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Volume II of the Colorado River Basin State of the Science report focuses on primary data and 
models that are relevant across all time scales. While Volumes III and IV concentrate on short- to 
mid-term forecasting and long-term outcomes, respectively, the data and models addressed in this 
volume can be applied to Colorado River Basin studies performed at all of those time scales. The 
chapters in this volume describe how primary weather, climate, and hydrology data are collected 
and how datasets of other variables are built from primary data. A simple regurgitation of the vast 
literature about the primary data would not serve the goals of this report. The focus, instead, is on 
compiling, summarizing, and offering objective assessment of the data and the work that has been 
done to make it available. The objective of this volume is to be a uniquely useful reference for 
readers.  

Chapter 4 is a reference for weather and climate data. It begins with a description of the methods 
and equipment that have been used to collect weather data, from the installation of the first weather 
stations in the basin in the late 1800s, to the emergence of remotely-sensed distributed data. It 
explains how point data become gridded datasets, how missing data are treated, how large scale 
data are disaggregated, which datasets have common source data, and how quantitative biases can 
be introduced. Knowledge about the methods behind, and idiosyncrasies of, the datasets, along with 
their strengths and weaknesses is presented to help readers determine which data sources are 
better fits for their applications. The chapter provides a detailed comparison of 11 gridded datasets. 
It explains things to consider when comparing values and trends from these datasets, and practical 
and scientific considerations when selecting a gridded dataset. 

Volume II 
Primary Data and Models That Inform All Time Horizons 

 
Chapter 4. Observations—Weather and Climate 

Chapter 5. Observations—Hydrology 

Chapter 6. Hydrologic Models 
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Chapter 5 is a reference to hydrology data—snowpack, streamflow, soil moisture, evaporation, and 
evapotranspiration—that are key inputs to streamflow forecasting and system modeling. Snowpack, 
soil moisture, and evaporation/evapotranspiration data are all gathered using three methods—in 
situ measurements, modeled estimates, and remote sensing. Chapter 5 provides a comprehensive 
description of the multiple data sets developed by each method, and an explanation of the 
advantages and limitations of each. Streamflow, on the other hand, has been measured in essentially 
the same way across the basin since measurements commenced at the end of the 19th century: 
stream gages that measure stream stage, which is subsequently translated to flow by a rating curve 
that is essentially an empirical hydraulic model of the gage site. This chapter explains the 
uncertainties in the gage record, which arise from measurement error but to a larger degree from 
errors in the rating curves. Measured streamflows are naturalized or deregulated for use in models. 
This process introduces more uncertainty, and the sources and implications of this uncertainty are 
thoroughly described in this chapter. The chapter closes with a summary of challenges and 
opportunities regarding hydrology data. 

Chapter 6 is devoted to describing the evolution, application, and trade-offs of a number of runoff 
and land surface models that are the foundation of applications at the smallest time scale, 
streamflow forecasting, to the largest time scale, climate change projections. This chapter is 
complemented by Chapters 8 and 11, which place hydrology models in the context of forecasting and 
projection applications, and by Chapters 4 and 5, which describe the provenance and qualities of the 
data used to force and validate hydrology models. The advantages and disadvantages of the 
hydrology models are summarized and their usefulness for either forecasting or simulating climate 
sensitivity or both is assessed. Not surprisingly, the evolution of hydrologic models follows a path of 
increasing complexity, from empirical conceptual runoff models, to simple water balance models, 
which led to distributed land surface models and fine-scale physically explicit models and finally to 
coupled land-atmosphere models. Models of all of these types continue to be applied in the basin, 
and Chapter 6 describes the models currently in use in the basin and explores emerging models and 
approaches that could improve forecasting and projection. The chapter closes with an examination 
of knowledge gaps, challenges and opportunities for improvement. 
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Key points 
• With a range of hydrologic models readily available, it is important for 

prospective applications of models to articulate the objectives of the 
modeling as well as the requirements that the model must satisfy. 

• A single model is likely designed for a specific application or context 
and may not be optimal for a wider range of uses. 

• In the Colorado River Basin, the NWS models (streamflow forecasting) 
and the VIC model (sensitivity studies; climate change projection) have 
been the most-consulted hydrologic models for those respective 
applications. Each has varying capabilities and limitations. 

• Increasing model complexity does not guarantee improved model 
performance. Complexity should be increased subject to the 
consideration of process needs, data sufficiency, computational 
feasibility, and ultimately the model’s demonstrated performance. 

• For some applications, such as streamflow forecasting at a river 
location, simpler models may continue to offer valuable and even 
superior performance for years to come.  

• For other applications, such as understanding hydrologic sensitivity to 
climate change or hydrologic response to watershed changes, more 
complex process-oriented models are usually more appropriate.   

• Calibration (parameter estimation) is almost always needed to achieve 
high-quality simulations in all hydrologic models, and it is easier to 
implement in simpler models than in computationally intensive 
complex models.  

6.1 Overview 

Hydrologic models are the foundation of broad range of applications in the 
Colorado River Basin, ranging from streamflow forecasting to trend analysis 
to climate change projection. This chapter provides an overview of 
hydrologic modeling, including perspectives on both model development 
and applications. There is some overlap with Chapter 8 (Streamflow 
Forecasting), but the additional applications of hydrologic models in basin 
water management and planning merits more thorough treatment of the 
models beyond their use in streamflow forecasting. 

Hydrologic modeling refers to the use of simulations to characterize the 
likely behavior of real watershed features and systems (Allaby 2008). 
Hydrologic modeling can be applied to improve our understanding of 
hydrologic phenomena and how changes in, for example, pervious surfaces, 
vegetation, land use and weather and climate affect the hydrologic cycle. It 
is furthermore used to estimate runoff and water availability in the context 
of forecasts at timescales of hours to months, and projections over 
decades. The general components of a hydrologic model include 
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meteorological inputs (such as precipitation and temperature), governing 
equations enforcing physical laws (e.g., mass continuity), parameters, 
parameterizations (the algorithms specifying processes such as infiltration), 
and the model structure, including the arrangement and connectivity of 
watershed components (canopy, snowpack, subsurface) (e.g., Singh 1995; 
Clark et al. 2015). 

The hydrologic models currently applied in the Colorado River Basin and 
elsewhere arise from several distinct traditions. The use of hydrologic 
models in streamflow forecasting (Chapter 8) has deep and practical roots 
in civil engineering, where models were developed to support water 
systems design and management (Anderson and Burt 1985). The 
communities driving these forecasting models tend to be operational 
agencies. In contrast, hydrologic models used in the projection of future 
hydrology to support water supply assessment (e.g., Chapter 11), or in trend 
and variability analysis, are mostly driven by academic institutions and 
agency research laboratories. These latter models have a stronger heritage 
in earth system modeling and watershed process modeling.  

Despite their different origins, all models have watershed (or land) 
representations that involve terms for the common input and output fluxes 
and states, such as precipitation, temperature, soil moisture, snow water 
equivalent (SWE), runoff and evapotranspiration (ET). How these 
components are represented within the models, the way runoff is 
calculated, and the spatial interpretation of the model’s catchment area can 
vary significantly from one model to another.  

Model complexity and spatial framework 
Hydrologic models can be viewed along a general continuum of complexity. 
Complexity can refer to the number of processes represented in the model, 
the spatial resolution of the model, or the structure and configuration of 
the model. With the rise of supercomputing as a resource for hydrology, 
the range of complexity for regional (e.g., Colorado River Basin) model 
applications has become ever broader. The lower bound of complexity has 
been set by the lumped conceptual configuration of traditional operational 
models, while the advancing upper bound tracks the evolution of very high 
resolution watershed process modeling approaches that were previously 
applied only in small scale studies.  

This widening range of model complexity has prompted much debate in the 
research and operational communities (e.g., Grayson, Moore, and McMahon 
1992a; 1992b; Reggiani, Sivapalan, and Hassanizadeh 1998; Beven 2002; 
Sivapalan et al. 2003; Maxwell and Miller 2005; Beven and Cloke 2012; Wood 
et al. 2012), with differing perspectives on issues such as the adequacy of 
representations of physical processes, and the impact of real-world data 
limitations and uncertainty. What is clear, though, is that there is no one 
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level of model complexity that is optimal for all applications. The following 
sections describe several general modeling approaches that differ in 
complexity, including the models used for the CBRFC’s operational 
streamflow forecasting in the Colorado River Basin. (Streamflow forecasting 
itself is treated more thoroughly in Chapter 8.) 

Conceptual and physical models 
An initial distinction can be made between conceptual models and physical 
models—though models in each class may have elements of both, and these 
labels are inexact. Conceptual models have relatively simple 
representations of watershed attributes and processes, generally with no 
more than a dozen components. The relationships and linkages (fluxes of 
moisture or energy) between the components are typically controlled by 
adjustable parameters whose values may be only indirectly known from 
observations or otherwise deduced through calibration. The structure of 
the conceptual model is motivated by our understanding of the physics of 
the real world system (e.g., shallow and deep storage zones, percolation, 
radiation-driven snowmelt), but remains an extreme simplification of those 
physics. Conceptual models as well as physical models adhere to 
fundamental physical laws (such as mass and energy conservation) but 
conceptual models rely more much directly on external parameters to 
describe or specify hydrologic processes. 

Physical models, also called process-based or mechanistic models, are 
generally more complex. They also contain many conceptual elements, but 
nonetheless represent the watershed attributes and processes with a 
higher degree of detail, and in arrangements that attempt to more closely 
mimic the storages of water and energy in the watershed and the fluxes 
between them. In contrast to conceptual models, physical models attempt 
to provide a more explicit representation of the hydrologic processes and 
the resulting hydrologic dynamics. Rather than allow an external parameter 
to directly control a process, they specify a physically informed equation 
describing the process (called a parameterization), which in turn is 
controlled by external parameters.  

For example, in a conceptual model, the percolation rate from one storage 
zone to another may be determined by the storage amounts (states) and an 
external rate parameter specified in calibration. In contrast, the percolation 
in a physical model is determined by the storage states and an equation 
(and algorithm, a parameterization) that may calculate percolation also as a 
function of the soil properties assigned to the zones. These properties are 
often given by external parameters that may also be calibrated. As in 
conceptual models, the hydrologic responses in physical models are 
summations (i.e., an emergent behavior) of the hydrologic processes. 
Spatial and temporal variations in catchment characteristics are 
incorporated into physical models to a greater degree than conceptual 
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models, and consequently the structure and configuration of the physical 
models more closely reflect the real world watershed.  

Notwithstanding the above discussion, it is important to note that a 
physical model is almost always applied at a scale larger than that at which 
some processes occur (see Clark et al. 2017 for a discussion). For example, a 
hydrologic model implemented at 12-km grid resolution is much coarser 
than the real world scale at which processes such as percolation of 
meltwater through a snowpack, or infiltration through soil, take place 
(which may be on a scale of centimeters). Thus, even though the 
description of a process may be through a physical parameterization, the 
model does not explicitly resolve that process, and remains, in a sense, also 
conceptual, and usually requires some degree of calibration. 

Spatial framework 
A second important distinction between models refers to the spatial 
framework of the model. Spatial variability in topography, geology, soils, 
and vegetation affects the hydrologic responses within a watershed (Clark 
et al. 2017). The spatial framework in hydrologic models can be categorized 
as lumped, semi-distributed, or fully distributed (Figure 6.1).  

Lumped models average the spatial variability across a watershed unit; 
semi-distributed models reflect some spatial variability; and fully 
distributed models process spatial variability by many small spatial units 

 
Figure 6.1 

Schematic of the spatial frameworks in hydrologic models. A: Lumped model, B: Semi-distributed 
model by sub-catchment, C: Distributed model by grid cell. Runoff is calculated for each sub-
catchment at the confluence points represented by the black dots in B. Distributed models calculate 
runoff for each grid cell, while lumped models calculate one runoff value for the entire catchment at 
the river outlet point represented by the black dot in A. (Source: Sitterson et al. 2017)  
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(usually grid cells). The spatial framework of each of the classes of models is 
given in Table 6.1. The spatial framework is strongly associated with the 
model class: conceptual models generally have a lumped framework, while 
physical models generally have a more distributed framework. It should be 
noted that terms such as “distributed” and “lumped” are labels reflecting 
model intent, rather than definitive descriptions of the characteristics of a 
model, especially resolution. For example, a 12-km distributed model may 
have similar spatial resolution and degree of spatial averaging as a lumped 
model broken into three elevation zones for the same watershed. Also, 
physical models may incorporate sub-grid variability for selected 
watershed attributes, such as vegetation and elevation.  

Four general classes of hydrologic models 
The characteristics of four general classes of hydrologic models are 
summarized in Table 6.1 and described in greater detail in the text that 
follows. Note that the distinctions among the model types are not hard and 
fast, and some models may blend aspects of two or more classes. Table 6.1 
serves as an organizing reference for this chapter and is referred to 
throughout.  

Table 6.1 

Summary of characteristics of four general classes of hydrologic models. Terms are defined in the text. 

 
Bucket-style 
conceptual models 

Stand-alone land 
surface models 
and multi-model 
frameworks 

Land surface 
models in a 
coupled ESM 
system  

Explicit watershed 
process models  

Examples in 
the Colorado 
River Basin 

Sac-SMA, SNOW-
17, Monthly Water 
Balance Model 

VIC, SUMMA  
Community Land 
Model, Noah-MP, 
HTESSEL 

WRF-Hydro terrain-
routing, DHSVM, 
GSSHA 

Model 
structure 

Conceptual 

A mixture of 
physically explicit 
and conceptual 
components 

A mixture of 
physically explicit 
and conceptual 
components 

Physical, with fewer 
unresolved 
(conceptual) 
process 
components 

Spatial 
framework 

Lumped or semi-
distributed 

Distributed, but 
can have lumped 
components 

Distributed Distributed 

Typical 
Resolution 

3–30 km, or 10–
1000 km2 
hydrologic unit 

500 m–25 km 10–100 km 10–500 m 
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Bucket-style 
conceptual models 

Stand-alone land 
surface models 
and multi-model 
frameworks 

Land surface 
models in a 
coupled ESM 
system  

Explicit watershed 
process models  

Primary 
applications in 
the Colorado 
River Basin 

Operational 
streamflow 
forecasting, 
sensitivity analyses, 
coarse-scale 
climate-change 
impact analysis  

Climate sensitivity 
analyses, climate 
change and 
variability 
impacts, 
streamflow 
forecasting 

Weather and 
climate 
prediction, 
variability 
analysis, and 
climate projection 

Hydrologic process 
studies (e.g., 
surface-
groundwater 
interactions, ET 
modeling, snow 
hydrology), climate 
variability and 
change studies 

Advantages 

Computationally 
cheap, highly 
amenable to 
calibration 
(parameter 
estimation), agile 
for running 
ensembles and data 
assimilation, 
typically the 
highest- performing 
model for 
streamflow 
simulation and 
forecasting (within 
the calibration 
envelope) 

Computationally 
feasible for most 
applications but 
requires high-
performance 
computing for 
large domains, 
more process-
oriented, 
maintains water 
and energy 
balance, more 
trusted for 
analysis beyond 
the calibration 
envelope, 
designed for 
regional to global 
implementation 

Includes land-
atmosphere 
feedbacks and a 
greater variety of 
process 
representations 
(including carbon 
cycle and 
dynamic 
vegetation in 
some cases), 
albeit at a coarser 
scale due to 
coupling in 
continental and 
global scale 
applications 

Can represent 
hydrologic 
processes with 
more explicit detail 
and granularity, 
suitable for 
evaluation of high-
resolution 
observations, can 
better represent 
explicit terrain and 
vegetation influence 
on hydrologic 
phenomena 

Disadvantages 

Conceptual 
representation and 
simplification of 
physical processes 
and extensive 
calibration limit the 
ability to simulate 
multiple outputs 
and project 
significantly beyond 
the calibration 
envelope   

Computationally 
demanding 
relative to 
conceptual 
schemes, and 
structure, 
parameterization 
inflexibility can 
undermine 
performance and 
hamper 
calibration   

Application in the 
coupled context 
in which 
atmospheric 
variables are 
often most 
important means 
that hydrologic 
quantities such as 
runoff or 
snowpack are less 
scrutinized and 
less calibrated  

Computational 
demands restrict or 
degrade many 
applications, 
including long-
range or large-
domain simulation, 
comprehensive 
parameter 
estimation, and use 
of ensemble 
techniques 
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Bucket-style conceptual models 
Conceptual models can be viewed as being based on the assumption that 
we know (or once knew) relatively little about the real world structure and 
functioning of a watershed, therefore we use a minimal structure, and infer 
parameters to directly control processes from observations. This strategy 
has been shown to work well where there are sufficient data for calibration 
and inputs, despite concerns about the extent to which the resulting 
parameters are overly tuned to the data.  

At the time these models were initially developed in the 1960s and 1970s, 
the main motivation for the relatively simple representation of a watershed 
was to make the model supportable by the limited available weather and 
hydrology data at that time, which were almost entirely point-based 
(Chapters 4 & 5). But even today, these simple hydrologic models produce 
highly accurate simulations and forecasts that are difficult to outperform 
using physical models.  

Bucket style conceptual models remain relatively simple, with lumped 
modeling units of small watershed areas, on the order of 10–1000 km2. This 
lower complexity, with consequently lower computational demands, is 

 
Figure 6.2 

Conceptual flow diagram of the Sac-SMA model and a schematic representation of model output. 
(Source: adapted from NOAA NWS 2002) 
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advantageous because it enables manual calibration in the model 
development phase, and facilitates forecasters’ examining and iteratively 
updating their inputs, states, and outputs in real-time during the 
forecasting workflow. An example of a traditional lumped approach is 
provided in Figure 6.2. 

The conceptual hydrology model whose output is most familiar to Colorado 
River stakeholders is the Sacramento Soil Moisture Accounting Model (Sac-
SMA) used by the CBRFC and other National Weather Service (NWS) River 
Forecast Centers (RFCs) for operational streamflow forecasting (Figure 6.2). 
Sac-SMA has five soil storage types (“buckets”), each with an underlying 
physical rationale. For example, the upper zone tension water content 
bucket represents the portion of the soil column that experiences 
unsaturated flow and in which capillary pressure in soil pores resists 
drainage and lateral flow. Figure 6.3 shows an example of the output of Sac-

 

Figure 6.3 
Example of model output 
of Sac-SMA for the upper 
Colorado River Basin. Note 
the lumped nature of the 
model output. (Source: 
NOAA NWS CBRFC; 
https://www.cbrfc.noaa.gov
/wsup/sac_sm/sac_sm.php) 

https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php
https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php


 

Chapter 6. Hydrologic Models 229 
 

SMA, which is operationally paired with SNOW-17 (Anderson 1973), a 
temperature-index based conceptual snow accumulation and ablation 
model. See section 6.3 for a more detailed description of the NWS models. 

Stand-alone land surface models (LSMs)  
Stand-alone land surface models (LSMs) such as the Variable Infiltration 
Capacity (VIC) model are physical models and differ from conceptual 

 
Figure 6.4 

Schematic representation of the VIC model, showing land cover tiles, soil column, and major water 
and energy fluxes (Source: VIC Model Overview, 
https://vic.readthedocs.io/en/master/Overview/ModelOverview/) 

https://vic.readthedocs.io/en/master/Overview/ModelOverview/
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models in that the states, inputs, and outputs are designed to emulate 
physical processes more explicitly (Figure 6.4).  

LSMs use physical equations and other quantitative methods to simulate 
the exchange of water and energy fluxes at the Earth surface–atmosphere 
interface. For example, LSMs dynamically calculate potential ET (PET) and 
simulate evaporative fluxes through parametrizations of sub-processes 
such as vegetation transpiration and bare soil evaporation, while 
conceptual models may lack a representation of vegetation entirely, or take 
PET as an input or use PET as a parameter that is tuned in calibration.  

Since their advent in the 1990s, VIC and similar land surface models have 
demonstrated their utility for a broader range of hydrologic analyses, 
including the assessment of long-term trends in regional hydrology (Mote 
et al. 2005), drought (Andreadis et al. 2005), streamflow forecasting (Hamlet 
and Lettenmaier 1999; Wood et al. 2002), climate change detection and 
attribution studies (e.g., Barnett et al. 2008) and impact assessment. In the 
Colorado River Basin alone, as discussed in Chapter 11, VIC has been used 
for at least a half dozen studies and is the basis for the major climate 
change hydrology datasets developed by a Reclamation-led consortium and 
archived at the Lawrence Livermore National Laboratory website. See 
section 6.3 for a more detailed description of the VIC model. 

As alluded to earlier, VIC has parameters directly regulating the subsurface 
stores of water and the transfer (fluxes) of water from one storage layer to 
another. For soil drainage, where a conceptual model might apply a linear 
reservoir formulation in which the outflow from one bucket to the next is 
linearly related to the bucket’s current water storage, a land surface model 
such as VIC represents water storage and transfer in terms of process 
concepts and attempts to specify parameters using observed, or estimated, 
geophysical attributes.  

