautics and Space 

Administration 

NASA JPL  
NASA Jet Propulsion Laboratory 

NCAR  
National Center for Atmospheric Research 

NCCASC 
North Central Climate Adaptation Science 

Center 

NCECONET  
North Carolina Environment and Climate 

Observing Network 

NCEI  
National Centers for Environmental 

Information 

NCEP  
National Centers for Environmental 

Prediction  

nClimDiv  
new Climate Divisional (NOAA climate 

dataset) 

NDBC  
National Data Buoy Center 

NDVI  
Normalized Difference Vegetation Index 

NDWI  
Normalized Difference Water Index 

NEMO 
Nucleus for European Modelling of the 

Ocean (global ocean model) 

NevCan  
Nevada Climate-ecohydrological 

Assessment Network 

NGWOS 
Next-Generation Water Observing System 

NHMM  
Bayesian Nonhomogenous Hidden Markov 

Model 
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NICENET  
Nevada Integrated Climate and 

Evapotranspiration Network 

NIDIS  
National Integrated Drought Information 

System 

NLDAS  
North American Land Data Assimilation 

System 

NMME  
North American Multi-Model Ensemble 

NN R1  
NCEP/NCAR Reanalysis 

NOAA  
National Oceanic and Atmospheric 

Administration 

NOAH  
Neural Optimization Applied Hydrology  

Noah-MP 
Noah-Multi-parameterization Model 

NOHRSC  
National Operational Hydrologic Remote 

Sensing Center 

NPP  
Nonparametric paleohydrologic method 

NRCS  
Natural Resource Conservation Service 

NSF  
National Science Foundation 

NSIDC 
National Snow and Ice Data Center 

NSMN  
National Soil Moisture Network 

NVDWR  
Nevada Department of Water Resources 

NWCC 
National Water and Climate Center 

NWIS  
National Water Information System 

NWM  
National Water Model 

NWP  
numerical weather prediction 

NWS  
National Weather Service 

NWSRFS 
National Weather Service River Forecast 

System 

NZI  
New Zealand Index 

OCN  
Optimal Climate Normals 

OHD  
Office of Hydrologic Development  

OK Mesonet  
Oklahoma Mesoscale Network 

ONI  
Oceanic Niño Index 

OWAQ  
Office of Weather and Air Quality 

OWP  
Office of Water Prediction 

PC  
principal components 

PCA  
principal components analysis 
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PCR  
principal components regression 

PDO  
Pacific Decadal Oscillation 

PDSI  
Palmer Drought Severity Index 

PET  
potential evapotranspiration 

PGW  
pseudo-global warming 

PRISM  
Parameter-elevation Relationships on 

Independent Slopes Model 

PSD  
Physical Sciences Division 

QBO  
Quasi-Biennial Oscillation 

QDO  
Quasi-Decadal Oscillation 

QM 
quantile mapping 

QPE  
Quantitative Precipitation Estimate 

QPF  
Quantitative Precipitation Forecast 

QTE  
Quantitative Temperature Estimate 

QTF  
Quantitative Temperature Forecast 

radar 
radio detection and ranging 

RAP  
Rapid Refresh (weather model) 

RAWS  
Remote Automated Weather Station 

Network 

RCM  
Regional Climate Model 

RCP 
Representative Concentration Pathway 

RE 
reduction-of-error 

RFC 
River Forecast Center 

RFS  
River Forecasting System 

RH  
relative humidity 

RiverSMART  
RiverWare Study Manager and Research 

Tool 

RMSE  
root mean squared error 

S/I 
seasonal to interannual 

S2S 
subseasonal to seasonal 

Sac-SMA 
Sacramento Soil Moisture Accounting 

Model 

SAMS 
Stochastic Analysis Modeling and 

Simulation 

SCA  
snow-covered area 
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SCAN  
Soil Climate Analysis Network 

SCE  
Shuffled Complex Evolution 

SCF  
seasonal climate forecast 

SE  
standard error 

SECURE  
Science and Engineering to 

Comprehensively Understand and 

Responsibly Enhance Water 

SFWMD 
South Florida Water Management District 

SM  
soil moisture 

SMA  
Soil Moisture Accounting 

SMAP 
Soil Moisture Active Passive 

SMHI 
Swedish Meteorological and Hydrological 

Institute 

SMLR  
Screening Multiple Linear Regression 

SMOS 
Soil Moisture and Ocean Salinity 

SNODAS 
Snow Data Assimilation System 

SNOTEL  
Snow Telemetry 

SOI  
Southern Oscillation Index 

SON  
September-October-November 

SPoRT  
Short-term Prediction Research Transition 

SRES  
Special Report on Emissions Scenarios 

SRP  
Salt River Project 

SSEBOP  
Simplified Surface Energy Balance 

SSEBOP ET 
Simplified Surface Energy Balance 

Evapotranspiration 

SSP  
Societally Significant Pathway 

SST  
sea surface temperatures 

SSW  
stratospheric sudden warming 

SubX  
Subseasonal Experiment 

SUMMA  
Structure for Unifying Multiple Modeling 

Alternatives 

SVD  
singular value decomposition 

SW  
surface water 

SWANN  
Snow-Water Artificial Neural Network 

Modeling System 

SWcasts 
Southwest Forecasts 
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SWE 
snow water equivalent 

SWOT 
Surface Water and Ocean Topography 

SWS  
Statistical Water Supply 

Tair  
air temperature 

Tdew  
dew point temperature 

TopoWx  
Topography Weather (climate dataset) 

TVA  
Tennessee Valley Authority 

UC  
Upper Colorado Region (Reclamation) 

UCAR 
University Corporation for Atmospheric 

Research 

UCBOR 
Upper Colorado Bureau of Reclamation 

UCRB 
Upper Colorado River Basin 

UCRC  
Upper Colorado River Commission 

UCRSFIG 
Upper Colorado Region State-Federal 

Interagency Group 

USACE  
U.S. Army Corps of Engineers 

USBR 
U.S. Bureau of Reclamation 

USCRN  
U.S. Climate Reference Network 

USDA 
U.S. Department of Agriculture 

USGCRP 
U.S. Global Change Research Program 

USGS 
U.S. Geological Survey 

USHCN 
United States Historical Climatology 

Network 

VIC 
Variable Infiltration Capacity (model) 

VIIRS  
Visible Infrared Imaging Radiometer Suite 

VPD 
vapor pressure deficit 

WBAN  
Weather Bureau Army Navy 

WCRP  
World Climate Research Program 

WFO  
Weather Forecast Office 

WPC  
Weather Prediction Center 

WRCC  
Western Regional Climate Center 

WRF  
Weather Research and Forecasting 

WRF-Hydro 
WRF coupled with additional models to 

represent hydrologic processes 
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WSF  
water supply forecast 

WSWC  
Western States Water Council 

WUCA 
Water Utility Climate Alliance 

WWA 
Western Water Assessment 

WWCRA  
West-Wide Climate Risk Assessments 

WWMPP 
Wyoming Weather Modification Pilot 

Project 
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