In a land surface model, soil drainage in the saturated zone may be 
described by a Darcy’s law representation in which drainage rate is 
dependent on the amount of water in the column and a hydraulic 
conductivity parameter that is estimated based on the soil texture. 
However, because soil textures are very sparsely observed, the relationship 
between soil textures and the conductivity parameter are uncertain, and 
soil drainage is simulated at a spatial scale (e.g., 12 km) that is much larger 
than the scale at which the drainage process acts, this physically based 
model parameterization may be almost as rough an approximation of the 
real-world process as found in the conceptual model formulation. The 
hydraulic conductivity, soil layer depths and other physical parameters may 
also be used as calibration parameters, meaning that the soil drainage 
process in a physically based land surface model application may effectively 
be as “tuned” as the water transfer in a conceptual model. The greater 

Downscaled CMIP3 and 
CMIP5 Climate and 
Hydrology Projections 

 
Link: 
https://gdo-
dcp.ucllnl.org/downscaled
_cmip_projections/dcpInt
erface.html 

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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process realism in the land surface model (or any physical model) and its 
distributed nature requires a far larger number of sensitive parameters—
many of which may be hidden in the code through hardwiring (Mendoza et 
al. 2015)—and more complex model structure. The result can often be a 
model that is less amenable to calibration, that is, less flexible for tuning to 
reproduce observed variability for an output such as streamflow.  

Table 6.1 provides a summary of the advantages, disadvantages and 
applications of stand-alone LSMs used in the Colorado River Basin. 
Figure 6.5 shows an example of VIC model output. 

 
Figure 6.5 

Example of output from an application of the VIC model in the Colorado River Basin. The red shading 
shows the mean difference per cell in the timing of snow depletion (ΔSD90%, i.e., the change in the 
date at which 10% of the peak snowpack remains) between ‘Before Dust Loading’ and ‘After Dust 
Loading scenarios’ for 1916–2003. (Source: Painter et al. 2010) 
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Land surface models (LSMs) in a coupled system 
Over the last few decades, the land surface has become an increasingly well 
represented component in climate models. A GCM (from “General 
Circulation Model” or “Global Climate Model”) is a modeling framework that 
couples a global atmospheric model, an ocean model, a sea ice model, and a 
land surface model (see Chapter 11). An Earth System Model (ESM) extends 
a GCM to include a suite of more detailed sub-models, including 
representations of the biogeochemistry of the ocean and land (e.g., carbon 
cycle, nutrient cycle, etc.), atmospheric chemistry, dynamic ice sheets 
(Lenaerts et al. 2019), dynamic vegetation, and water management. 

Recently, computing capabilities have advanced such that more complex 
land surface schemes are being included in coupled GCMs and ESMs. Land 
surface models such as the NCAR Community Land Model (CLM) now 
incorporate detailed physics to represent land surface moisture and energy 
fluxes (e.g., the impacts of surface albedo on longwave and shortwave 
radiation), including the influence of land cover changes and idealized 
hillslope-scale effects on moisture distribution (Figure 6.6). Although these 
models are still run at a relatively coarse resolution (e.g., >25 km), some 
have more detailed parameterizations than a typical hydrology model like 
VIC, and far more detailed process descriptions than are found in 
conceptual models. This additional detail allows representation of 
processes such as vegetation dynamics and carbon-cycle physics that are 
key feedbacks into the climate system.  

A long-sought objective for hydrologic science is to bring about a 
convergence in modeling so that local scale hydrology can be simulated by 
GCMs and ESMs, negating the need for calibrated stand-alone hydrology 
models like VIC (Fan et al. 2019). Lehner et al. (2019) provide a detailed 
perspective on the limitations of current (CMIP5) land surface models 
within GCMs to simulate runoff and runoff sensitivities in the Upper Basin 
(see Chapter 11). NCAR is currently developing a potential successor to the 
Community Land Model called the Community Terrestrial Systems Model 
(CTSM) that will ultimately be a more complete land model, including 
anthropogenic impairments (i.e., water management and irrigation at a 
coarse scale), and may soon have test case implementations that are usable 
for hydrologic applications related to water management.   

The Weather Research and Forecasting Hydrologic modeling system (WRF-
Hydro) used by the National Water Model (NWM; see section 6.3) is an 
outgrowth of both process-oriented watershed modeling and 
developments in the field of earth system modeling. In principle, WRF-
Hydro can couple a land-surface model (primarily Noah-MP), a weather 
research and forecast model (WRF), a terrain routing model, a groundwater 
bucket model, and channel routing. However, WRF-Hydro in the NWM 
implementation is not actually coupled with WRF.  
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The last decade has also seen the rise of operational global 
domain models that are used for hydrologic analysis and 
prediction. Two operational forecasting centers, the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) and the Swedish Meteorological and Hydrologic 
Institute (SMHI), are now producing naturalized seasonal 
hydrologic runoff forecasts for continental to global domains 
(Wetterhall and Di Giuseppe 2018; Emerton et al. 2018). 
Deltares, a research institute in the Netherlands, also runs a 
global, grid-based model for medium range ensemble 
forecasting in a system called the Global Flood Forecast 
Information System (GLOFFIS). It is now straightforward for 
large-scale modeling centers to link land surface and routing 
models to provide up-to-global scale hydrologic simulations. 
For instance, NCAR recently linked CLM runoff output with 
the MizuRoute channel routing model (Mizukami et al. 2016) 
to simulate streamflow for all of North America (Figure 6.7). 
NASA and other agency partners run the Famine Early 
Warning System (FEWS), which is based on global LSM 
applications, and universities such as Princeton and the 
University of Washington have run various LSM-based 
forecasting systems (e.g., with VIC) for over 15 years.  

These continental to global efforts are all still in the initial 
stages. Their skill remains relatively unexplored and is often 
quite poor, yet it is worth noting them as a possible 
harbinger of future information resources and development. 
It is also possible that their forecasted natural runoff 
anomalies (e.g., percent of average) may be informative; they 
are driven by good quality weather and climate forecasts and 
could in some cases provide useful information in spite of 
model bias. The poor forecast quality is likely to improve in 
the future given that these modeling efforts are often tied to 
sizeable research and development resources and bring to 
bear high quality datasets and techniques that may not have 
been adopted in local scale forecasting. Many of them also 
are linked to long, consistent hindcasts that enable users to 
gage their skill and even bias-correct them, something that 
is unavailable in NWS real-time streamflow forecasts. Their 
current potential is likely to lie more in medium-range and 
seasonal (mid-range) forecasting, with short-range 
predictions from tailored, more local systems being 
relatively more actionable. 

 
Figure 6.6 

Schematic of the structural and physical 
characteristics of the Community Land 
Model (Source: “Community Land Model” 
http://www.cesm.ucar.edu/models/clm/) 

http://www.cesm.ucar.edu/models/clm/
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Explicit watershed process models 
Models applied within the discipline of fine-scale watershed science, which 
are often linked with intensively instrumented watershed observing 
networks, attempt to resolve watershed and hillslope-scale processes—
interception, throughfall, myriad snow processes, infiltration, and vertical 
and lateral flow in saturated and unsaturated soils—in as much explicit 
detail as possible. Examples of such models include Gridded 
Surface/Subsurface Hydrologic Analysis (GSSHA), the Distributed 
Hydrology Soil Vegetation Model (DHSVM) (Figure 6.8), and the terrain-
routing model included in the WRF-Hydro system.  

A defining feature of the explicit watershed process model is the use of 
terrain gradients to drive lateral fluxes of water both overland and through 
the soil column, so that the runoff generation mechanism accounts not just 
for vertical fluxes of moisture but also the role of the landscape in 
distributing moisture horizontally, which is not represented in other types 
of models. In such models, groundwater can emerge at the surface at a 
break in grade, can flow downhill overland or within a fine-scale channel 
network, and then re-infiltrate the soil. In contrast, land surface models 
such as the VIC model, have simpler runoff-generation mechanisms, 
motivated by the assumption that the lateral fluxes of water between grid 
cells are much smaller than transport in channels (e.g., streamflow) and the 
vertical fluxes of ET and drainage. Table 6.1 provides a summary of the 
advantages, disadvantages and applications of explicit watershed process 
models used in the Colorado River Basin. Figure 6.9 shows an example of 
DHSVM model output. 

Some watershed process models have distributed snow algorithms that 
allow for blowing and drifting effects caused by terrain and forcing 
variations. Because the models resolve vegetation almost down to the scale 
of an individual tree (about 10 m), or at least at the scale of a forest stand 
(about 100 m), the role of local vegetation in the hydrologic cycle is often 
explicitly represented, and described by many parameters. In fact, the 
development of DHSVM was motivated by an interest in quantifying forest 
harvest effects on runoff, including the impacts of individual roads and 
culverts.  

The scale of such models is still far coarser than the scale at which 
processes such as soil infiltration occur (Clark et al. 2017; Seyfried and 
Wilcox 1995), thus like land surface models they are in some measure a 
conceptual representation, but their process orientation is still clearly 
greater than land surface models. 
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Figure 6.8 

DHSVM model representation. (Source: adapted from Wigmosta, Vail, and Lettenmaier 1994) 

 
Figure 6.7 

The convergence of continental-scale land surface modeling with streamflow simulation at watershed 
scales is illustrated by the coupling of a gridded CLM-based land model, illustrated by its SWE output 
(left), to a reach-based channel routing model (Mizuroute) implemented across North America to 
obtain streamflow (right). (Source: N. Mizukami and M. Clark, http://www.cesm.ucar.edu/events/wg-
meetings/2019/lmbwg.html) 

http://www.cesm.ucar.edu/events/wg-meetings/2019/lmbwg.html
http://www.cesm.ucar.edu/events/wg-meetings/2019/lmbwg.html
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Most applications of high-resolution explicit process models have been to 
support the investigation of geophysical questions in watershed science 
and ecology, including understanding the effects of beetle kill, juniper 
control strategies, forest thinning approaches, dust-on-snow phenomena, 
deglaciation, and groundwater-surface water interactions, among other 
topics. Until recently, it had been rare to find such models used in water 
resources applications such as streamflow forecasting or long-term climate 
change studies. In the U.S., Westrick, Storck, and Mass (2002) implemented 
a 150-m DHSVM model for streamflow prediction in the Pacific Northwest. 
More recently and notably, NOAA NWS launched the NWM for streamflow 
forecasting which coupled a 1-km resolution implementation of the Noah-
Multiparameterization Land Surface Model (Noah-MP; Niu et al. 2011) to a 
250-m terrain routing scheme (Gochis, Yu, and Yates 2015). See section 6.3 
for a more detailed description of the NWM. 

 
Figure 6.9 

Example model output of DHSVM, showing simulated SWE for May 15th at a 250-m resolution, given 
observed historical temperature and precipitation data. The modeled area includes drainages in and 
near Rocky Mountain National Park. (Source: Aaron Heldmyer, CIRES) 
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The use of such computationally intensive models for real-time forecasting 
as well as for geophysical process studies is enabled through advances in 
high-to-hyper resolution imagery, inexpensive supercomputing, broadband 
connectivity, and petabyte-scale data storage. Nonetheless, this 
technological progress is not quite adequate to make high-resolution (10–
500 m) process-oriented models attractive (or feasible) for large-scale 
regional applications and long-range predictions or projections. The need 
to estimate model parameters at such fine scales and over large domains 
remains a scientific challenge that is not alleviated by more explicit spatial 
resolution or more complex physical parametrizations. While some 
hydrometeorological dynamics can be better captured by such schemes 
(such as terrain impacts on snow deposition), the need to calibrate many 
other parameters in a more unwieldy model is a major obstacle to achieving 
improved simulations. 

New and emerging modeling approaches 
In addition to the aforementioned hydrologic model types already used in 
the Colorado River Basin, there are several new modeling efforts underway 
that are still in early stages of development. These efforts focus on 
providing streamflow simulations. One is an application of the current 
NWM long-range configuration on a HUC12 catchment basis, which could 
offer a less computationally intensive and more calibratable model for mid-
range (seasonal) Ensemble Streamflow Prediction (ESP). Another is the 
application of the Structure for Unifying Multiple Modeling Alternatives 
(SUMMA; Clark et al. 2015a, 2015b), also on a watershed HUC12 basis, for the 
entire U.S. as well as the Reclamation western U.S. management domain. A 
third is a research effort to integrate an energy balance snow model into 
RFC operational use, coupled with an 800-m Hydrologic Laboratory-
Research Distributed Hydrologic Model (HL-RDHM) implementation. This 
effort was a NASA-funded collaboration between the CBRFC, Utah State 
University, and Riverside Technologies, Inc. (RTI, Fort Collins). 

A very rapidly emerging modeling approach is the use of machine learning 
methods (e.g., neural networks) to produce watershed model simulations 
trained only on observed datasets, without any explicit representation of 
physical processes within the model. Since the machine learning modeling 
approach has been primarily applied to forecasting, it is discussed in more 
detail in Chapter 8. 

Selecting appropriate models for different applications  
As is shown in Table 6.1, different model classes and individual models have 
different characteristics and inherent advantages and disadvantages. 
Therefore, it is important to carefully articulate the modeling objectives, as 
well as the requirements a model must satisfy, prior to selecting a certain 
type of model. The limitations of data availability, time, and budget need to 
be identified to narrow the choices and select the appropriate model for 
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the intended purpose (Sitterson et al. 2017). In practice, the need to identify 
all these different aspects is rarely met or even recognized. More often, a 
model is chosen for an attribute that may appear desirable for one 
objective, but greatly limits its potential to satisfy another objective. For 
example, the desire to implement, in the NWM, a model with a “street-
scale” resolution led to an implementation that is not well suited for 
seasonal forecasting. In the case of the monthly calibrated VIC model, a 
desire to understand and project climate sensitivities is pushing 
increasingly beyond the capacity of the VIC physics to provide the required 
physical fidelity.  

Despite recent interest in the idea of a “seamless” modeling approach that 
can, in principle, satisfy every use case, it is unclear that this is possible or 
desirable as a strategy for achieving multiple objectives optimally, let alone 
all possible objectives of interest to a water manager.  

6.2 Model applications in the Colorado River Basin 

Forecasting 
The most well-known hydrologic modeling activities in the Colorado River 
Basin, and the most critical to water management, are the use of NWS 
models (e.g., Sac-SMA) within the Community Hydrologic Prediction 
System (CHPS) operational platform. They are used to produce real-time, 
single-value flood forecasts (out to 10 days lead time in most cases) and 
seasonal (mid-range) ensemble forecasts via ESP techniques (explained in 
Chapter 8). In addition, the NWS HL-RHDM is now being used by the 
CBRFC in an effort to experiment with distributed modeling and snow data 
assimilation for forecasting in the Upper Basin.  

Although not originally designed for forecasting purposes, the VIC model 
has also been used in a number of research and quasi-operational forecast 
studies in the Colorado River Basin, run at 1/8th degree (12 km) and used to 
simulate streamflows at daily time steps at several dozen locations with 
medium-sized to large drainages (3,000–500,000 km2) upstream. The focus 
of the VIC-based forecast effort has always been on seasonal streamflows 
and addressing questions about the potential value of seasonal climate 
forecast information (Wood, Kumar, and Lettenmaier 2005). Models arising 
from research efforts at the University of Washington in the 2000s were 
typically calibrated, using either manual or automated objective methods, 
to the naturalized streamflow dataset from Reclamation, much of which is 
at a monthly time step (Chapter 5). More recently, researchers at Los 
Alamos National Lab have recalibrated VIC at 1/16th degree (6 km), but that 
model has not yet been applied to forecasting. 
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Climate change impact projection and assessment 
In the key locations used by Reclamation for management of the Colorado 
River Basin—i.e., larger headwater and tributary basins and mainstem 
locations—and at monthly scales, VIC’s performance has been adequate to 
support long-range climate change impact assessments as well as mid-
range ensemble streamflow prediction. The 1/8th degree VIC’s greater 
process orientation (compared to the NWS models) has made it more 
acceptable for climate change studies, but there are also many ways in 
which VIC’s physics are limited, and may not capture important dynamics 
that could alter projected hydrologic outcomes. These include surface 
water-groundwater interactions, dust-on-snow effects, dynamic 
vegetation influences, sub-grid variability in meteorological variables, and 
near-surface land-atmosphere feedbacks. Among the land surface models, 
VIC has dominated the usage for climate change impact assessment, 
becoming a de facto standard for the basin (see Table 11.4). 

The NWS models have also been used for climate change impact 
assessment in the basin (e.g., Miller et al. 2011; 2012; 2013; Woodbury et al. 
2012; Bardsley et al. 2013). However, because they lack an explicit energy 
balance, the NWS models are not as inherently suited as VIC for simulation 
of conditions beyond the envelope of weather and climate to which the 
models have been exposed in calibration and operational use. For example, 
for the studies cited above, the fixed monthly cycle of potential 
evapotranspiration (PET) had to be replaced with a dynamic PET 
representation based only on temperature change, lacking the other factors 
that influence PET such as solar radiation, humidity, and wind.  

Some climate change studies extend beyond the quantification of climate 
change impacts to focus also on the statistical detection of hydrologic 
impacts and attribution to anthropogenically forced climate change. The 
VIC model has been applied to such detection and attribution studies, 
including for the western U.S. and the Colorado River Basin (e.g., Barnett et 
al. 2008; Pierce et al. 2008). The VIC model developed for the Colorado 
River Basin and run at 1/8th degree has also provided good research-
quality naturalized flow simulations in various implementations for many 
analyses and studies over the past 15 years. Calibration to monthly 
naturalized flows has meant that their daily flow simulation, and simulation 
for basins for which they were not directly calibrated, is less optimized and 
substantially poorer than what is provided by NWS models like those used 
by the CBRFC. A gradual evolution of the VIC code, without accompanying 
recalibration, has also led to a degradation in model simulation quality.   

Sensitivity studies 
An increasingly active model application in the Colorado River Basin is 
sensitivity analysis—introduced in Chapter 2—which involves exploring 
observed trends and variability in basin hydrology and attempting to 
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quantify their sensitivity to temperature, precipitation, and other climate 
factors. Sensitivity studies are important because they can provide a 
shorthand strategy for gauging the potential impacts of climate change on 
a basin’s hydrology, and consequently water resources. Sensitivity analyses 
have been based on observations from the historical record as well as on 
paleo datasets, and on hydrologic models.  

While observations are seen as reliable because their measurement 
accuracy and uncertainties are relatively well understood, models are 
attractive because they enable a controlled testing of the sensitivities of 
natural processes such as runoff generation through strategies like 
perturbing input meteorology; e.g., assessing the impact of a 10% decline in 
precipitation. The major drawback of models in this context is that they 
rely on the assumption that the model faithfully represents key watershed 
processes and their linkages to the independent variables of interest. While 
an integrated model output variable such as streamflow can be easily 
validated against observations, and errors in inputs may be indirectly 
estimated, it is rare that the sensitivities of intermediate sub-processes, 
such as infiltration or sublimation, and their completeness (e.g., whether all 
controlling processes are incorporated in the model) are evaluated and 
confirmed as being realistic. Consequently, model-based sensitivity 
analyses are inevitably dependent on the partially assessed fidelity of the 
model. Currently, the CBRFC is working on an accuracy assessment and 
sensitivity analysis of hydroclimatic parameters within the CBRFC modeling 
framework. The goal of this work is to improve the accuracy of the CBRFC’s 
water supply forecast. 

The primary models that have been used in sensitivity studies for the basin 
are all LSMs, with the VIC model being the most frequently used (Vano, Das, 
and Lettenmaier 2012; Vano and Lettenmaier 2014; Vano et al. 2014; Xiao, 
Udall, and Lettenmaier 2018). Among these sensitivity studies, Vano, Das, 
and Lettenmaier (2012) and Vano et al. (2014) also examined the output of 
other LSMs—CLM, Catchment, and Noah—as well as Sac-SMA. The latter of 
these two studies also looked at another conceptual model, the Simple 
Water-Balance Model presented by McCabe and Markstrom (2007), which 
had previously been used to model Colorado River Basin water supply risk 
(McCabe and Wolock 2007). As the name suggests, this model has a much 
simpler formulation of watershed processes compared to the other models 
discussed in this chapter. For example, the occurrence of snow is 
determined by precipitation falling below a mean monthly temperature 
threshold, which is a calibrated parameter. The model’s ET is dependent on 
water availability and driven by Thornthwaite estimates of PET, which are 
sensitive to temperature but not radiation. It should be noted that the 
monthly time step of this model increases uncertainties considerably due 
to averaging of inputs and outputs that are often nonlinear.  
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6.3 Descriptions of key hydrologic models relevant to 
the basin 

In the Colorado River Basin, the most frequently consulted hydrologic 
models have been the NWS models (Sac-SMA and SNOW-17) for streamflow 
forecasting, and the VIC model for sensitivity studies and climate-change 
projections of hydrology. These models also exemplify their respective 
broader classes of models (conceptual models and land surface models) as 
summarized in Section 6.1. Below are extended descriptions of these two 
models, their setup and use, and calibration and inputs. The National Water 
Model (i.e., WRF-Hydro and other components) is also described, even 
though it is not (yet) in operational use in the basin, because it represents 
recent trends and new methods in hydrologic modeling, and because NOAA 
intends for it to become the operational model for the NWS RFCs, including 
the CBRFC, in the future. 

National Weather Service models  
In the 1970s, the National Weather Service began developing the River 
Forecast System (NWSRFS), a collection of interrelated software and data 
capable of performing a wide variety of hydrologic and hydraulic functions. 
The primary hydrology model deployed within NWSRFS was actually two 
models: Sac-SMA for modeling precipitation-runoff processes, and SNOW-
17 for modeling snow accumulation and ablation. Other models developed 
for use within NWSRFS accounted for agricultural water use, conversion of 
runoff volume into instantaneous discharge (i.e., unit hydrograph 
implementation), reservoir operations, and other hydrologic processes. In 
2012, most of the legacy hydrologic models and other software of NWSRFS, 
including Sac-SMA and SNOW-17, were migrated into a new software 
platform, the Community Hydrologic Prediction System (CHPS).  

CHPS is an interactive platform that specifies models and operations within 
a workflow to run both short-range streamflow and flood forecasts and 
seasonal (mid-range) ensemble streamflow prediction (ESP) forecasts. 
CHPS is the NWS implementation of the Delft-FEWS software platform. 
Since its deployment at the CBRFC and the other RFCs beginning in the 
early 2010s, CHPS has provided greatly increased interactivity and 
flexibility to the forecast centers in incorporating and visualizing data and 
constructing modeling and forecasting workflows.  

Sacramento-Soil Moisture Accounting Model (Sac-SMA) 
Sac-SMA is a lumped conceptual model that attempts to represent soil 
moisture characteristics to effectively simulate runoff that may be 
subsequently routed to become streamflow (Figure 6.2). Sac-SMA simulates 
six types of runoff, which can be further divided into fast- and slow-
responding processes. In fast-responding processes, surface runoff is 
routed to a channel within hours and is typically driven by rainfall or 
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snowmelt events. Runoff that is characterized as fast-responding includes 
intensity-dependent surface runoff (i.e., runoff or snowmelt that exceeds 
the infiltration rate of unsaturated soils), runoff from impervious areas, and 
direct runoff (i.e., runoff after soils reach saturation). Slow-responding 
processes occur over porous areas and account for interflow, supplemental 
baseflow (e.g., water that drains from soils up to two months after an 
event), and primary baseflow (e.g., water that drains from soils over the 
course of years and sustains perennial flow during dry periods). 

Within Sac-SMA, the soil is represented by two vertical zones to capture 
soil moisture processes near the surface as well as groundwater processes 
deeper within the soil column. Soil moisture within the upper zone is 
influenced by fast-response processes, and lower zone soil moisture is 
influenced by slow-response processes. Water can be stored and 
exchanged between the two soil zones; if the volume of water input to the 
model exceeds the modeled soil capacity, or if the rate of water input 
exceeds transport rates defined in the model, then water is available to the 
channel as runoff. 

Sac-SMA model parameters are determined through calibration (see below) 
and define several quantities of the Sac-SMA’s conceptual representation of 
physical soil processes. Among the parameters are the size and rate of soil 
moisture zones and transport, the percentage of water destined for deep 
aquifer storage, and land cover characteristics such as the impervious 
nature of an area, or amount of area covered by riparian vegetation. 

Simulated soil moisture within the model can be characterized by tension 
or free water, and can be present in both lower and upper soil zones. 
Tension water may only be removed through evapotranspiration. Free 
water may be removed through evapotranspiration, percolation, and 
interflow. Lower-zone free water can be further characterized as 
supplemental or primary. Primary water drains slowly and describes 
baseflow over long periods of times, on the order of months to years. 
Supplemental water is more readily available to runoff than primary water 
and typically drains in the weeks to months following an event, augmenting 
primary baseflow. Each type of modeled soil moisture (tension, 
supplemental, and free) have defined maximum capacity values dictating 
how much water can be held at any given point. 

Soil moisture transport rates are also defined through the model calibration 
process and determine how quickly water can move between zones and as 
interflow. Percolation is a function of lower zone dryness and upper zone 
free water content. The percolation rate influences how much water 
becomes surface runoff or interflow from the upper zone during a storm 
event and how much water is stored in the lower zone that can become 
available at a later time as baseflow. 
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SNOW-17 
Since Sac-SMA effectively assumes that all precipitation reaches the 
surface as liquid water, a separate model is needed to represent snow and 
snowmelt for regions like the Colorado River Basin, in which snowmelt is an 
important component of overall runoff. SNOW-17, like Sac-SMA, is a 
lumped conceptual model that requires only precipitation and temperature 
to model snowpack accumulation and ablation. The model characterizes 
precipitation as rain or snow based on temperature and freezing level 
information and builds or melts a snowpack in response to these forcings. 
While the SNOW-17 model is relatively simplistic compared to models that 
rely on an energy balance and significantly more forcing data, it 
consistently performs well and often better than more complex snow 
energy-balance models (e.g., Franz, Hogue, and Sorooshian 2008). 

Since temperature is used as a proxy for incoming solar radiation in 
SNOW-17, there are times when SNOW-17 may not melt snow at the rate 
observed. For instance, during cloudy warm days, the model may melt snow 
too quickly—in reality, cloud cover will inhibit incoming solar radiation, 
resulting in slower melting. When dust is covering snowpack (i.e., dust-on-
snow conditions), the rate of modeled snowmelt may be too slow—in 
reality, the lower snow albedo results in the increased absorption of solar 
energy and quicker melt. In operations, such model inaccuracies may be 
corrected through adjustments to model parameters such as the melt 
factor.  

Other snow-related products used by the CBRFC, and the snow simulation 
itself, are described further in Chapter 5.  

Model setup and general use 
The modeling units in CHPS consist of basins on the order of 10–1000 km2. 
This allows for efficient calibration during the model development phase, 
and for examining and iteratively updating model forcings (e.g., 
temperature and precipitation data), states, and outputs in real time during 
the forecasting process. An example of this lumped approach is provided in 
Figure 6.10.  

The primary models for an individual basin are SNOW-17 coupled to the 
Sac-SMA model, along with a routing function such as the Lag/K or unit 
hydrograph. The models embedded within CHPS provide a broad array of 
additional analytical and interactive functions, including model calibration, 
state updating, and post-processing, all accessible via an interactive 
interface.  

The modeled Colorado River Basin is divided into about 400 basins, each 
having 1–3 elevation zones, which are simulated in a workflow that 
proceeds each day from the headwaters to the basin outlet, correcting 
obvious deficiencies in meteorological inputs and model behavior, basin by 
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basin, and accounting for known and estimated impairments, including 
storage operations, diversions and consumptive uses. The Upper Basin and 
Lower Basin models are run at 6-hourly and 1-hourly time steps, 
respectively, with the latter reflecting the flashier hydrologic response 
times in the Lower Basin. 

CHPS is designed for interactive use by forecasters. During critical times, 
forecasters use a myriad of methods to obtain data to enhance their 
awareness of the evolving dynamics in the basin, even beyond automated 
data systems. Phone calls to reservoir operators or to stream gauge 
operators such as the USGS can clear up any questions about measured 
flows, while intake of satellite snow information can inform snow cover 
fraction, and even viewing webcams of certain road locations can add 
insight about whether precipitation is falling as snow or rain at different 
locations. RFC forecasters use a combination of manual and automated 

 

Figure 6.10 

Illustration of the NWS traditional lumped approach to watershed modeling for the Little Cottonwood 
River canyon outside of Salt Lake City, Utah (right). The effect of elevation on temperature over the 
6000+ foot terrain range is reflected in the mean areal 6-hour temperature forcings (left, top) that are 
developed for each of three elevation zones applied for the watershed of forecast point LCTU1 
(right). Precipitation forcings and model parameters are also distinct for each zone. The elevation 
zones are not necessarily contiguous. A 5-km resolution gridded temperature analysis revealing 
similar gradients is shown for comparison (left, bottom). (Source: A. Wood, NCAR) 
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techniques to correct input data, going beyond the scrutiny already given 
to that data by the source agencies.  

The SNOW-17 and Sac-SMA models as implemented by RFCs are well-
known for being highly calibrated, and they currently offer the best 
performance in simulating streamflow down to sub-daily time-scales. Their 
application in forecasting also contains the most comprehensive use of 
information about impairments to the natural hydrologic system, even 
while many uncertainties remain in those data (Chapter 5). The optimized, 
conceptual nature of the models, however, gives rise to concerns about 
their ability to represent both evolving climate and weather patterns, and 
to represent changes in land cover, such as from fires, dust-on-snow, 
beetle kill, or changes in the seasonality of vegetation due to warming. 
Depending on the scale of these landscape disturbances, changes to the 
model can be made to account for hydrologic impacts; for instance, after a 
large, severe, fire, the impervious area within a basin may be adjusted to 
simulate increased runoff due to the presence of hydrophobic soils. Their 
reliance on fixed PET (which is not required, but is the configuration in 
which they are implemented) argues against their use for long-term 
projection without modification to the PET scheme. 

Calibration 
A long-standing and critical part of the RFC implementation of SNOW-17 
and Sac-SMA has been model calibration. This includes extensive effort to 
develop or obtain records of impairments that affect streamflow, such as 
diversions and reservoir operations. Biases of no more than a few percent 
are common, and unlike other models used in the basin, calibrations are 
updated when forcings change (e.g., when the WMO climate normal period, 
currently 1981–2010, advances each decade), or more frequently. Some 
RFCs contract model calibration out to consulting companies such as RTI 
and more recently, Lynker, which have nationwide contracts with NWS 
that include this service.  

Model calibration in the Colorado River Basin has been performed manually 
at the RFCs and for research studies, with the objective of minimizing 
errors in streamflow simulation. For the NWS models, observational 
datasets providing a priori parameters are the starting point (Koren, Smith, 
and Duan 2003; Anderson, Koren, and Reed 2006; Schaake et al. 2006). 
Algorithms for automated, objective parameter estimation have also long 
existed in the NWS calibration software in the form of the Shuffled 
Complex Evolution (SCE) single-objective optimization method (Duan, 
Sorooshian, and Gupta 1994). SCE usage in RFCs is mixed, however, with 
the general view being that it can provide an improvement over a priori 
parameters but does not perform so well that further manual tuning is not 
required. In recent decades, numerous parameter optimization algorithms 
have been introduced and are accessible in multi-method software 
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packages such as Ostrich (Matott et al. 2013) but these are not yet used by 
the RFCs.  

Variable Infiltration Capacity (VIC) model 
VIC is a grid-based, macroscale, semi-distributed physical land surface 
model (LSM) that solves full water and energy balances. VIC was developed 
at the University of Washington (Liang et al. 1994), and in its various forms 
has been applied to most of the major river basins around the world. 
Development and maintenance of the current official version of the VIC 
model is led by the Computational Hydrology group in the Department of 
Civil and Environmental Engineering at the University of Washington. The 
VIC model is an open-source development project that is now in its 5th 
major version; every new application addresses new problems and 
conditions that the current model may not be able to handle, spurring 
further development and iteration. Further information on the VIC model is 
available on a website hosted by the University of Washington 
Computational Hydrology Group. 

Model setup 
The VIC model is run at nominal grid resolution (e.g., 12-km or 1/8th degree 
dimension grid cells) but attempts to represent sub-grid variability in 
vegetation and elevation. VIC is regarded as a column model, which means 
that water cannot flow laterally, and the soil column in most applications is 
divided into three to five soil layers (Figure 6.4). Physical equations are used 
to simulate water and energy flows throughout the model. For example, 
evapotranspiration is calculated based on the Penman-Monteith equation 
(Penman 1948; Monteith 1965), soil drainage in the saturated zone is 
described by Darcy’s law, and surface runoff in the upper soil layer is 
calculated based on the variable infiltration curve (Zhao et al. 1980). In 
addition to these processes, VIC simulates runoff in the upper surface layer 
and the release of baseflow from the lowest soil layer. Surface and base 
flow are subsequently routed by a separate routing model along the stream 
network to the basin outlet. Snow is represented in several forms: as a 
surface snow pack, as snow in the vegetation canopy, and as snow on top of 
lake ice when lakes are represented. More recently, VIC physics have been 
expanded to include ponded water, rudimentary glacier melt and 
migration, and frozen soils. 

The land surface in VIC is modeled as a grid. VIC represents sub-grid 
variability in vegetation and elevation by partitioning each grid cell into 
multiple land cover and elevation classes. Inputs are sub-daily 
meteorological time series of air temperature, precipitation, radiation, and 
wind speed. Land-atmosphere interactions and water and energy balances 
at the surface are simulated at a daily or sub-daily time step. Water can 
only enter a grid cell via the atmosphere, and once water reaches the 

Variable Infiltration 
Capacity (VIC) 
Macroscale Hydrologic 
Model 

 
Link: 
https://vic.readthedocs.io
/en/master/ 

https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/master/
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channel network, it is assumed to stay in the channel, i.e., it cannot flow 
back into the soil. 

Calibration 
Regional calibration remains a longstanding challenge in hydrologic 
modeling. The VIC models used in the Colorado River Basin are infrequently 
calibrated due to the expense. The last official calibration is believed to 
have occurred in 2004 (Christensen et al. 2004; J. Prairie, pers. comm.). In 
that study, VIC was calibrated on the Reclamation natural flows published 
at that time for three points in the basin: Green River at Green River, UT, 
Colorado River at Cisco, UT and Colorado River above Imperial, AZ.  

Originally, the VIC models were calibrated manually as part of efforts to 
develop both climate change impact assessments (Christensen et al. 2004) 
and mid-range (seasonal) ensemble streamflow forecasting (see Chapter 8). 
The most recent calibrations were made using an automated multi-
objective parameter estimation software package called MOCOM (Yapo, 
Gupta, and Sorooshian 1998).  

Since the calibrations were last completed in the mid-2000s, the VIC model 
source code has evolved. In particular, the internal forcings-related code 
derived from MTCLIM (Running and Thornton 1996) has been upgraded. 
This code translates input of daily temperature minima and maxima, 
precipitation, and wind speed into sub-daily forcings for different elevation 
zones. These changes altered the simulated flow, in some cases by 20-30%, 
which is documented for locations included in the BCSD5 technical memo 
(Reclamation 2014).  

The continued usage of VIC for water supply studies without sufficient 
effort to recalibrate and calibrate more extensively is a real concern, as a 
degraded calibration can significantly affect projected streamflow changes. 
Many of the basin studies conducted by Reclamation around the West have 
included new VIC calibration efforts, but not the Colorado River Basin 
Study (Reclamation 2012c). For the Colorado River Basin Study, a newer 
version of VIC was not recalibrated, though it was validated: it was run with 
historical climate to evaluate how well the new VIC version simulated the 
29 natural flow points used by Reclamation (J. Prairie, pers. comm.). The 
results of this effort are published in Reclamation (2012c), page B4-3.  

Model enhancements are typically developed by grant-funded projects in 
the small number of universities that have adopted VIC for hydrologic 
research. Like many models, VIC is not bug free and improves over time as 
bugs are found and fixed. As VIC versions change, and the forcings used to 
drive VIC are upgraded, the model itself is not always recalibrated to 
maintain streamflow simulation performance, which tends to degrade in 
the face of these changes. To support climate change work in the early 
2010s, such as the CMIP3 hydrology projections effort, Reclamation 
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assembled existing VIC model configurations and mosaicked them into a 
West-wide domain, but without significant recalibration (Reclamation 2011).  

More recently, after the CMIP5 hydrology projection effort, Reclamation 
and the U.S. Army Corps of Engineers have funded research into improving 
VIC model regional calibration (e.g., Mizukami et al. 2017). One of the 
problems of the CMIP5 VIC modeling involved spatially distributed VIC 
parameters: parameter tuning done by each region results in patchy spatial 
artifacts that cause spatial patterns in the simulations. Mizukami et al. 
(2017) focused on testing a new Multiscale Parameter Regionalization (MPR; 
Samaniego, Kumar, and Attinger 2010) approach that had been successfully 
demonstrated for a different land surface model. The VIC MPR results did 
achieve seamless parameter fields (by design) versus a patchwork of 
individual basin parameter fields, but results often did not equal or exceed 
the individual basin calibrations. The simulations from this study are 
available, but not for further practical application (N. Mizukami, pers. 
comm.). 

Simulation biases from models including, but not limited to, VIC has 
motivated new Reclamation projects to develop methods for bias 
correction of outputs—particularly streamflow—that may be required in 
order to provide a confident simulation under current and historical 
climate, against which future projections of streamflow can be evaluated. 
Because bias correction is often a prior step in climate downscaling, when 
applied to streamflow it is often referred to as secondary bias correction.   

National Water Model (NWM) 
The NOAA National Water Model, or NWM, is a next-generation hydrologic 
modeling and forecasting platform first launched in 2016. The NWM is 
notable because it represents a first attempt to implement very high 
resolution watershed process-oriented models for operational forecasting 
across the entire U.S., yielding forecast outputs on 2.7 million different 
stream and river reaches. The NWM is operated by the NOAA Office of 
Water Prediction at the National Water Center, with input and feedback 
from the RFCs regarding the skill and usability of forecast products. The 
NWM is the latest NWS-led foray into distributed modeling to supplant the 
Sac-SMA and Snow-17 models for operational streamflow forecasting, 
following the decade-long effort to introduce the coarser Hydrologic 
Laboratory-Research Distributed Hydrologic Model (HL-RDHM) in the 
RFCs.  

Model setup and use 
In the NWM, the water cycle is simulated with mathematical 
representations of the different processes in a river basin, and how these 
processes interact. The representation of these processes, such as 
infiltration, snowmelt and the flow of water through soil layers varies with 

National Water Model 

 
Link: 
https://water.noaa.gov/ab
out/nwm 
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changing soils, elevations, vegetation types and other variables. Simulations 
of the interactions and stream responses, which can change very quickly 
due to spatial and temporal variability in precipitation, must be run on a 
high-powered computer or super computer to support decision makers 
who need a fast turnaround when, for instance, flooding potential is high. 

The NWM runs four uncoupled simulations of current conditions with 
look-back periods ranging from 28 hours to 3 hours. The initial conditions 
for the model’s forecast runs are provided by these simulations or analyses. 
Short-range forecasts are executed hourly over the CONUS. The NWM 
produces hydrologic signaling at a very fine spatial and temporal scale. It 
complements official NWS river forecasts, which are at approximately 4000 
locations across the CONUS, and produces guidance at millions of other 
locations that do not have a traditional river forecast. The NCAR-supported 
WRF-Hydro system is the core of the NWM. The Noah-MP land surface 
model (LSM) is used by WRF-Hydro to simulate land surface processes.  

The NWM provides a number of forecast products, including products 
termed short-range (0–2 days), medium-range (0–10 days), and long-range 
(0–30 days). The short-range forecasts are deterministic single-value 
forecasts; the medium-range forecasts are from a 7-member ensemble; the 
long-range forecast is an ensemble updated daily, based on inputs from the 
NCEP CFSv2 climate forecast system (Chapter 7). The NWM relies on a 1-km 
resolution implementation of Noah-MP (Niu et al. 2011) coupled with a 250-
m terrain routing scheme (Gochis, Yu, and Yates 2015), and a bucket 
groundwater model. Thus, given the model classification scheme in 
Table 6.1, the NWM is a hybrid of a land surface model and an explicit 
watershed process model, in terms of the detail of its physics and its spatial 
resolution.  

The NWM contains orders of magnitude more complexity in its process 
description and spatial resolution than the NWS models, but has not been 
demonstrated to yield sufficient performance to be suitable for most 
applications of interest for water management in the Colorado River Basin, 
including short-range (1-10 day) and mid-range (seasonal) forecasts. Its 
heavy computational demands have also limited its ability to be directly 
calibrated, to provide seasonal water supply forecasts, especially in 
ensemble mode, and to be used for long-range projection. The NWM’s 
optimal use at present appears to be flash-flood prediction, which benefits 
greatly from its ability to route streamflow through a high-resolution 
(250 m, 2.7 million-reach) channel network. The flash flooding application is 
less compromised by the deficiencies of the hydrologic simulation, because 
the intense rainfall rates and saturated hydrologic conditions lead to more 
straightforward rainfall-runoff relationships. 
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NWM calibration 
The NWM was first implemented as an uncalibrated prediction system, but 
has since been subjected to several rounds of calibration effort. In contrast 
to the computationally cheaper VIC and RFS models, only parts of the NWM 
domain can be directly calibrated. Parameters are estimated using the 
Dynamically Dimensioned Search algorithm (Tolson and Shoemaker 2006) 
for small unimpaired basins and then distributed to the larger domain using 
concepts of ecological similarity. This approach has led to some 
improvement in NWM performance, but performance in basins not directly 
calibrated still lags considerably behind the NWS models. 

6.4 Challenges and opportunities 

Strong progress has been made over the last few decades in hydrologic 
modeling, including improved observations, scientific understanding, 
model process representations, and computing power and efficiency. In the 
Colorado River Basin, hydrologic modeling has primarily centered on the 
NWS models for operational short-range to mid-range (seasonal) 
forecasting, and the VIC land surface model for mid-range forecasting, 
trend and variability analysis, and climate change impact projection. These 
modeling capabilities under current practices have limits, and there are 
opportunities to advance beyond those limits, through improved 
meteorological inputs, better parameter estimation and calibration 
schemes, and development or adoption of new modeling platforms. These 
opportunities are summarized below.  

Challenge  
The conceptual modeling approach used in operational forecasting is not 
well-suited to take full advantage of advances in process understanding and 
modeling. The process-complexity of the models used for short-range to 
seasonal forecasting could be increased, albeit in a careful manner. This 
must be done within a strategy that acknowledges and provides for 
commensurate changes in operational workflows, including the 
development of data assimilation approaches. 

Opportunity  
• Implement a testbed framework for operational modeling that can 

incrementally advance and benchmark modeling improvements for 
different objectives, evaluating and justifying increases in complexity 
based on model performance.  

Challenge  
Distributed regional parameter estimation remains a vexing scientific 
challenge, and there is a critical need for accessible, efficient model 
calibration approaches to avoid the use of semi-calibrated land surface 
models in water supply applications (e.g., climate-change impact 
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assessment). Without this capability, no model will perform well, and 
watershed-tuned conceptual models will be hard to outperform.  

Opportunity 
• Multiscale Parameter Regionalization (MPR) offers promise but will 

require more development to leverage both the strengths of the 
attribute-based parameter development and the greater optimization 
potential in individual basins. Improved understanding of parameter 
sensitivities in models such as VIC, multi-objective calibration 
(considering more variables than just streamflow), and broader use of 
geophysical attributes, may offer near-term paths for improvement. 

Challenge 
The widespread use of VIC and similar land surface models for climate 
change impact studies may have inadvertently limited the exploration and 
quantification of projected hydrologic changes (Chapter 11). There is a need 
to identify processes that are not represented in models such as VIC and 
that lead to hydrologic impacts that affect stakeholders (such as dust-on-
snow, Chapter 5), and to require that models used in climate-change 
impact studies a) include parameterizations to represent those processes, 
and b) demonstrate that their process performance is realistic. 

Opportunity 
• New models and modeling frameworks such as SUMMA, Noah-MP, 

WRF-Hydro, and CTSM may offer a more flexible foundation for 
enhancing model process complexity in appropriate, and carefully 
benchmarked ways. Process parameterizations in individual models 
may be leveraged to expand the range of options in flexible model 
frameworks. This activity will ideally be deliberate, pursuing targeted 
model improvements and motivated by stakeholder needs assessments, 
rather than top-down or wholesale adoption of an alternate off-the-
shelf model.   



References 450 
 

References 
Abatzoglou, John T. 2013. “Development of Gridded Surface Meteorological Data for Ecological 

Applications and Modelling.” International Journal of Climatology 33 (1): 121–31. 
https://doi.org/10.1002/joc.3413. 

———. 2019. “Climatology Lab.” Gridmet. 2019. http://www.climatologylab.org/gridmet.html. 
Abatzoglou, John T., and Timothy J. Brown. 2012. “A Comparison of Statistical Downscaling Methods 

Suited for Wildfire Applications.” International Journal of Climatology 32 (5): 772–80. 
https://doi.org/10.1002/joc.2312. 

Adam, Jennifer C., and Dennis P. Lettenmaier. 2003. “Adjustment of Global Gridded Precipitation for 
Systematic Bias.” Journal of Geophysical Research: Atmospheres 108 (D9): n/a-n/a. 
https://doi.org/10.1029/2002JD002499. 

Adams, David K., and Andrew C. Comrie. 1997. “The North American Monsoon.” Bulletin of the 
American Meteorological Society, 2197–2213. https://doi.org/10.1175/1520-
0477(1997)078<2197:TNAM>2.0.CO;2. 

Adams, Thomas E., III, and Randel Dymond. 2018. “Evaluation and Benchmarking of Operational Short-
Range Ensemble Mean and Median Streamflow Forecasts for the Ohio River Basin.” Journal of 
Hydrometeorology 19 (10): 1689–1706. https://doi.org/10.1175/JHM-D-18-0102.1. 

Albano, Christine M., Michael D. Dettinger, Maureen I. McCarthy, Kevin D. Schaller, Toby L. Welborn, 
and Dale A. Cox. 2016. “Application of an Extreme Winter Storm Scenario to Identify 
Vulnerabilities, Mitigation Options, and Science Needs in the Sierra Nevada Mountains, USA.” 
Natural Hazards 80 (2): 879–900. https://doi.org/10.1007/s11069-015-2003-4. 

Albers, John R., and Matthew Newman. 2019. “A Priori Identification of Skillful Extratropical Subseasonal 
Forecasts.” Geophysical Research Letters 46 (21): 12527–36. 
https://doi.org/10.1029/2019GL085270. 

Alder, Jay R., and Steven W. Hostetler. 2019. “The Dependence of Hydroclimate Projections in Snow‐
Dominated Regions of the Western United States on the Choice of Statistically Downscaled 
Climate Data.” Water Resources Research 55 (3): 2279–2300. 
https://doi.org/10.1029/2018WR023458. 

Alder, Jay R., and Steven W. Hostetler. 2015. “Web Based Visualization of Large Climate Data Sets.” 
Environmental Modelling & Software 68 (June): 175–80. 
https://doi.org/10.1016/j.envsoft.2015.02.016. 

Allaby, Michael. 2008. A Dictionary of Earth Sciences. Oxford University Press. 
https://www.oxfordreference.com/view/10.1093/acref/9780199211944.001.0001/acref-
9780199211944. 

Allen, Richard G., L. S. Pereira, Dirk Raes, and Martin Smith. 1998. Crop Evapotranspiration: Guidelines 
for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: Food 
and Agriculture Organization of the United Nations. 

Allen, Richard G., Masahiro Tasumi, and Ricardo Trezza. 2007. “Satellite-Based Energy Balance for 
Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model.” Journal of 
Irrigation and Drainage Engineering 133 (4): 380–94. https://doi.org/10.1061/(ASCE)0733-
9437(2007)133:4(380). 

Alley, William M., and Leonard F. Konikow. 2015. “Bringing GRACE Down to Earth.” Groundwater 53 
(6): castle. https://doi.org/10.1111/gwat.12379. 

Amatya, Devendra M., Suat Irmak, Prasanna Gowda, Ge Sun, Jami E. Nettles, and Kyle R. Douglas-
Mankin. 2016. “Ecosystem Evapotranspiration: Challenges in Measurements, Estimates, and 
Modeling.” Transactions of the ASABE 59 (2): 555–60. https://doi.org/10.13031/trans.59.11808. 



References 451 
 

Anderson, Brian Trail. 2011. “Spatial Distribution and Evolution of a Seasonal Snowpack in Complex 
Terrain: An Evaluation of the SNODAS Modeling Product.” PhD Dissertation, Boise State 
University. 

Anderson, Eric A. 1973. “National Weather Service River Forecast System-Snow Accumulation and 
Ablation Model.” NWS HYDRO-17. NOAA Technical Memorandum. 

Anderson, M. G., and T. P. Burt. 1985. Hydrological Forecasting. https://www.osti.gov/biblio/6271151. 
Anderson, Martha C., Christopher Hain, Brian Wardlow, Agustin Pimstein, John R. Mecikalski, and 

William P. Kustas. 2011. “Evaluation of Drought Indices Based on Thermal Remote Sensing of 
Evapotranspiration over the Continental United States.” Journal of Climate 24 (8): 2025–44. 
https://doi.org/10.1175/2010JCLI3812.1. 

Anderson, Martha C., J. M. Norman, G. R. Diak, William P. Kustas, and John R. Mecikalski. 1997. “A 
Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared 
Remote Sensing.” Remote Sensing of Environment 60 (2): 195–216. 
https://doi.org/10.1016/S0034-4257(96)00215-5. 

Anderson, Richard M., Victor I. Koren, and Seann M. Reed. 2006. “Using SSURGO Data to Improve 
Sacramento Model a Priori Parameter Estimates.” Journal of Hydrology 320 (1–2): 103–16. 
https://doi.org/10.1016/j.jhydrol.2005.07.020. 

Anderson, SallyRose, Glenn Tootle, and Henri Grissino-Mayer. 2012. “Reconstructions of Soil Moisture 
for the Upper Colorado River Basin Using Tree-Ring Chronologies.” JAWRA Journal of the 
American Water Resources Association 48 (4): 849–58. https://doi.org/10.1111/j.1752-
1688.2012.00651.x. 

Andreadis, Konstantinos M., Elizabeth A. Clark, Andrew W. Wood, Alan F. Hamlet, and Dennis P. 
Lettenmaier. 2005. “Twentieth-Century Drought in the Conterminous United States.” Journal of 
Hydrometeorology 6 (6): 985–1001. https://doi.org/10.1175/JHM450.1. 

Ault, Toby R., Julia E. Cole, Jonathan T. Overpeck, Gregory T. Pederson, and David M. Meko. 2014. 
“Assessing the Risk of Persistent Drought Using Climate Model Simulations and Paleoclimate 
Data.” Journal of Climate 27 (20): 7529–49. https://doi.org/10.1175/JCLI-D-12-00282.1. 

Ault, Toby R., Julia E. Cole, Jonathan T. Overpeck, Gregory T. Pederson, Scott St. George, Bette Otto-
Bliesner, Connie A. Woodhouse, and Clara Deser. 2013. “The Continuum of Hydroclimate 
Variability in Western North America during the Last Millennium.” Journal of Climate 26 (16): 
5863–78. https://doi.org/10.1175/JCLI-D-11-00732.1. 

Ault, Toby R., Justin S. Mankin, Benjamin I. Cook, and Jason E. Smerdon. 2016. “Relative Impacts of 
Mitigation, Temperature, and Precipitation on 21st-Century Megadrought Risk in the American 
Southwest.” Science Advances 2 (10): e1600873. https://doi.org/10.1126/sciadv.1600873. 

Ault, Toby R., and Scott St. George. 2018. “Unraveling the Mysteries of Megadrought.” Physics Today 
71 (8): 44–50. https://doi.org/10.1063/PT.3.3997. 

Baker, Sarah A. 2019. “Development of Sub-Seasonal to Seasonal Watershed-Scale Hydroclimate 
Forecast Techniques to Support Water Management.” Dissertation, Boulder, CO: University of 
Colorado. https://search.proquest.com/openview/86480abe8a4f1b7c3f0bccc9bf5142ac/1?pq-
origsite=gscholar&cbl=18750&diss=y. 

Baker, Sarah A., Andrew W. Wood, and Balaji Rajagopalan. 2019. “Developing Subseasonal to Seasonal 
Climate Forecast Products for Hydrology and Water Management.” JAWRA Journal of the 
American Water Resources Association 55 (4): 1024–37. https://doi.org/10.1111/1752-
1688.12746. 

Bardsley, Tim, Andrew W. Wood, Michael T. Hobbins, T. Kirkham, L. Briefer, J. Niermeyer, and S. Burian. 
2013. “Planning for an Uncertain Future: Climate Change Sensitivity Assessment toward 
Adaptation Planning for Public Water Supply.” Earth Interactions 17: 1–26. 



References 452 
 

Barnett, Tim P., and David W. Pierce. 2009. “Sustainable Water Deliveries from the Colorado River in a 
Changing Climate.” Proceedings of the National Academy of Sciences 106 (18): 7334–38. 
https://doi.org/10.1073/pnas.0812762106. 

Barnett, Tim P., David W. Pierce, Hugo G. Hidalgo, Celine Bonfils, Benjamin D. Santer, Tapash Das, 
Govindasamy Bala, et al. 2008. “Human-Induced Changes in the Hydrology of the Western 
United States.” Science 319 (5866): 1080–83. https://doi.org/10.1126/science.1152538. 

Barnhart, Theodore B., Noah P. Molotch, Ben Livneh, Adrian A. Harpold, John F. Knowles, and Dominik 
Schneider. 2016. “Snowmelt Rate Dictates Streamflow.” Geophysical Research Letters 43 (15): 
8006–16. https://doi.org/10.1002/2016GL069690. 

Barnston, Anthony G. 1994. “Linear Statistical Short-Term Climate Predictive Skill in the Northern 
Hemisphere.” Journal of Climate 7: 1513–64. https://doi.org/10.1175/1520-
0442(1994)007<1513:LSSTCP>2.0.CO;2. 

Barnston, Anthony G., Michael K. Tippett, Michelle L. L’Heureux, Shuhua Li, and David G. DeWitt. 2012. 
“Skill of Real-Time Seasonal ENSO Model Predictions during 2002–11: Is Our Capability 
Increasing?” Bulletin of the American Meteorological Society 93 (5): 631–51. 
https://doi.org/10.1175/BAMS-D-11-00111.1. 

Barnston, Anthony G., Michael K. Tippett, Meghana Ranganathan, and Michelle L. L’Heureux. 2017. 
“Deterministic Skill of ENSO Predictions from the North American Multimodel Ensemble.” 
Climate Dynamics, March. https://doi.org/10.1007/s00382-017-3603-3. 

Barrett, Andrew P. 2003. “National Operational Hydrologic Remote Sensing Center SNOw Data 
Assimilation System (SNODAS) Products at NSIDC.” 11. Special Report. National Snow and Ice 
Data Center (NSIDC). 

Barros, Ana Paula, and Dennis P. Lettenmaier. 1994. “Incorporation of an Evaporative Cooling Scheme 
into a Dynamic Model of Orographic Precipitation.” Monthly Weather Review 122: 2777–83. 

Barry, R.G., and R.J. Chorley. 2010. Atmosphere, Weather and Climate. Routledge. 
https://books.google.com/books?id=heM0uAAACAAJ. 

Barsugli, Joseph J., Christopher J. Anderson, Joel B. Smith, and Jason M. Vogel. 2009. “Options for 
Improving Climate Modeling to Assist Water Utility Planning for Climate Change.” Water Utility 
Climate Alliance. 

Barsugli, Joseph J., and Ben Livneh. 2018. “A Workshop on Understanding the Causes of the Historical 
Changes in Flow of the Colorado River.” Workshop Report. Boulder, CO: NOAA Earth Systems 
Research Laboratory. 

Battaglin, William, Lauren Hay, and Steven L. Markstrom. 2011. “Simulating the Potential Effects of 
Climate Change in Two Colorado Basins and at Two Colorado Ski Areas.” Earth Interactions 15 
(22): 1–23. https://doi.org/10.1175/2011EI373.1. 

Bauer, Peter, Alan Thorpe, and Gilbert Brunet. 2015. “The Quiet Revolution of Numerical Weather 
Prediction.” Nature 525 (7567): 47–55. https://doi.org/10.1038/nature14956. 

Becker, Emily, Huug M. Van den Dool, and Qin Zhang. 2014. “Predictability and Forecast Skill in 
NMME.” Journal of Climate 27 (15): 5891–5906. https://doi.org/10.1175/JCLI-D-13-00597.1. 

Beckers, J. V. L., A. H. Weerts, E. Tijdeman, and E. Welles. 2016. “ENSO-Conditioned Weather 
Resampling Method for Seasonal Ensemble Streamflow Prediction.” Hydrol. Earth Syst. Sci. 20 
(8): 3277–87. https://doi.org/10.5194/hess-20-3277-2016. 

Behnke, Ruben, S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, and V. C. Radeloff. 2016. 
“Evaluation of Downscaled, Gridded Climate Data for the Conterminous United States.” 
Ecological Applications 26 (5): 1338–51. https://doi.org/10.1002/15-1061. 

Behnke, Ruben, Steve Vavrus, Andrew Allstadt, Thomas Albright, W. E. Thogmartin, and V. C. Radeloff. 
2016. “Evaluation of Downscaled, Gridded Climate Data for the Conterminous United States.” 
Ecological Applications 26 (5): 1338–51. https://doi.org/10.1002/15-1061. 



References 453 
 

Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard. 2014. “ENSO Representation in 
Climate Models: From CMIP3 to CMIP5.” Climate Dynamics 42 (7–8): 1999–2018. 
https://doi.org/10.1007/s00382-013-1783-z. 

Bender, Jens, Thomas Wahl, and Jürgen Jensen. 2014. “Multivariate Design in the Presence of Non-
Stationarity.” Journal of Hydrology 514 (June): 123–30. 
https://doi.org/10.1016/j.jhydrol.2014.04.017. 

Bender, Stacie, Paul Miller, Brent Bernard, and John Lhotak. 2014. “Use of Snow Data from Remote 
Sensing in Operational Streamflow Prediction.” In , 11. 

Bergeron, Jean M., Mélanie Trudel, and Robert Leconte. 2016. “Combined Assimilation of Streamflow 
and Snow Water Equivalent for Mid-Term Ensemble Streamflow Forecasts in Snow-Dominated 
Regions.” Hydrology and Earth System Sciences 20 (10): 4375–89. https://doi.org/10.5194/hess-
20-4375-2016. 

Berghuijs, W. R., R. A. Woods, and M. Hrachowitz. 2014. “A Precipitation Shift from Snow towards Rain 
Leads to a Decrease in Streamflow.” Nature Climate Change 4 (7): 583–86. 
https://doi.org/10.1038/nclimate2246. 

Best, M. J., G. Abramowitz, H. R. Johnson, A. J. Pitman, G. Balsamo, A. Boone, M. Cuntz, et al. 2015. 
“The Plumbing of Land Surface Models: Benchmarking Model Performance.” Journal of 
Hydrometeorology 16 (3): 1425–42. https://doi.org/10.1175/JHM-D-14-0158.1. 

Beven, Keith J. 2002. “Towards an Alternative Blueprint for a Physically Based Digitally Simulated 
Hydrologic Response Modelling System.” Hydrological Processes 16 (2): 189–206. 
https://doi.org/10.1002/hyp.343. 

———. 2012. Rainfall-Runoff Modelling: The Primer. 2nd ed. Wiley-Blackwell. 
Beven, Keith J., and Hannah L. Cloke. 2012. “Comment on ‘Hyperresolution Global Land Surface 

Modeling: Meeting a Grand Challenge for Monitoring Earth’s Terrestrial Water’ by Eric F. Wood 
et Al.” Water Resources Research 48 (1). https://doi.org/10.1029/2011WR010982. 

Biddle, Suzanne Hardy. 2001. “Optimizing the TVA Reservoir System Using Riverware.” In Bridging the 
Gap, 1–6. Proceedings. https://doi.org/10.1061/40569(2001)149. 

Biondi, Franco, Alexander Gershunov, and Daniel R. Cayan. 2001. “North Pacific Decadal Climate 
Variability since 1661.” Journal of Climate 14 (1): 5–10. https://doi.org/10.1175/1520-
0442(2001)014<0005:NPDCVS>2.0.CO;2. 

Bjerknes, J. 1966. “A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies 
of Ocean Temperature.” Tellus 18 (4): 820–29. https://doi.org/10.1111/j.2153-
3490.1966.tb00303.x. 

———. 1969. “Atmospheric Teleconnections from the Equatorial Pacific.” Monthly Weather Review 97: 
163–72. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2. 

Blanford, H. F. 1884. “On the Connexion of the Himalaya Snowfall with Dry Winds and Seasons of 
Drought in India.” Proceedings of the Royal Society of London 37: 21. 

Blankenship, Clay B., Jonathan L. Case, William L. Crosson, and Bradley T. Zavodsky. 2018. “Correction 
of Forcing-Related Spatial Artifacts in a Land Surface Model by Satellite Soil Moisture Data 
Assimilation.” IEEE Geoscience and Remote Sensing Letters 15 (4): 498–502. 
https://doi.org/10.1109/LGRS.2018.2805259. 

Bolinger, Rebecca A., Christian D. Kummerow, and Nolan J. Doesken. 2014. “Attribution and 
Characteristics of Wet and Dry Seasons in the Upper Colorado River Basin.” Journal of Climate 
27 (23): 8661–73. https://doi.org/10.1175/JCLI-D-13-00618.1. 

Bracken, Cameron W. 2011. “Seasonal to Inter-Annual Streamflow Simulation and Forecasting on the 
Upper Colorado River Basin and Implications for Water Resources Management.” Boulder, CO: 
University of Colorado. https://www.colorado.edu/cadswes/sites/default/files/attached-
files/bracken-ms_thesis-2011.pdf. 



References 454 
 

Bracken, Cameron W., Balaji Rajagopalan, and Connie A. Woodhouse. 2016. “A Bayesian Hierarchical 
Nonhomogeneous Hidden Markov Model for Multisite Streamflow Reconstructions.” Water 
Resources Research 52 (10): 7837–50. https://doi.org/10.1002/2016WR018887. 

Bradley, A. Allen, Mohamed Habib, and Stuart S. Schwartz. 2015. “Climate Index Weighting of 
Ensemble Streamflow Forecasts Using a Simple Bayesian Approach.” Water Resources Research 
51 (9): 7382–7400. https://doi.org/10.1002/2014WR016811. 

Bradley, R. S., H. F. Diaz, G. N. Kiladis, and J. K. Eischeid. 1987. “ENSO Signal in Continental 
Temperature and Precipitation Records.” Nature 327 (6122): 497–501. 
https://doi.org/10.1038/327497a0. 

Braganza, Karl, Joëlle L. Gergis, Scott B. Power, James S. Risbey, and Anthony M. Fowler. 2009. “A 
Multiproxy Index of the El Niño–Southern Oscillation, A.D. 1525–1982.” Journal of Geophysical 
Research 114 (D5). https://doi.org/10.1029/2008JD010896. 

Brahney, J., A. P. Ballantyne, C. Sievers, and J. C. Neff. 2013. “Increasing Ca2+ Deposition in the 
Western US: The Role of Mineral Aerosols.” Aeolian Research 10 (September): 77–87. 
https://doi.org/10.1016/j.aeolia.2013.04.003. 

Bras, Rafael L., and Ignacio Rodríguez-Iturbe. 1985. Random Functions and Hydrology. Reading, Mass: 
Addison-Wesley. 

Breheny, Patrick. 2012. “Kernel Density Estimation.” Slides, University of Kentucky, Lexington, October. 
https://web.as.uky.edu/statistics/users/pbreheny/621/F12/notes/10-18.pdf. 

Brekke, Levi D. 2009. “Long-Term Planning Hydrology Based on Various Blends of Instrumental Records, 
Paleoclimate, and Projected Climate Information.” US Bureau of Reclamation. 
https://www.usbr.gov/research/projects/detail.cfm?id=6395. 

———. 2011. “Addressing Climate Change in Long-Term Water Resources Planning and Management.” 
CWTS-10-02. US Army Corps of Engineers Civil Works Technical Series. US Army Corps of 
Engineers. https://www.usbr.gov/climate/userneeds/docs/LTdoc.pdf. 

Brekke, Levi D., Michael D. Dettinger, Edwin P. Maurer, and Michael Anderson. 2008. “Significance of 
Model Credibility in Estimating Climate Projection Distributions for Regional Hydroclimatological 
Risk Assessments.” Climatic Change 89 (3–4): 371–94. https://doi.org/10.1007/s10584-007-
9388-3. 

Brekke, Levi D., Julie E. Kiang, J. Rolf Olsen, Roger S. Pulwarty, David A. Raff, D. Phil Turnipseed, Robert 
S. Webb, and Kathleen D. White. 2009. “Climate Change and Water Resources Management: A 
Federal Perspective.” Circular 1331. Reston, Va: U.S. Geological Survey. 

Brown, Casey, and Robert L. Wilby. 2012. “An Alternate Approach to Assessing Climate Risks.” Eos, 
Transactions American Geophysical Union 93 (41): 401–2. 
https://doi.org/10.1029/2012EO410001. 

Brown, David P., and Andrew C. Comrie. 2004. “A Winter Precipitation ‘Dipole’ in the Western United 
States Associated with Multidecadal ENSO Variability.” Geophysical Research Letters 31 (9): n/a-
n/a. https://doi.org/10.1029/2003GL018726. 

Brown, Tim, John D. Horel, Gregory D. McCurdy, and Matthew G. Fearson. 2011. “Report to the 
NWCG: What Is the Appropriate RAWS Network?” Program for Climate, Ecosystem and Fire 
Applications (CEFA) Report 1101. National Wildfire Coordinating Group. 
https://www.nwcg.gov/publications/1003. 

Bryant, Ann C., Thomas H. Painter, Jeffrey S. Deems, and Stacie M. Bender. 2013. “Impact of Dust 
Radiative Forcing in Snow on Accuracy of Operational Runoff Prediction in the Upper Colorado 
River Basin.” Geophysical Research Letters 40 (15): 3945–49. https://doi.org/10.1002/grl.50773. 

CADSWES. 2018. “RiverWare Technical Documentation Version 7.4, Objects.” 
http://riverware.org/PDF/RiverWare/documentation/Objects.pdf. 

https://doi.org/10.1029/2003GL018726


References 455 
 

California Dept. of Water Resources. 2016. “Description of Analytical Tools, Water Evaluation and 
Planning (WEAP).” https://water.ca.gov/LegacyFiles/waterplan/docs/tools/descriptions/WEAP-
description.pdf. 

———. 2019. “WRIMS: Water Resource Integrated Modeling System.” 2019. 
http://water.ca.gov/Library/Modeling-and-Analysis/Modeling-Platforms/Water-Resource-
Integrated-Modeling-System. 

Carroll, Rosemary W. H., Lindsay A. Bearup, Wendy Brown, Wenming Dong, Markus Bill, and Kenneth H. 
Willlams. 2018. “Factors Controlling Seasonal Groundwater and Solute Flux from Snow-
Dominated Basins.” Hydrological Processes 32 (14): 2187–2202. 
https://doi.org/10.1002/hyp.13151. 

Castle, Stephanie L., Brian F. Thomas, John T. Reager, Matthew Rodell, Sean C. Swenson, and James S. 
Famiglietti. 2014. “Groundwater Depletion during Drought Threatens Future Water Security of 
the Colorado River Basin.” Geophysical Research Letters 41 (16): 5904–11. 
https://doi.org/10.1002/2014GL061055. 

Cawthorne, Dylan. 2017. “2017 Colorado River Hydrology Research Symposium,” 43. 
Cayan, Daniel R., Michael D. Dettinger, David W. Pierce, Tapash Das, Noah Knowles, F. Martin Ralph, 

and Edwin Sumargo. 2016. “Natural Variability Anthropogenic Climate Change and Impacts on 
Water Availability and Flood Extremes in the Western United States.” In Water Policy and 
Planning in a Variable and Changing Climate. Drought and Water Crises. CRC Press. 
https://doi.org/10.1201/b19534. 

Cayan, Daniel R., Susan A. Kammerdiener, Michael D. Dettinger, Joseph M. Caprio, and David H. 
Peterson. 2001. “Changes in the Onset of Spring in the Western United States.” Bulletin of the 
American Meteorological Society 82 (3): 399–416. https://doi.org/10.1175/1520-
0477(2001)082<0399:CITOOS>2.3.CO;2. 

Cayan, Daniel R., Kelly T. Redmond, and Laurence G. Riddle. 1999. “ENSO and Hydrologic Extremes in 
the Western United States.” Journal of Climate 12 (9): 2881–93. https://doi.org/10.1175/1520-
0442(1999)012<2881:EAHEIT>2.0.CO;2. 

Chen, Xianyao, and John M. Wallace. 2016. “Orthogonal PDO and ENSO Indices.” Journal of Climate 
29 (10): 3883–92. https://doi.org/10.1175/JCLI-D-15-0684.1. 

Christensen, Niklas S., and Dennis P. Lettenmaier. 2007. “A Multimodel Ensemble Approach to 
Assessment of Climate Change Impacts on the Hydrology and Water Resources of the Colorado 
River Basin.” Hydrol. Earth Syst. Sci., 18. 

Christensen, Niklas S., Andrew W. Wood, Nathalie Voisin, Dennis P. Lettenmaier, and Richard N. Palmer. 
2004. “The Effects of Climate Change on the Hydrology and Water Resources of the Colorado 
River Basin.” Climatic Change 62 (1–3): 337–63. 
https://doi.org/10.1023/B:CLIM.0000013684.13621.1f. 

Clark, Martyn P., Marc F. P. Bierkens, Luis Samaniego, Ross A. Woods, Remko Uijlenhoet, Katrina E. 
Bennett, Valentijn R. N. Pauwels, Xitian Cai, Andrew W. Wood, and Christa D. Peters-Lidard. 
2017. “The Evolution of Process-Based Hydrologic Models: Historical Challenges and the 
Collective Quest for Physical Realism.” Hydrology and Earth System Sciences 21 (7): 3427–40. 
https://doi.org/10.5194/hess-21-3427-2017. 

Clark, Martyn P., Subhrendu Gangopadhyay, Lauren E. Hay, Balaji Rajagopalan, and Robert Wilby. 2004. 
“The Schaake Shuffle: A Method for Reconstructing Space–Time Variability in Forecasted 
Precipitation and Temperature Fields.” Journal of Hydrometeorology 5 (1): 243–62. 
https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2. 

Clark, Martyn P., and Lauren E. Hay. 2004. “Use of Medium-Range Numerical Weather Prediction Model 
Output to Produce Forecasts of Streamflow.” Journal of Hydrometeorology 5 (15): 32. 
https://doi.org/doi:10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2. 



References 456 
 

Clark, Martyn P., Bart Nijssen, Jessica D. Lundquist, Dmitri Kavetski, David E. Rupp, Ross A. Woods, Jim 
E. Freer, et al. 2015. “A Unified Approach for Process-Based Hydrologic Modeling: 1. Modeling 
Concept.” Water Resources Research 51 (4): 2498–2514. 
https://doi.org/10.1002/2015WR017198. 

Clark, Martyn P., and Andrew G. Slater. 2006. “Probabilistic Quantitative Precipitation Estimation in 
Complex Terrain.” Journal of Hydrometeorology 7 (1): 3–22. https://doi.org/10.1175/JHM474.1. 

Clark, Martyn P., Robert L. Wilby, Ethan D. Gutmann, Julie A. Vano, Subhrendu Gangopadhyay, Andrew 
W. Wood, Hayley J. Fowler, Christel Prudhomme, Jeffrey R. Arnold, and Levi D. Brekke. 2016. 
“Characterizing Uncertainty of the Hydrologic Impacts of Climate Change.” Current Climate 
Change Reports 2 (2): 55–64. https://doi.org/10.1007/s40641-016-0034-x. 

Clayton, Jordan, Steven Quiring, Tyson Ochsner, Michael Cosh, C. Baker, Trent Ford, John Bolten, and 
Molly Woloszyn. 2019. “Building a One-Stop Shop for Soil Moisture Information.” Eos 100 
(June). https://doi.org/10.1029/2019EO123631. 

CLIMAS and WWA. n.d. “TreeFlow – Streamflow Reconstructions from Tree Rings.” TreeFlow. Accessed 
June 27, 2019. https://www.treeflow.info/. 

Cloke, Hannah L., and Florian Pappenberger. 2009. “Ensemble Flood Forecasting: A Review.” Journal of 
Hydrology 375 (3–4): 613–26. https://doi.org/10.1016/j.jhydrol.2009.06.005. 

Clow, David W. 2010. “Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to 
Recent Warming.” Journal of Climate 23 (9): 2293–2306. 
https://doi.org/10.1175/2009JCLI2951.1. 

Clow, David W., Leora Nanus, Kristine L. Verdin, and Jeffrey Schmidt. 2012. “Evaluation of SNODAS 
Snow Depth and Snow Water Equivalent Estimates for the Colorado Rocky Mountains, USA: 
EVALUATION OF SNODAS.” Hydrological Processes 26 (17): 2583–91. 
https://doi.org/10.1002/hyp.9385. 

Clow, David W., Mark W. Williams, and Paul F. Schuster. 2016. “Increasing Aeolian Dust Deposition to 
Snowpacks in the Rocky Mountains Inferred from Snowpack, Wet Deposition, and Aerosol 
Chemistry.” Atmospheric Environment 146 (December): 183–94. 
https://doi.org/10.1016/j.atmosenv.2016.06.076. 

Coats, Sloan, Jason E. Smerdon, Benjamin I. Cook, and Richard Seager. 2015. “Are Simulated 
Megadroughts in the North American Southwest Forced?” Journal of Climate 28 (1): 124–42. 
https://doi.org/10.1175/JCLI-D-14-00071.1. 

Coats, Sloan, Jason E. Smerdon, Benjamin I. Cook, Richard Seager, Edward R. Cook, and K. J. 
Anchukaitis. 2016. “Internal Ocean-Atmosphere Variability Drives Megadroughts in Western 
North America.” Geophysical Research Letters 43 (18): 9886–94. 
https://doi.org/10.1002/2016GL070105. 

“CoCoRaHS: Community Collaborative Rain, Hail & Snow Network.” n.d. Accessed November 13, 2019. 
https://www.cocorahs.org/. 

Cohn, Timothy, Julie Kiang, and Robert Mason. 2013. “Estimating Discharge Measurement Uncertainty 
Using the Interpolated Variance Estimator.” Journal of Hydraulic Engineering 139 (5): 502–10. 
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000695. 

Colorado State University. 2017. “MODSIM-DSS.” 2017. http://modsim.engr.colostate.edu/. 
Colorado State University. 2019. “CoAgMET.” CoAgMET Colorado’s Mesonet. 2019. 

https://coagmet.colostate.edu/. 
Colorado Water Conservation Board. 2012. “Colorado River Water Availability Study.” Colorado Water 

Conservation Board. 
http://cwcbweblink.state.co.us/WebLink/ElectronicFile.aspx?docid=158319&searchid=78f0eafa-
0b8f-4d8a-9ff3-faf67cc82f52&dbid=0. 



References 457 
 

Cook, Benjamin I., Toby R. Ault, and Jason E. Smerdon. 2015. “Unprecedented 21st Century Drought 
Risk in the American Southwest and Central Plains.” Science Advances 1 (1): e1400082. 
https://doi.org/10.1126/sciadv.1400082. 

Cook, Benjamin I., Richard Seager, and Ron L. Miller. 2011. “On the Causes and Dynamics of the Early 
Twentieth-Century North American Pluvial.” Journal of Climate 24 (19): 5043–60. 
https://doi.org/10.1175/2011JCLI4201.1. 

Cook, Edward R. 2004. “Long-Term Aridity Changes in the Western United States.” Science 306 (5698): 
1015–18. https://doi.org/10.1126/science.1102586. 

Cook, Edward R., and Leonardas Kairiūkštis, eds. 1990. Methods of Dendrochronology: Applications in 
the Environmental Science. Dordrecht, Netherlands ; Boston : [S.l.]: Kluwer Academic Publishers ; 
International Institute for Applied Systems Analysis. 

Cook, Edward R., Richard Seager, Mark A. Cane, and David W. Stahle. 2007. “North American Drought: 
Reconstructions, Causes, and Consequences.” Earth-Science Reviews 81 (1–2): 93–134. 
https://doi.org/10.1016/j.earscirev.2006.12.002. 

Cook, Edward R., Richard Seager, Richard R. Heim, Russell S. Vose, Celine Herweijer, and Connie 
Woodhouse. 2010. “Megadroughts in North America: Placing IPCC Projections of Hydroclimatic 
Change in a Long-Term Palaeoclimate Context.” Journal of Quaternary Science 25 (1): 48–61. 
https://doi.org/10.1002/jqs.1303. 

Cosgrove, Brian A. 2003. “Real-Time and Retrospective Forcing in the North American Land Data 
Assimilation System (NLDAS) Project.” Journal of Geophysical Research 108 (D22). 
https://doi.org/10.1029/2002JD003118. 

Cowan, Michael S., R. Wayne Cheney, and Jeffrey C. Addiego. 1981. “An Executive Summary of the 
Colorado River Simulation System.” Denver, Colorado: Reclamation. 

CWCB. 2012. “Colorado River Water Availability Study.” Colorado Water Conservation Board. 
https://dnrweblink.state.co.us/cwcb/0/doc/158319/Electronic.aspx?searchid=78f0eafa-0b8f-
4d8a-9ff3-faf67cc82f52. 

Daly, Christopher. 2006. “Guidelines for Assessing the Suitability of Spatial Climate Data Sets.” 
International Journal of Climatology 26 (6): 707–21. https://doi.org/10.1002/joc.1322. 

Daly, Christopher, Wayne P. Gibson, George H. Taylor, Gregory L. Johnson, and Phillip Pasteris. 2002. 
“A Knowledge-Based Approach to the Statistical Mapping of Climate.” Climate Research 22: 
99–113. https://doi.org/10.3354/cr022099. 

Daly, Christopher, Michael Halbleib, Joseph I. Smith, Wayne P. Gibson, Matthew K. Doggett, George H. 
Taylor, Jan Curtis, and Phillip P. Pasteris. 2008. “Physiographically Sensitive Mapping of 
Climatological Temperature and Precipitation across the Conterminous United States.” 
International Journal of Climatology 28 (15): 2031–64. https://doi.org/10.1002/joc.1688. 

Daly, Christopher, Ronald P. Neilson, and Donald L. Phillips. 1994. “A Statistical-Topographic Model for 
Mapping Climatological Precipitation over Mountainout Terrain.” Journal of Applied 
Meteorology 33: 140–58. 

Daly, Christopher, Joseph I. Smith, and Keith V. Olson. 2015. “Mapping Atmospheric Moisture 
Climatologies across the Conterminous United States.” Edited by Robert Guralnick. PLOS ONE 
10 (10): e0141140. https://doi.org/10.1371/journal.pone.0141140. 

Daly, Christopher, George Taylor, and Wayne Gibson. 1997. “The PRISM Approach to Mapping 
Precipitation and Temperature.” In Proceedings,10th AMS Conference on Applied Climatology, 
20–23. 

D’Arrigo, Rosanne, R. Villalba, and G. Wiles. 2001. “Tree-Ring Estimates of Pacific Decadal Climate 
Variability.” Climate Dynamics 18 (3–4): 219–24. https://doi.org/10.1007/s003820100177. 

Das, Tapash, David W. Pierce, Daniel R. Cayan, Julie A. Vano, and Dennis P. Lettenmaier. 2011. “The 
Importance of Warm Season Warming to Western U.S. Streamflow Changes.” Geophysical 
Research Letters 38 (23): n/a-n/a. https://doi.org/10.1029/2011GL049660. 



References 458 
 

Davis, Gary. 2007. “History of the NOAA Satellite Program.” Journal of Applied Remote Sensing 1 (1): 
012504. https://doi.org/10.1117/1.2642347. 

Dawson, Nicholas, Patrick Broxton, and Xubin Zeng. 2018. “Evaluation of Remotely Sensed Snow Water 
Equivalent and Snow Cover Extent over the Contiguous United States.” Journal of 
Hydrometeorology 19 (11): 1777–91. https://doi.org/10.1175/JHM-D-18-0007.1. 

Day, Gerald N. 1985. “Extended Streamflow Forecasting Using NWSRFS.” Journal of Water Resources 
Planning and Management 111 (2): 157–70. https://doi.org/10.1061/(ASCE)0733-
9496(1985)111:2(157). 

DeChant, Caleb M., and Hamid Moradkhani. 2011a. “Radiance Data Assimilation for Operational Snow 
and Streamflow Forecasting.” Advances in Water Resources 34 (3): 351–64. 
https://doi.org/10.1016/j.advwatres.2010.12.009. 

———. 2011b. “Improving the Characterization of Initial Condition for Ensemble Streamflow Prediction 
Using Data Assimilation.” Hydrology and Earth System Sciences 15 (11): 3399–3410. 
https://doi.org/10.5194/hess-15-3399-2011. 

Deems, Jeffrey S., and Alan F. Hamlet. 2010. “Historical Meteorological Driving Data Set,” 13. 
Deems, Jeffrey S., Thomas H. Painter, Joseph J. Barsugli, Jayne Belnap, and Bradley Udall. 2013. 

“Combined Impacts of Current and Future Dust Deposition and Regional Warming on Colorado 
River Basin Snow Dynamics and Hydrology.” Hydrology and Earth System Sciences 17 (11): 
4401–13. https://doi.org/10.5194/hess-17-4401-2013. 

DelSole, Timothy, and Jagadish Shukla. 2009. “Artificial Skill Due to Predictor Screening.” Journal of 
Climate 22 (2): 331–45. https://doi.org/10.1175/2008JCLI2414.1. 

Demargne, Julie, Mary Mullusky, Larry Lowe, James Coe, Kevin Werner, Brenda Alcorn, Lisa Holts, et al. 
2009. “Towards Standard Verification Strategies For Operational Hydrologic Forecasting: Report 
of the NWS Hydrologic Forecast Verification Team.” Silver Spring, Maryland. 
https://www.nws.noaa.gov/oh/rfcdev/docs/NWS-Hydrologic-Forecast-Verification-Team_Final-
report_Sep09.pdf. 

Demargne, Julie, Limin Wu, Satish K. Regonda, James D. Brown, Haksu Lee, Minxue He, Dong-Jun Seo, 
et al. 2014. “The Science of NOAA’s Operational Hydrologic Ensemble Forecast Service.” 
Bulletin of the American Meteorological Society 95 (1): 79–98. https://doi.org/10.1175/BAMS-D-
12-00081.1. 

Deser, Clara, Reto Knutti, Susan Solomon, and Adam S. Phillips. 2012. “Communication of the Role of 
Natural Variability in Future North American Climate.” Nature Climate Change 2 (11): 775–79. 
https://doi.org/10.1038/nclimate1562. 

Deser, Clara, Adam Phillips, Vincent Bourdette, and Haiyan Teng. 2012. “Uncertainty in Climate Change 
Projections: The Role of Internal Variability.” Climate Dynamics 38 (3–4): 527–46. 
https://doi.org/10.1007/s00382-010-0977-x. 

DHI. 2019. “MIKE HYDRO Basin.” February 2019. https://www.mikepoweredbydhi.com/products/mike-
hydro-basin. 

Diamond, Howard J., Thomas R. Karl, Michael A. Palecki, C. Bruce Baker, Jesse E. Bell, Ronald D. 
Leeper, David R. Easterling, et al. 2013. “U.S. Climate Reference Network After One Decade of 
Operations,” 14. 

Dirmeyer, Paul A., and Subhadeep Halder. 2016. “Sensitivity of Numerical Weather Forecasts to Initial 
Soil Moisture Variations in CFSv2.” Weather and Forecasting 31 (6): 1973–83. 
https://doi.org/10.1175/WAF-D-16-0049.1. 

Doesken, Nolan J., and Henry W. Reges. 2010. “The Value of the Citizen Weather Observer.” 
Weatherwise 63 (6): 30–37. 



References 459 
 

Dorigo, Wouter, Peter Oevelen, Wolfgang Wagner, Matthias Drusch, Susanne Mecklenburg, Alan 
Robock, and Thomas Jackson. 2011. “A New International Network for in Situ Soil Moisture 
Data.” Eos, Transactions American Geophysical Union 92 (17): 141–42. 
https://doi.org/10.1029/2011EO170001. 

Duan, Qingyun, Soroosh Sorooshian, and Vijai K. Gupta. 1994. “Optimal Use of the SCE-UA Global 
Optimization Method for Calibrating Watershed Models.” Journal of Hydrology 158 (3): 265–84. 
https://doi.org/10.1016/0022-1694(94)90057-4. 

Duniway, Michael C., Alix A. Pfennigwerth, Stephen E. Fick, Travis W. Nauman, Jayne Belnap, and 
Nichole N. Barger. 2019. “Wind Erosion and Dust from US Drylands: A Review of Causes, 
Consequences, and Solutions in a Changing World.” Ecosphere 10 (3): e02650. 
https://doi.org/10.1002/ecs2.2650. 

Durre, Imke, Matthew J. Menne, Byron E. Gleason, Tamara G. Houston, and Russell S. Vose. 2010. 
“Comprehensive Automated Quality Assurance of Daily Surface Observations.” Journal of 
Applied Meteorology and Climatology 49 (8): 1615–33. 
https://doi.org/10.1175/2010JAMC2375.1. 

Emerton, Rebecca E., Ervin Zsoter, Louise Arnal, Hannah L. Cloke, Davide Muraro, Christel Prudhomme, 
Elisabeth M. Stephens, Peter Salamon, and Florian Pappenberger. 2018. “Developing a Global 
Operational Seasonal Hydro-Meteorological Forecasting System: GloFAS-Seasonal v1.0.” 
Geoscientific Model Development 11 (8): 3327–46. https://doi.org/10.5194/gmd-11-3327-2018. 

Erkyihun, Solomon Tassew, Balaji Rajagopalan, Edith Zagona, Upmanu Lall, and Kenneth Nowak. 2016. 
“Wavelet-Based Time Series Bootstrap Model for Multidecadal Streamflow Simulation Using 
Climate Indicators.” Water Resources Research 52 (5): 4061–77. 
https://doi.org/10.1002/2016WR018696. 

Evan, Amato T. 2018. “A New Method to Characterize Changes in the Seasonal Cycle of Snowpack.” 
Journal of Applied Meteorology and Climatology, December. https://doi.org/10.1175/JAMC-D-
18-0150.1. 

Eyring, Veronika, Peter M. Cox, Gregory M. Flato, Peter J. Gleckler, Gab Abramowitz, Peter Caldwell, 
William D. Collins, et al. 2019. “Taking Climate Model Evaluation to the next Level.” Nature 
Climate Change 9 (2): 102–10. https://doi.org/10.1038/s41558-018-0355-y. 

Fan, Y., Martyn P. Clark, D. M. Lawrence, S. Swenson, L. E. Band, S. L. Brantley, P. D. Brooks, et al. 2019. 
“Hillslope Hydrology in Global Change Research and Earth System Modeling.” Water Resources 
Research 55 (2): 1737–72. https://doi.org/10.1029/2018WR023903. 

Federal Aviation Administration (FAA). 2019. “Surface Weather Observation Stations (ASOS/AWOS).” 
Surface Weather Observation Stations (ASOS/AWOS). 2019. 
https://www.faa.gov/air_traffic/weather/asos/. 

Ficklin, Darren L., Iris T. Stewart, and Edwin P. Maurer. 2013. “Climate Change Impacts on Streamflow 
and Subbasin-Scale Hydrology in the Upper Colorado River Basin.” Edited by Vishal Shah. PLoS 
ONE 8 (8): e71297. https://doi.org/10.1371/journal.pone.0071297. 

Finch, J. W. 2001. “A Comparison between Measured and Modelled Open Water Evaporation from a 
Reservoir in South-East England.” Hydrological Processes 15 (14): 2771–78. 
https://doi.org/10.1002/hyp.267. 

Flato, Gregory M., J. Marotzke, B. Abiodun, P. Braconnot, S. C. Chou, W. Collins, P. Cox, et al. 2013. 
“Evaluation of Climate Models.” In Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. 
Doschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 741–882. Cambridge, UK: Cambridge 
University Press. https://doi.org/10.1017/CBO9781107415324.020. 



References 460 
 

Fleming, Sean W., and Angus G. Goodbody. 2019. “A Machine Learning Metasystem for Robust 
Probabilistic Nonlinear Regression-Based Forecasting of Seasonal Water Availability in the US 
West.” IEEE Access 7: 119943–64. https://doi.org/10.1109/ACCESS.2019.2936989. 

Flossmann, Andrea I., Michael Manton, Ali Abshaev, Roelof Bruintjes, Masataka Murakami, Thara 
Prabhakaran, and Zhanyu Yao. 2019. “Review of Advances in Precipitation Enhancement 
Research.” Bulletin of the American Meteorological Society 100 (8): 1465–80. 
https://doi.org/10.1175/BAMS-D-18-0160.1. 

Foster, Lauren M., Lindsay A. Bearup, Noah P. Molotch, Paul Brooks, and Reed M. Maxwell. 2016. 
“Energy Budget Increases Reduce Mean Streamflow More than Snow–Rain Transitions: Using 
Integrated Modeling to Isolate Climate Change Impacts on Rocky Mountain Hydrology.” 
Environmental Research Letters 11 (4): 044015. https://doi.org/10.1088/1748-
9326/11/4/044015. 

Franz, Kristie J., Terrie S. Hogue, and Soroosh Sorooshian. 2008. “Operational Snow Modeling: 
Addressing the Challenges of an Energy Balance Model for National Weather Service 
Forecasts.” Journal of Hydrology 360: 48–66. 

French, Jeffrey R., Katja Friedrich, Sarah A. Tessendorf, Robert M. Rauber, Bart Geerts, Roy M. 
Rasmussen, Lulin Xue, Melvin L. Kunkel, and Derek R. Blestrud. 2018. “Precipitation Formation 
from Orographic Cloud Seeding.” Proceedings of the National Academy of Sciences 115 (6): 
1168–73. https://doi.org/10.1073/pnas.1716995115. 

Freund, Mandy B., Benjamin J. Henley, David J. Karoly, Helen V. McGregor, Nerilie J. Abram, and 
Dietmar Dommenget. 2019. “Higher Frequency of Central Pacific El Niño Events in Recent 
Decades Relative to Past Centuries.” Nature Geoscience 12 (6): 450–55. 
https://doi.org/10.1038/s41561-019-0353-3. 

Frevert, Donald K., and R. Wayne Cheney. 1988. “Alternative Methods of Generating Hydrologic Data 
for Reservoir Optimization.” In Computerized Decision Support Systems for Water Managers. 
New York, NY: American Society of Civil Engineers. 

Friedrich, Katja, Robert L. Grossman, Justin Huntington, Peter D. Blanken, John Lenters, Kathleen D. 
Holman, David Gochis, et al. 2018. “Reservoir Evaporation in the Western United States: Current 
Science, Challenges, and Future Needs.” Bulletin of the American Meteorological Society 99 (1): 
167–87. https://doi.org/10.1175/BAMS-D-15-00224.1. 

Fritts, Harold C. 1976. Tree Rings and Climate. London ; New York: Academic Press. 
Fritts, Harold C., J. Guiot, and G. A. Gordon. 1990. “Verification. in Methods of Dendrochronology: 

Applications in the Environmental Sciences.” In Methods of Dendrochronology: Applications in 
the Environmental Sciences. Edited by E. R. Cook and L. A. Kairiukstis, 178–185. Dordrecht: 
Kluwer Academic Publishers. 

Fritze, Holger, Iris T. Stewart, and Edzer Pebesma. 2011. “Shifts in Western North American Snowmelt 
Runoff Regimes for the Recent Warm Decades.” Journal of Hydrometeorology 12 (5): 989–1006. 
https://doi.org/10.1175/2011JHM1360.1. 

Fyfe, John C., Chris Derksen, Lawrence Mudryk, Gregory M. Flato, Benjamin D. Santer, Neil C. Swart, 
Noah P. Molotch, et al. 2017. “Large Near-Term Projected Snowpack Loss over the Western 
United States.” Nature Communications 8 (April): 14996. 
https://doi.org/10.1038/ncomms14996. 

Gangopadhyay, Subhrendu, Benjamin L. Harding, Balaji Rajagopalan, Jeffrey J. Lukas, and Terrance J. 
Fulp. 2009. “A Nonparametric Approach for Paleohydrologic Reconstruction of Annual 
Streamflow Ensembles.” Water Resources Research 45 (6). 
https://doi.org/10.1029/2008WR007201. 



References 461 
 

Gangopadhyay, Subhrendu, Gregory J. McCabe, and Connie A. Woodhouse. 2015. “Beyond Annual 
Streamflow Reconstructions for the Upper Colorado River Basin: A Paleo-Water-Balance 
Approach.” Water Resources Research 51 (12): 9763–74. 
https://doi.org/10.1002/2015WR017283. 

Gao, Bo-cai. 1996. “NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation 
Liquid Water from Space.” Remote Sensing of Environment 58 (3): 257–66. 
https://doi.org/10.1016/S0034-4257(96)00067-3. 

Gao, Yanhong, Julie A. Vano, Chunmei Zhu, and Dennis P. Lettenmaier. 2011. “Evaluating Climate 
Change over the Colorado River Basin Using Regional Climate Models.” Journal of Geophysical 
Research 116 (D13). https://doi.org/10.1029/2010JD015278. 

Garbrecht, Jurgen D., and Thomas C. Piechota. 2005. Climate Variations, Climate Change, and Water 
Resources Engineering. American Society of Civil Engineers. 
https://doi.org/10.1061/9780784408247. 

Garen, David C. 1992. “Improved Techniques in Regression‐Based Streamflow Volume Forecasting.” 
Journal of Water Resources Planning and Management 118 (6): 654–70. 
https://doi.org/10.1061/(ASCE)0733-9496(1992)118:6(654). 

Garen, David C., and Thomas C. Pagano. 2007. “Statistical Techniques Used in the VIPER Water Supply 
Forecasting Software.” Technical Note TN-210-SSWSF-2. Technical Note. Natural Resource 
Conservation Service. 
https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=34239.wba. 

Garfin, Gregg, Angela Jardine, Robert Merideth, Mary Black, and Sarah LeRoy, eds. 2013. Assessment of 
Climate Change in the Southwest United States: A Report Prepared for the National Climate 
Assessment. Washington, DC: Island Press/Center for Resource Economics. 
https://doi.org/10.5822/978-1-61091-484-0. 

Gates, W. Lawrence, James S. Boyle, Curt Covey, Clyde G. Dease, Charles M. Doutriaux, Robert S. 
Drach, Michael Fiorino, et al. 1992. “An Overview of the Results of the Atmospheric Model 
Intercomparison Project (AMIP I).” Bulletin of the American Meteorological Society 73: 1962–70. 
https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2. 

Gedalof, Ze’ev, Nathan J. Mantua, and David L. Peterson. 2002. “A Multi-Century Perspective of 
Variability in the Pacific Decadal Oscillation: New Insights from Tree Rings and Coral.” 
Geophysical Research Letters 29 (24): 57-1-57–4. https://doi.org/10.1029/2002GL015824. 

Geerts, Bart, Qun Miao, Yang Yang, Roy Rasmussen, and Daniel Breed. 2010. “An Airborne Profiling 
Radar Study of the Impact of Glaciogenic Cloud Seeding on Snowfall from Winter Orographic 
Clouds.” Journal of the Atmospheric Sciences 67 (10): 3286–3302. 
https://doi.org/10.1175/2010JAS3496.1. 

Geerts, Bart, Binod Pokharel, Katja Friedrich, Dan Breed, Roy Rasmussen, Yang Yang, Qun Miao, Samuel 
Haimov, Bruce Boe, and Evan Kalina. 2013. “The AgI Seeding Cloud Impact Investigation (ASCII) 
Campaign 2012: Overview and Preliminary Results.” Journal of Weather Modification 45: 20. 

Georgakakos, Konstantine P., N. E. Graham, F.-Y. Cheng, C. Spencer, E. Shamir, A. P. Georgakakos, H. 
Yao, and M. Kistenmacher. 2012. “Value of Adaptive Water Resources Management in Northern 
California under Climatic Variability and Change: Dynamic Hydroclimatology.” Journal of 
Hydrology 412–413 (January): 47–65. https://doi.org/10.1016/j.jhydrol.2011.04.032. 

Gergis, Joëlle, Karl Braganza, Anthony Fowler, Scott Mooney, and James Risbey. 2006. “Reconstructing 
El Niño–Southern Oscillation (ENSO) from High-Resolution Palaeoarchives.” Journal of 
Quaternary Science 21 (7): 707–22. https://doi.org/10.1002/jqs.1070. 

Gershunov, Alexander, and Tim P. Barnett. 1998. “Interdecadal Modulation of ENSO Teleconnections I.” 
Bulletin of the American Meteorological Society 79 (12): 12. 



References 462 
 

Gillies, Robert R., Oi-Yu Chung, Shih-Yu Wang, R. Justin DeRose, and Yan Sun. 2015. “Added Value 
from 576 Years of Tree-Ring Records in the Prediction of the Great Salt Lake Level.” Journal of 
Hydrology 529 (October): 962–68. https://doi.org/10.1016/j.jhydrol.2015.08.058. 

Gillies, Robert R., Oi-Yu Chung, Shih-Yu Wang, and Piotr Kokoszka. 2011. “Incorporation of Pacific SSTs 
in a Time Series Model toward a Longer-Term Forecast for the Great Salt Lake Elevation.” 
Journal of Hydrometeorology 12 (3): 474–80. https://doi.org/10.1175/2010JHM1352.1. 

Giorgi, Filippo, and Linda O. Mearns. 1991. “Approaches to the Simulation of Regional Climate Change: 
A Review.” Reviews of Geophysics 29 (2): 191. https://doi.org/10.1029/90RG02636. 

Gleckler, P. J., K. E. Taylor, and C. Doutriaux. 2008. “Performance Metrics for Climate Models.” Journal 
of Geophysical Research 113 (D6). https://doi.org/10.1029/2007JD008972. 

Gobena, A. K., and T. Y. Gan. 2010. “Incorporation of Seasonal Climate Forecasts in the Ensemble 
Streamflow Prediction System.” Journal of Hydrology 385 (1): 336–52. 
https://doi.org/10.1016/j.jhydrol.2010.03.002. 

Gochis, David J., W. Yu, and D. N. Yates. 2015. “The WRF-Hydro Model Technical Description and 
User’s Guide, Version 3.0.” http://www.ral.ucar.edu/projects/wrf_hydro/. 

Gold, David. 2017. “An Introduction to Copulas.” Water Programming: A Collaborative Research Blog 
(blog). November 11, 2017. https://waterprogramming.wordpress.com/2017/11/11/an-
introduction-to-copulas/. 

Gonzalez, Patrick, G. M. Garfin, D. D. Breshears, K. M. Brooks, H. E. Brown, E. H. Elias, A. Gunasekara, et 
al. 2018. “Fourth National Climate Assessment-Chapter 25: Southwest.” 
https://nca2018.globalchange.govhttps://nca2018.globalchange.gov/chapter/25. 

Goodison, B. E., P. Y. T. Louie, and D. Yang. 1998. “WMO Solid Precipitation Measurement 
Intercomparison--Final Report,” 318. 

Grantz, Katrina, Balaji Rajagopalan, Martyn P. Clark, and Edith Zagona. 2005. “A Technique for 
Incorporating Large-Scale Climate Information in Basin-Scale Ensemble Streamflow Forecasts.” 
Water Resources Research 41 (10). https://doi.org/10.1029/2004WR003467. 

———. 2007. “Seasonal Shifts in the North American Monsoon.” Journal of Climate 20 (9): 1923–35. 
https://doi.org/10.1175/JCLI4091.1. 

Gray, Stephen T., Lisa J. Graumlich, Julio L. Betancourt, and Gregory T. Pederson. 2004. “A Tree-Ring 
Based Reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D.” Geophysical 
Research Letters 31 (12): n/a-n/a. https://doi.org/10.1029/2004GL019932. 

Gray, Stephen T., and Gregory J. McCabe. 2010. “A Combined Water Balance and Tree Ring Approach 
to Understanding the Potential Hydrologic Effects of Climate Change in the Central Rocky 
Mountain Region.” Water Resources Research 46 (5). https://doi.org/10.1029/2008WR007650. 

Grayson, Rodger B., Ian D. Moore, and Thomas A. McMahon. 1992a. “Physically Based Hydrologic 
Modeling: 1. A Terrain-Based Model for Investigative Purposes.” Water Resources Research 28 
(10): 2639–58. https://doi.org/10.1029/92WR01258. 

———. 1992b. “Physically Based Hydrologic Modeling: 2. Is the Concept Realistic?” Water Resources 
Research 28 (10): 2659–66. https://doi.org/10.1029/92WR01259. 

Groisman, Pavel Ya, and David R. Easterling. 1994. “Variability and Trends of Total Precipitation and 
Snowfall over the United States and Canada.” Journal of Climate 7: 184–204. 

Grygier, J. C., and Jery R. Stedinger. 1990. “SPIGOT, A Synthetic Streamflow Generation Software 
Package.” Ithaca, NY: School of Civil and Environmental Engineering, Cornell University. 

Guan, Bin, Noah P. Molotch, Duane E. Waliser, Steven M. Jepsen, Thomas H. Painter, and Jeff Dozier. 
2013. “Snow Water Equivalent in the Sierra Nevada: Blending Snow Sensor Observations with 
Snowmelt Model Simulations.” Water Resources Research 49 (8): 5029–46. 
https://doi.org/10.1002/wrcr.20387. 



References 463 
 

Guan, Bin, Duane E. Waliser, Noah P. Molotch, Eric J. Fetzer, and Paul J. Neiman. 2012. “Does the 
Madden–Julian Oscillation Influence Wintertime Atmospheric Rivers and Snowpack in the Sierra 
Nevada?” Monthly Weather Review 140 (2): 325–42. https://doi.org/10.1175/MWR-D-11-
00087.1. 

Guentchev, Galina, Joseph J. Barsugli, and Jon Eischeid. 2010. “Homogeneity of Gridded Precipitation 
Datasets for the Colorado River Basin.” Journal of Applied Meteorology and Climatology 49 
(12): 2404–15. https://doi.org/10.1175/2010JAMC2484.1. 

Guo, Ruixia, Clara Deser, Laurent Terray, and Flavio Lehner. 2019. “Human Influence on Winter 
Precipitation Trends (1921–2015) over North America and Eurasia Revealed by Dynamical 
Adjustment.” Geophysical Research Letters 46 (6): 3426–34. 
https://doi.org/10.1029/2018GL081316. 

Gutmann, Ethan D., Idar Barstad, Martyn P. Clark, Jeffrey Arnold, and Roy Rasmussen. 2016. “The 
Intermediate Complexity Atmospheric Research Model (ICAR).” Journal of Hydrometeorology 17 
(3): 957–73. https://doi.org/10.1175/JHM-D-15-0155.1. 

Gutmann, Ethan D., Tom Pruitt, Martyn P. Clark, Levi Brekke, Jeffrey R. Arnold, David A. Raff, and Roy M. 
Rasmussen. 2014. “An Intercomparison of Statistical Downscaling Methods Used for Water 
Resource Assessments in the United States.” Water Resources Research 50 (9): 7167–86. 
https://doi.org/10.1002/2014WR015559. 

Gutmann, Ethan D., Roy M. Rasmussen, Changhai Liu, Kyoko Ikeda, David J. Gochis, Martyn P. Clark, 
Jimy Dudhia, and Gregory Thompson. 2012. “A Comparison of Statistical and Dynamical 
Downscaling of Winter Precipitation over Complex Terrain.” Journal of Climate 25 (1): 262–81. 
https://doi.org/10.1175/2011JCLI4109.1. 

Haarsma, Reindert J., Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing 
Bao, Ping Chang, et al. 2016. “High Resolution Model Intercomparison Project (HighResMIP 
v1.0) for CMIP6.” Geoscientific Model Development 9 (11): 4185–4208. 
https://doi.org/10.5194/gmd-9-4185-2016. 

Haas, Amy. 2018. “Seventieth Annual Report of the Upper Colorado River Commission.” Annual report 
70. Salt Lake City, UT: Upper Colorado River Commission. 
http://www.ucrcommission.com/RepDoc/UCRCAnnualReports/70_UCRC_Annual_Report.pdf. 

Hagedorn, Renate, Francisco J. Doblas‐Reyes, and T. N. Palmer. 2005. “The Rationale behind the 
Success of Multi-Model Ensembles in Seasonal Forecasting – I. Basic Concept.” Tellus A 57 (3): 
219–33. https://doi.org/10.1111/j.1600-0870.2005.00103.x. 

Hamel, Jama L. n.d. “AgriMet Quality Procedures.Doc.” 
Hamilton, A. S., and R. D. Moore. 2012. “Quantifying Uncertainty in Streamflow Records.” Canadian 

Water Resources Journal / Revue Canadienne Des Ressources Hydriques 37 (1): 3–21. 
https://doi.org/10.4296/cwrj3701865. 

Hamlet, Alan F., and Dennis P. Lettenmaier. 1999. “Columbia River Streamflow Forecasting Based on 
ENSO and PDO Climate Signals.” Journal of Water Resources Planning and Management 125 
(6): 333–41. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(333). 

———. 2005. “Production of Temporally Consistent Gridded Precipitation and Temperature Fields for 
the Continental United States.” Journal of Hydrometeorology 6 (3): 330–36. 
https://doi.org/10.1175/JHM420.1. 

Hamlet, Alan F., Philip W. Mote, Martyn P. Clark, and Dennis P. Lettenmaier. 2005. “Effects of 
Temperature and Precipitation Variability on Snowpack Trends in the Western United States.” 
Journal of Climate 18 (21): 4545–61. https://doi.org/10.1175/JCLI3538.1. 

Hanson, Clayton L., Gregory L. Johnson, and Albert Rango. 1999. “Comparison of Precipitation Catch 
between Nine Measuring Systems.” Journal of Hydrologic Engineering 4 (1): 70–76. 
https://doi.org/10.1061/(ASCE)1084-0699(1999)4:1(70). 

https://doi.org/10.1111/j.1600-0870.2005.00103.x


References 464 
 

Hao, Z., and V. P. Singh. 2012. “Entropy-Copula Method for Single-Site Monthly Streamflow Simulation.” 
Water Resources Research 48 (6). https://doi.org/10.1029/2011WR011419. 

Harding, Benjamin L., Andrew W. Wood, and James R. Prairie. 2012. “The Implications of Climate 
Change Scenario Selection for Future Streamflow Projection in the Upper Colorado River Basin.” 
Hydrology and Earth System Sciences 16 (11): 3989–4007. https://doi.org/10.5194/hess-16-
3989-2012. 

Harding, Benjamin L. 2015. “Colorado River Water Availability Study, Phase II, Updating Climate 
Impacted Hydrology.” 

Harpold, Adrian A., Kent Sutcliffe, Jordan Clayton, Angus Goodbody, and Shareily Vazquez. 2017. 
“Does Including Soil Moisture Observations Improve Operational Streamflow Forecasts in Snow-
Dominated Watersheds?” JAWRA Journal of the American Water Resources Association 53 (1): 
179–96. https://doi.org/10.1111/1752-1688.12490. 

Harrison, Brent, and Roger Bales. 2015. “Skill Assessment of Water Supply Outlooks in the Colorado 
River Basin.” Hydrology 2 (3): 112–31. https://doi.org/10.3390/hydrology2030112. 

Harwell, Glenn R. 2012. “Estimation of Evaporation from Open Water—A Review of Selected Studies, 
Summary of U.S. Army Corps of Engineers Data Collection and Methods, and Evaluation of Two 
Methods for Estimation of Evaporation from Five Reservoirs in Texas.” Scientific Investigations 
Report 2012–5202. U.S. Geological Survey. 

Hausfather, Zeke. 2019. “CMIP6-the next Generation of Climate Models Explained.” Carbon Brief. 2019. 
https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained. 

Hausfather, Zeke, Matthew J. Menne, Claude N. Williams, Troy Masters, Ronald Broberg, and David 
Jones. 2013. “Quantifying the Effect of Urbanization on U.S. Historical Climatology Network 
Temperature Record.” Journal of Geophysical Research: Atmospheres 118 (2): 481–94. 
https://doi.org/10.1029/2012JD018509. 

Hausfather, Zeke, and Glen P. Peters. 2020. “Emissions – the ‘Business as Usual’ Story Is Misleading.” 
Nature 577 (7792): 618–20. https://doi.org/10.1038/d41586-020-00177-3. 

Hawkins, Ed, and Rowan Sutton. 2009. “The Potential to Narrow Uncertainty in Regional Climate 
Predictions.” Bulletin of the American Meteorological Society 90 (8): 1095–1108. 
https://doi.org/10.1175/2009BAMS2607.1. 

Hedrick, A., H.-P. Marshall, A. Winstral, K. Elder, S. Yueh, and D. Cline. 2015. “Independent Evaluation 
of the Snodas Snow Depth Product Using Regional-Scale Lidar-Derived Measurements.” The 
Cryosphere 9 (1): 13–23. https://doi.org/10.5194/tc-9-13-2015. 

Helms, Douglas, Steven E. Phillips, and Paul F. Reich. 2008. The History of Snow Survey and Water 
Supply Forecasting-Interviews with U.S. Department of Agriculture Pioneers. USDA NRCS 
Historical Notes 8. US Department of Agriculture. 
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043910.pdf. 

Henn, Brian, Andrew J. Newman, Ben Livneh, Christopher Daly, and Jessica D. Lundquist. 2018. “An 
Assessment of Differences in Gridded Precipitation Datasets in Complex Terrain.” Journal of 
Hydrology 556 (January): 1205–19. https://doi.org/10.1016/j.jhydrol.2017.03.008. 

Hereford, Richard, and Robert H. Webb. 1992. “Historic Variation of Warm-Season Rainfall, Southern 
Colorado Plateau, Southwestern U.S.A.” Climatic Change 22 (3): 239–56. 
https://doi.org/10.1007/BF00143030. 

Herman Jonathan D., Zeff Harrison B., Lamontagne Jonathan R., Reed Patrick M., and Characklis 
Gregory W. 2016. “Synthetic Drought Scenario Generation to Support Bottom-Up Water Supply 
Vulnerability Assessments.” Journal of Water Resources Planning and Management 142 (11): 
04016050. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000701. 

Herweijer, Celine, Richard Seager, Edward R. Cook, and Julien Emile-Geay. 2007. “North American 
Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data.” Journal of Climate 
20 (7): 1353–76. https://doi.org/10.1175/JCLI4042.1. 



References 465 
 

Hidalgo, Hugo G., Thomas C. Piechota, and John A. Dracup. 2000. “Alternative Principal Components 
Regression Procedures for Dendrohydrologic Reconstructions.” Water Resources Research 36 
(11): 3241–49. 

Hidalgo, Hugo G. 2004. “Climate Precursors of Multidecadal Drought Variability in the Western United 
States.” Water Resources Research 40 (12). https://doi.org/10.1029/2004WR003350. 

Hidalgo, Hugo G., Michael D. Dettinger, and Daniel R. Cayan. 2008. “Downscaling with Constructed 
Analogues: Daily Precipitation and Temperature Fields Over the United States.” California 
Energy Commission. 

Hidalgo, Hugo G., and John A. Dracup. 2003. “ENSO and PDO Effects on Hydroclimatic Variability in 
the Upper Colorado River Basin.” Journal of Hydrometeorology 4: 5–23. 

Higgins, R. Wayne, H-K. Kim, and D. Unger. 2004. “Long-Lead Seasonal Temperature and Precipitation 
Prediction Using Tropical Pacific SST Consolidation Forecasts.” Journal of Climate 17: 3398–
3414. https://doi.org/10.1175/1520-0442(2004)017<3398:LSTAPP>2.0.CO;2. 

Higgins, R. Wayne, Wei Shi, E. Yarosh, and R. Joyce. 2000. “Improved United States Precipitation 
Quality Control System and Analysis. NCEP/Climate Prediction Center ATLAS No. 7.” U. S. 
DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National 
Weather Service. 
https://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/7/. 

Hobbins, Michael T., and Justin L. Huntington. 2017. Evapotranspiration and Evaporative Demand, 
Chapter 42: Handbook of Applied Hydrology. Edited by V. P. Singh and Ven Te Chow. Second 
edition. New York: Mcgraw-Hill Education. 

Hobbins, Michael T., Daniel McEvoy, and Christopher Hain. 2017. “Evapotranspiration, Evaporative 
Demand, and Drought.” In Drought and Water Crises, by Donald Wilhite and Roger Pulwarty, 
259–88. CRC Press. https://doi.org/10.1201/9781315265551-15. 

Hobbins, Michael T., Andrew W. Wood, Daniel J. McEvoy, Justin L. Huntington, Charles Morton, Martha 
C. Anderson, and Christopher Hain. 2016. “The Evaporative Demand Drought Index. Part I: 
Linking Drought Evolution to Variations in Evaporative Demand.” Journal of Hydrometeorology 
17 (6): 1745–61. https://doi.org/10.1175/JHM-D-15-0121.1. 

Hobbins, Michael T., Andrew W. Wood, David Streubel, and Kevin Werner. 2012. “What Drives the 
Variability of Evaporative Demand across the Conterminous United States?” Journal of 
Hydrometeorology 13 (4): 1195–1214. https://doi.org/10.1175/JHM-D-11-0101.1. 

Hoerling, Martin P., Joseph J. Barsugli, B. Livneh, J. Eischeid, X. Quan, and A. Badger. 2019. “Causes for 
the Century-Long Decline in Colorado River Flow.” Journal of Climate, August, JCLI-D-19-
0207.1. https://doi.org/10.1175/JCLI-D-19-0207.1. 

Hoerling, Martin P., Michael Dettinger, Klaus Wolter, Jeffrey J. Lukas, Jon Eischeid, Rama Nemani, Brant 
Liebmann, Kenneth E. Kunkel, and Arun Kumar. 2013. “Present Weather and Climate: Evolving 
Conditions.” In Assessment of Climate Change in the Southwest United States: A Report 
Prepared for the National Climate Assessment, edited by Gregg Garfin, Angela Jardine, Robert 
Merideth, Mary Black, and Sarah LeRoy, 74–100. Washington, DC: Island Press/Center for 
Resource Economics. https://doi.org/10.5822/978-1-61091-484-0_5. 

Hoerling, Martin P., Jon Eischeid, and Judith Perlwitz. 2010. “Regional Precipitation Trends: 
Distinguishing Natural Variability from Anthropogenic Forcing.” Journal of Climate 23 (8): 2131–
45. https://doi.org/10.1175/2009JCLI3420.1. 

Hood, Eran, Mark Williams, and Don Cline. 1999. “Sublimation from a Seasonal Snowpack at a 
Continental, Mid-Latitude Alpine Site.” Hydrological Processes 13 (12–13): 1781–97. 
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1781::AID-HYP860>3.0.CO;2-C. 



References 466 
 

Huang, Chengcheng, Andrew J. Newman, Martyn P. Clark, Andrew W. Wood, and Xiaogu Zheng. 2017. 
“Evaluation of Snow Data Assimilation Using the Ensemble Kalman Filter for Seasonal 
Streamflow Prediction in the Western United States.” Hydrol. Earth Syst. Sci. 21 (1): 635–50. 
https://doi.org/10.5194/hess-21-635-2017. 

Huang, Jin, Huug M. Van den Dool, and Anthony G. Barnston. 1996. “Long-Lead Seasonal Temperature 
Prediction Using Optimal Climate Normals.” Journal of Climate 9: 809–17. 
https://doi.org/10.1175/1520-0442(1996)009<0809:LLSTPU>2.0.CO;2. 

Huang, Jin, Huug M. Van den Dool, and Konstantine P. Georgarakos. 1995. “Analysis of Model-
Calculated Soil Moisture over the United States (1931–1993) and Applications to Long-Range 
Temperature Forecasts.” Journal of Climate. https://doi.org/10.1175/1520-
0442(1996)009<1350:AOMCSM>2.0.CO;2. 

Hubbard, K. G., X. Lin, and E. A. Walter-Shea. 2001. “The Effectiveness of the ASOS, MMTS, Gill, and 
CRS Air Temperature Radiation Shields*.” Journal of Atmospheric and Oceanic Technology 18 
(6): 851–64. https://doi.org/10.1175/1520-0426(2001)018<0851:TEOTAM>2.0.CO;2. 

Hudson, Debbie. 2017. “Ensemble Verification Metrics.” presented at the ECMWF Annual Seminar 
2017, Reading, UK. 

Hultstrand, Douglas M., and Steven R. Fassnacht. 2018. “The Sensitivity of Snowpack Sublimation 
Estimates to Instrument and Measurement Uncertainty Perturbed in a Monte Carlo Framework.” 
Frontiers of Earth Science 12 (4): 728–38. https://doi.org/10.1007/s11707-018-0721-0. 

Hurrell, James W., M. M. Holland, P. R. Gent, S. Ghan, Jennifer E. Kay, and P. J. Kushner. 2013. “The 
Community Earth System Model,” 22. 

Ikeda, Kyoko, Roy Rasmussen, Changhai Liu, David Gochis, David Yates, Fei Chen, Mukul Tewari, et al. 
2010. “Simulation of Seasonal Snowfall over Colorado.” Atmospheric Research 97 (4): 462–77. 
https://doi.org/10.1016/j.atmosres.2010.04.010. 

International Boundary and Water Commission. 2012. “Minute No. 319. Interim International 
Cooperative Measures in the Colorado River Basin Through 2017 and Extension of Minute 318 
Cooperative Measures to Address the Continued Effects of the April 2010 Earthquake in the 
Mexicali Valley, Baja California.” https://www.ibwc.gov/Files/Minutes/Minute_319.pdf. 

———. 2017. “Minute No. 323. Extension of Cooperative Measures and Adoption of a Binational Water 
Scarcity Contingency Plan in the Colorado River Basin.” 
https://www.ibwc.gov/Files/Minutes/Min323.pdf. 

Interstate Council on Water Policy. 2012. “Colorado River Water Science Stakeholders’ Roundtable--A 
Meeing for USGS Cooperative Water Program Partners.” Pdf presented at the Colorado River 
Water Science Stakeholders’ Roundtable--A meeing for USGS Cooperative Water Program 
Partners, Salt Lake City, UT, February 8. 
https://water.usgs.gov/coop/meeting.book.01262012.pdf. 

Iowa State University. n.d. “ASOS Network Quick Links.” Iowa Environmental Mesonet Networks. 
https://mesonet.agron.iastate.edu/ASOS/. 

———. n.d. “AWOS Quick Links.” Iowa Environmental Mesonet Networks. 
https://mesonet.agron.iastate.edu/AWOS/. 

———. n.d. “NWS COOP Quick Links.” Iowa Environmental Mesonet Networks. 
https://mesonet.agron.iastate.edu/COOP/. 

———. n.d. “SCAN Network.” Iowa Environmental Mesonet Networks. 
https://mesonet.agron.iastate.edu/scan/. 

Jana, Srijita, Balaji Rajagopalan, Michael A. Alexander, and Andrea J. Ray. 2018. “Understanding the 
Dominant Sources and Tracks of Moisture for Summer Rainfall in the Southwest United States.” 
Journal of Geophysical Research: Atmospheres 123 (10): 4850–70. 
https://doi.org/10.1029/2017JD027652. 



References 467 
 

Jensen, Marvin E., Avry Dotan, and Roland Sanford. 2005. “Penman-Monteith Estimates of Reservoir 
Evaporation.” In Impacts of Global Climate Change, 1–24. Anchorage, Alaska, United States: 
American Society of Civil Engineers. https://doi.org/10.1061/40792(173)548. 

Johnson, Jennifer. 2014. “MODSIM versus RiverWare: A Comparative Analysis of Two River Reservoir 
Modeling Tools.” 2014.3669. US Bureau of Reclamation. 
https://www.usbr.gov/research/projects/download_product.cfm?id=1360. 

Julander, Randall P., and Michael Bricco. 2006. “An Examination of External Influences Imbedded in the 
Historical Snow Data of Utah.” In Proceedings of the Western Snow Conference, 17. Utah State 
University. 

Julander, Randall P., and Jordan A. Clayton. 2018. “Determining the Proportion of Streamflow That Is 
Generated by Cold Season Processes versus Summer Rainfall in Utah, USA.” Journal of 
Hydrology: Regional Studies 17 (June): 36–46. https://doi.org/10.1016/j.ejrh.2018.04.005. 

Kain, John S., Stephen M. Goss, and Michael E. Baldwin. 2000. “The Melting Effect as a Factor in 
Precipitation-Type Forecasting.” Weather and Forecasting 15 (6): 700–714. 
https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2. 

Kalnay, Eugenia, Masao Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. 
“The NCEP/NCAR 40-Year Reanalysis Project.” Bulletin of the American Meteorological Society 
77 (3): 437–71. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. 

Kapnick, Sarah B., Xiaosong Yang, Gabriel A. Vecchi, Thomas L. Delworth, Rich Gudgel, Sergey 
Malyshev, P. C. D. Milly, Elena Shevliakova, Seth Underwood, and Steven A. Margulis. 2018. 
“Potential for Western US Seasonal Snowpack Prediction.” Proceedings of the National 
Academy of Sciences 115 (6): 1180–85. https://doi.org/10.1073/pnas.1716760115. 

Karl, Thomas R., H. F. Diaz, and George Kukla. 1988. “Urbanization: Its Detection and Effect in the 
United States Climate Record.” Journal of Climate 1: 1099–1123. 

Karl, Thomas R., Claude N. Williams, Pamela J. Young, and Wayne M. Wendland. 1986. “A Model to 
Estimate the Time of Observation Bias Associated with Monthly Mean, Maximum, Minimum, and 
Mean Temperatures for the United States.” Journal of Climate and Applied Meteorology 25: 
145–60. 

Kay, Jennifer E., C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, et al. 2015. “The 
Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for 
Studying Climate Change in the Presence of Internal Climate Variability.” Bulletin of the 
American Meteorological Society 96 (8): 1333–49. https://doi.org/10.1175/BAMS-D-13-00255.1. 

Kendall, Donald R., and John A. Dracup. 1991. “A Comparison of Index-Sequential and AR(1) Generated 
Hydrologic Sequences.” Journal of Hydrology 122 (1): 335–52. https://doi.org/10.1016/0022-
1694(91)90187-M. 

Kenney, Douglas S., Christopher Goemans, Roberta Klein, Jessica Lowrey, and Kevin Reidy. 2008. 
“Residential Water Demand Management: Lessons from Aurora, Colorado.” JAWRA Journal of 
the American Water Resources Association 44 (1): 192–207. https://doi.org/10.1111/j.1752-
1688.2007.00147.x. 

Khaliq, M. N., T. B. M. J. Ouarda, J. -C. Ondo, P. Gachon, and B. Bobée. 2006. “Frequency Analysis of a 
Sequence of Dependent and/or Non-Stationary Hydro-Meteorological Observations: A Review.” 
Journal of Hydrology 329 (3): 534–52. https://doi.org/10.1016/j.jhydrol.2006.03.004. 

Kiang, Julie E., Chris Gazoorian, Hilary McMillan, Gemma Coxon, Jérôme Le Coz, Ida K. Westerberg, 
Arnaud Belleville, et al. 2018. “A Comparison of Methods for Streamflow Uncertainty 
Estimation.” Water Resources Research 54 (10): 7149–76. 
https://doi.org/10.1029/2018WR022708. 



References 468 
 

Kiang, Julie E., David W. Stewart, Stacey A. Archfield, Emily B. Osborne, and Ken Eng. 2013. “A 
National Streamflow Network Gap Analysis.” Scientific Investigations Report 2013–5013. 
Scientific Investigations Report. U.S. Geological Survey. 
https://pubs.usgs.gov/sir/2013/5013/pdf/sir2013-5013.pdf. 

Kidston, Joseph, Adam A. Scaife, Steven C. Hardiman, Daniel M. Mitchell, Neal Butchart, Mark P. 
Baldwin, and Lesley J. Gray. 2015. “Stratospheric Influence on Tropospheric Jet Streams, Storm 
Tracks and Surface Weather.” Nature Geoscience 8 (6): 433–40. 
https://doi.org/10.1038/ngeo2424. 

Kirtman, Ben P., Dughong Min, Johnna M. Infanti, James L. Kinter, Daniel A. Paolino, Qin Zhang, Huug 
M. Van den Dool, et al. 2014. “The North American Multimodel Ensemble: Phase-1 Seasonal-to-
Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction.” Bulletin of the 
American Meteorological Society 95 (4): 585–601. https://doi.org/10.1175/BAMS-D-12-00050.1. 

Klotzbach, Philip J. 2014. “The Madden–Julian Oscillation’s Impacts on Worldwide Tropical Cyclone 
Activity.” Journal of Climate 27 (6): 2317–30. https://doi.org/10.1175/JCLI-D-13-00483.1. 

Knaff, John A., and Christopher W. Landsea. 1997. “An El Niño Southern Oscillation CLImatology and 
PERsistence (CLIPER) Forecasting Scheme.” Weather and Forecasting 12 (3): 633–52. 
https://doi.org/10.1175/1520-0434(1997)012<0633:AENOSO>2.0.CO;2 Cite this publication. 

Knowles, Noah, Michael D. Dettinger, and Daniel R. Cayan. 2006. “Trends in Snowfall versus Rainfall in 
the Western United States.” Journal of Climate 19 (18): 4545–59. 
https://doi.org/10.1175/JCLI3850.1. 

Knutti, Reto. 2010. “The End of Model Democracy?: An Editorial Comment.” Climatic Change 102 (3–4): 
395–404. https://doi.org/10.1007/s10584-010-9800-2. 

Knutti, Reto, Reinhard Furrer, Claudia Tebaldi, Jan Cermak, and Gerald A. Meehl. 2010. “Challenges in 
Combining Projections from Multiple Climate Models.” Journal of Climate 23 (10): 2739–58. 
https://doi.org/10.1175/2009JCLI3361.1. 

Knutti, Reto, David Masson, and Andrew Gettelman. 2013. “Climate Model Genealogy: Generation 
CMIP5 and How We Got There.” Geophysical Research Letters 40 (6): 1194–99. 
https://doi.org/10.1002/grl.50256. 

Koren, Victor, Michael Smith, and Qingyun Duan. 2003. “Use of a Priori Parameter Estimates in the 
Derivation of Spatially Consistent Parameter Sets of Rainfall-Runoff Models.” In Calibration of 
Watershed Models, 239–54. American Geophysical Union (AGU). 
https://doi.org/10.1002/9781118665671.ch18. 

Koster, Randal D., S. P. P. Mahanama, T. J. Yamada, Gianpaolo Balsamo, A. A. Berg, M. Boisserie, P. A. 
Dirmeyer, et al. 2011. “The Second Phase of the Global Land–Atmosphere Coupling 
Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill.” Journal of 
Hydrometeorology 12 (5): 805–22. https://doi.org/10.1175/2011JHM1365.1. 

Kuhn, Eric, and John Fleck. 2019. Science Be Dammed. Tucson: University of Arizona Press. 
Kuiper, Dana, Rose Loehr, Maggie Dunklee, Laurel Grimsted, and Tony Tolsdorf. 2014. “Chapter 6. Data 

Management.” In Part 622 Snow Survey and Water Supply Forecasting National Engineering 
Handbook. USDA Natural Resources Conservation Service. 

Kumar, Sanjiv, Matthew Newman, Yan Wang, and Ben Livneh. 2019. “Potential Reemergence of 
Seasonal Soil Moisture Anomalies in North America.” Journal of Climate 32 (10): 2707–34. 
https://doi.org/10.1175/JCLI-D-18-0540.1. 

Kumar, Sujay V., Benjamin F. Zaitchik, Christa D. Peters-Lidard, Matthew Rodell, Rolf Reichle, Bailing Li, 
Michael Jasinski, et al. 2016. “Assimilation of Gridded GRACE Terrestrial Water Storage 
Estimates in the North American Land Data Assimilation System.” Journal of Hydrometeorology 
17 (7): 1951–72. https://doi.org/10.1175/JHM-D-15-0157.1. 



References 469 
 

Labadie, John W., Fontane Darrell G., Tabios Guillermo Q., and Chou Nine Fang. 1987. “Stochastic 
Analysis of Dependable Hydropower Capacity.” Journal of Water Resources Planning and 
Management 113 (3): 422–37. https://doi.org/10.1061/(ASCE)0733-9496(1987)113:3(422). 

Lall, Upmanu. 1995. “Recent Advances in Nonparametric Function Estimation: Hydrologic Applications.” 
Reviews of Geophysics 33 (S2): 1093–1102. https://doi.org/10.1029/95RG00343. 

Lall, Upmanu, and Ashish Sharma. 1996. “A Nearest Neighbor Bootstrap For Resampling Hydrologic 
Time Series.” Water Resources Research 32 (3): 679–93. https://doi.org/10.1029/95WR02966. 

Lamb, Kenneth W. 2010. “Improving Ensemble Streamflow Prediction Using Interdecadal/Interannual 
Climate Variability.” UNLV Theses, Dissertations, Professional Papers, and Capstones, 
December, 718. 

Lane, William L., and Donald K. Frevert. 1988. “Applied Stochastic Techniques: LAST Computer 
Package : User Manual.” Manual. Denver, Colorado: Division of Planning Technical Services, 
Engineering and Research Center, Bureau of Reclamation, U.S. Dept. of the Interior. 

Langousis, Andreas, and Vassilios Kaleris. 2014. “Statistical Framework to Simulate Daily Rainfall Series 
Conditional on Upper-Air Predictor Variables.” Water Resources Research 50 (5): 3907–32. 
https://doi.org/10.1002/2013WR014936. 

Lanzante, John R., Keith W. Dixon, Mary Jo Nath, Carolyn E. Whitlock, and Dennis Adams-Smith. 2018. 
“Some Pitfalls in Statistical Downscaling of Future Climate.” Bulletin of the American 
Meteorological Society 99 (4): 791–803. https://doi.org/10.1175/BAMS-D-17-0046.1. 

Lareau, Neil P., and John D. Horel. 2012. “The Climatology of Synoptic-Scale Ascent over Western 
North America: A Perspective on Storm Tracks.” Monthly Weather Review 140 (6): 1761–78. 
https://doi.org/10.1175/MWR-D-11-00203.1. 

Lee, Taesam S., Jose D. Salas, J. Keedy, D. Frevert, and T. Fulp. 2007. “Stochastic Modeling and 
Simulation of the Colorado River Flows.” In World Environmental and Water Resources Congress 
2007, 1–10. Tampa, Florida, United States: American Society of Civil Engineers. 
https://doi.org/10.1061/40927(243)423. 

Lee, Taesam S., and Jose D. Salas. 2006. “Record Extension of Monthly Flows for the Colorado River 
System.” US Bureau of Reclamation. 
https://www.usbr.gov/lc/region/g4000/NaturalFlow/Final.RecordExtensionReport.2006.pdf. 

———. 2011. “Copula-Based Stochastic Simulation of Hydrological Data Applied to Nile River Flows.” 
Hydrology Research 42 (4): 318–30. https://doi.org/10.2166/nh.2011.085. 

Leeper, Ronald D., Jared Rennie, and Michael A. Palecki. 2015. “Observational Perspectives from U.S. 
Climate Reference Network (USCRN) and Cooperative Observer Program (COOP) Network: 
Temperature and Precipitation Comparison.” Journal of Atmospheric and Oceanic Technology 
32 (4): 703–21. https://doi.org/10.1175/JTECH-D-14-00172.1. 

Lehner, Flavio, Clara Deser, Isla R. Simpson, and Laurent Terray. 2018. “Attributing the U.S. Southwest’s 
Recent Shift Into Drier Conditions.” Geophysical Research Letters 45 (12): 6251–61. 
https://doi.org/10.1029/2018GL078312. 

Lehner, Flavio, Andrew W. Wood, J. A. Vano, D. M. Lawrence, Martyn P. Clark, and Justin S. Mankin. 
2019. “The Potential to Reduce Uncertainty in Regional Runoff Projections from Climate 
Models.” Nature Climate Change 9: 926–33. https://doi.org/10.1038/s41558-019-0639-x. 

Lehner, Flavio, Andrew W. Wood, Dagmar Llewellyn, Douglas B. Blatchford, Angus G. Goodbody, and 
Florian Pappenberger. 2017. “Mitigating the Impacts of Climate Nonstationarity on Seasonal 
Streamflow Predictability in the U.S. Southwest.” Geophysical Research Letters 44 (24): 12,208-
12,217. https://doi.org/10.1002/2017GL076043. 

Lenaerts, Jan T. M., Brooke Medley, Michiel R. van den Broeke, and Bert Wouters. 2019. “Observing 
and Modeling Ice Sheet Surface Mass Balance.” Reviews of Geophysics 57 (2): 376–420. 
https://doi.org/10.1029/2018RG000622. 



References 470 
 

Letcher, Theodore W., and Justin R. Minder. 2015. “Characterization of the Simulated Regional Snow 
Albedo Feedback Using a Regional Climate Model over Complex Terrain.” Journal of Climate 28 
(19): 7576–95. https://doi.org/10.1175/JCLI-D-15-0166.1. 

Leung, L. Ruby, Ying-Hwa Kuo, and Joe Tribbia. 2006. “Research Needs and Directions of Regional 
Climate Modeling Using WRF and CCSM.” Bulletin of the American Meteorological Society 87 
(12): 1747–52. https://doi.org/10.1175/BAMS-87-12-1747. 

Li, Dongyue, Melissa L. Wrzesien, Michael Durand, Jennifer Adam, and Dennis P. Lettenmaier. 2017. 
“How Much Runoff Originates as Snow in the Western United States, and How Will That Change 
in the Future?” Geophysical Research Letters 44 (12): 6163–72. 
https://doi.org/10.1002/2017GL073551. 

Li, Haibin, Justin Sheffield, and Eric F. Wood. 2010. “Bias Correction of Monthly Precipitation and 
Temperature Fields from Intergovernmental Panel on Climate Change AR4 Models Using 
Equidistant Quantile Matching.” Journal of Geophysical Research 115 (D10): D10101. 
https://doi.org/10.1029/2009JD012882. 

Liang, Xu, Dennis P. Lettenmaier, Eric F. Wood, and Stephen J. Burges. 1994. “A Simple Hydrologically 
Based Model of Land Surface Water and Energy Fluxes for General Circulation Models.” Journal 
of Geophysical Research: Atmospheres 99 (D7): 14415–28. https://doi.org/10.1029/94JD00483. 

Lin, X., and K. G. Hubbard. 2004. “Sensor and Electronic Biases/Errors in Air Temperature 
Measurements in Common Weather Station Networks*.” Journal of Atmospheric and Oceanic 
Technology 21 (7): 1025–32. https://doi.org/10.1175/1520-
0426(2004)021<1025:SAEEIA>2.0.CO;2. 

Linacre, Edward. 1992. Climate Data and Resources: A Reference and Guide. 
Liston, Glen E., and Kelly Elder. 2006. “A Distributed Snow-Evolution Modeling System (SnowModel).” 

Journal of Hydrometeorology 7 (6): 1259–76. https://doi.org/10.1175/JHM548.1. 
Liu, Changhai, Kyoko Ikeda, Roy Rasmussen, Mike Barlage, Andrew J. Newman, Andreas F. Prein, Fei 

Chen, et al. 2017. “Continental-Scale Convection-Permitting Modeling of the Current and Future 
Climate of North America.” Climate Dynamics 49 (1–2): 71–95. https://doi.org/10.1007/s00382-
016-3327-9. 

Liu, Yuqiong, A. H. Weerts, Martyn P. Clark, H.-J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.-J. 
Seo, et al. 2012. “Advancing Data Assimilation in Operational Hydrologic Forecasting: 
Progresses, Challenges, and Emerging Opportunities.” Hydrology and Earth System Sciences 16 
(10): 3863–87. https://doi.org/10.5194/hess-16-3863-2012. 

Livezey, Robert E., and Marina M. Timofeyeva. 2008. “The First Decade of Long-Lead U.S. Seasonal 
Forecasts: Insights from a Skill Analysis.” Bulletin of the American Meteorological Society 89 (6): 
843–54. https://doi.org/10.1175/2008BAMS2488.1. 

Livneh, Ben. n.d. “Data Sets: Daily Observational Hydrometeorology Data Set: CONUS Extent with 
Canadian Extent of the Columbia River Basin.” Water and Climate Research Group. 
https://ciresgroups.colorado.edu/livneh/data/. 

———. n.d. “Data Sets: Daily Observational Hydrometeorology Data Set: North American Extent.” 
Water and Climate Research Group. https://ciresgroups.colorado.edu/livneh/data/. 

Livneh, Ben, Andrew M. Badger, and Jeffrey J. Lukas. 2017. “Assessing the Robustness of Snow-Based 
Drought Indicators in the Upper Colorado River Basin under Future Climate Change.” In World 
Environmental and Water Resources Congress 2017, 511–25. Sacramento, California: American 
Society of Civil Engineers. https://doi.org/10.1061/9780784480618.051. 

Livneh, Ben, Theodore J. Bohn, David W. Pierce, Francisco Munoz-Arriola, Bart Nijssen, Russell Vose, 
Daniel R. Cayan, and Levi Brekke. 2015. “A Spatially Comprehensive, Hydrometeorological Data 
Set for Mexico, the U.S., and Southern Canada 1950–2013.” Scientific Data 2 (August): 150042. 
https://doi.org/10.1038/sdata.2015.42. 



References 471 
 

Livneh, Ben, Eric A. Rosenberg, Chiyu Lin, Bart Nijssen, Vimal Mishra, Kostas M. Andreadis, Edwin P. 
Maurer, and Dennis P. Lettenmaier. 2013. “A Long-Term Hydrologically Based Dataset of Land 
Surface Fluxes and States for the Conterminous United States: Update and Extensions.” Journal 
of Climate 26 (23): 9384–92. https://doi.org/10.1175/JCLI-D-12-00508.1. 

Loucks, Daniel P., and Eelco van Beek. 2017. Water Resource Systems Planning and Management. 
Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-44234-1. 

Lukas, Jeffrey J., Joseph J. Barsugli, Nolan J. Doesken, Imtiaz Rangwala, and Klaus Wolter. 2014. 
“Climate Change in Colorado: A Synthesis to Support Water Resources Management and 
Adaptation.” Western Water Assessment, University of Colorado Boulder. 
https://wwa.colorado.edu/climate/co2014report/Climate_Change_CO_Report_2014_FINAL.pdf. 

Lukas, Jeffrey J., Elizabeth McNie, Tim Bardsley, Jeffrey S. Deems, and Noah Molotch. 2016. “Snowpack 
Monitoring for Streamflow Forecasting and Drought Planning.” Western Water Assessement. 

Lukas, Jeffrey J., Lisa Wade, and Balaji Rajagopalan. 2013. “Paleohydrology of the Lower Colorado River 
Basin.” 

Lundquist, Jessica D., Mimi Hughes, Brian Henn, Ethan D. Gutmann, Ben Livneh, Jeff Dozier, and Paul 
Neiman. 2015. “High-Elevation Precipitation Patterns: Using Snow Measurements to Assess 
Daily Gridded Datasets across the Sierra Nevada, California.” Journal of Hydrometeorology 16 
(4): 1773–92. https://doi.org/10.1175/JHM-D-15-0019.1. 

Luo, Lifeng, and Eric F. Wood. 2008. “Use of Bayesian Merging Techniques in a Multimodel Seasonal 
Hydrologic Ensemble Prediction System for the Eastern United States.” Journal of 
Hydrometeorology 9 (5): 866–84. https://doi.org/10.1175/2008JHM980.1. 

Lute, A. C., John T. Abatzoglou, and Katherine C. Hegewisch. 2015. “Projected Changes in Snowfall 
Extremes and Interannual Variability of Snowfall in the Western United States.” Water Resources 
Research 51 (2): 960–72. https://doi.org/10.1002/2014WR016267. 

Lynker. 2019. “CRAM Water Resources Modeling Tool.” https://www.lynker.com/wp-
content/uploads/CRAM-Model-Lynker.pdf. 

Ma, Chenchen. 2017. “Evaluating and Correcting Sensor Change Artifacts in the SNOTEL Temperature 
Records, Southern Rocky Mountains, Colorado.” Ft. Collins, CO: Colorado State University. 

MacDonald, Glen M., and Roslyn A. Case. 2005. “Variations in the Pacific Decadal Oscillation over the 
Past Millennium.” Geophysical Research Letters 32 (8). https://doi.org/10.1029/2005GL022478. 

MacDonald, Glen M., and Abbie H. Tingstad. 2007. “Recent and Multicentennial Precipitation Variability 
and Drought Occurrence in the Uinta Mountains Region, Utah.” Arctic, Antarctic, and Alpine 
Research 39 (4): 549–55. https://doi.org/10.1657/1523-0430(06-070)[MACDONALD]2.0.CO;2. 

Mahoney, Kelly, Michael Alexander, James D. Scott, and Joseph J. Barsugli. 2013. “High-Resolution 
Downscaled Simulations of Warm-Season Extreme Precipitation Events in the Colorado Front 
Range under Past and Future Climates.” Journal of Climate 26 (21): 8671–89. 
https://doi.org/10.1175/JCLI-D-12-00744.1. 

Maloney, Eric D., and Dennis L. Hartmann. 2000. “Modulation of Eastern North Pacific Hurricanes by the 
Madden–Julian Oscillation.” Journal of Climate 13: 10. 

Mamalakis, Antonios, Jin-Yi Yu, James T. Randerson, Amir AghaKouchak, and Efi Foufoula-Georgiou. 
2018. “A New Interhemispheric Teleconnection Increases Predictability of Winter Precipitation in 
Southwestern US.” Nature Communications 9 (1). https://doi.org/10.1038/s41467-018-04722-7. 

Mantua, Nathan J., Michael Dettinger, Thomas C. Pagano, and Pedro Restrepo. 2008. “A Description 
and Evaluation of Hydrologic and Climate Forecast and Data Products That Support Decision-
Making for Water Resource Managers.” Asheville, NC. 
https://pdfs.semanticscholar.org/ad74/f7701476a309e366190b246936fe0e150a7d.pdf?_ga=2.1
74838242.1797202885.1563210564-120100695.1562772778. 



References 472 
 

Mantua, Nathan J., Steven R. Hare, Yuan Zhang, John M. Wallace, and Robert C. Francis. 1997. “A 
Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production.” Bulletin of the 
American Meteorological Society 78 (6): 1069–79. https://doi.org/10.1175/1520-
0477(1997)078<1069:APICOW>2.0.CO;2. 

Maraun, Douglas. 2016. “Bias Correcting Climate Change Simulations - a Critical Review.” Current 
Climate Change Reports 2 (4): 211–20. https://doi.org/10.1007/s40641-016-0050-x. 

Maraun, Douglas, Theodore G. Shepherd, Martin Widmann, Giuseppe Zappa, Daniel Walton, José M. 
Gutiérrez, Stefan Hagemann, et al. 2017. “Towards Process-Informed Bias Correction of Climate 
Change Simulations.” Nature Climate Change 7 (11): 764–73. 
https://doi.org/10.1038/nclimate3418. 

Marco, J. B., R. Harboe, and J. D. Salas. 1993. Stochastic Hydrology and Its Use in Water Resources 
Systems Simulation and Optimization. Vol. 237. NATO ASI Series, E. Kluwer Academic 
Publishers. 

Mariotti, Annarita, Cory Baggett, Elizabeth A. Barnes, Emily Becker, Amy Butler, Dan C. Collins, Paul A. 
Dirmeyer, et al. 2020. “Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal 
and Beyond.” Bulletin of the American Meteorological Society, January, BAMS-D-18-0326.1. 
https://doi.org/10.1175/BAMS-D-18-0326.1. 

Mariotti, Annarita, Paolo M. Ruti, and Michel Rixen. 2018. “Progress in Subseasonal to Seasonal 
Prediction through a Joint Weather and Climate Community Effort.” Npj Climate and 
Atmospheric Science 1 (1). https://doi.org/10.1038/s41612-018-0014-z. 

Matott, L. Shawn, Beth Hymiak, Camden Reslink, Christine Baxter, and Shirmin Aziz. 2013. “Telescoping 
Strategies for Improved Parameter Estimation of Environmental Simulation Models.” Computers 
& Geosciences 60 (October): 156–67. https://doi.org/10.1016/j.cageo.2013.07.023. 

Maurer, Edwin P., and David W. Pierce. 2014. “Bias Correction Can Modify Climate Model Simulated 
Precipitation Changes without Adverse Effect on the Ensemble Mean.” Hydrology and Earth 
System Sciences 18 (3): 915–25. https://doi.org/10.5194/hess-18-915-2014. 

Maurer, Edwin P., Andrew W. Wood, Jennifer C. Adam, Dennis P. Lettenmaier, and Bart Nijssen. 2002. 
“A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the 
Conterminous United States.” Journal of Climate 15 (22): 3237–51. 
https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2. 

Maxwell, Reed M., Laura E. Condon, Stefan J. Kollet, Kate Maher, Roy Haggerty, and Mary Michael 
Forrester. 2016. “The Imprint of Climate and Geology on the Residence Times of Groundwater.” 
Geophysical Research Letters 43 (2): 701–8. https://doi.org/10.1002/2015GL066916. 

Maxwell, Reed M., and Norman L. Miller. 2005. “Development of a Coupled Land Surface and 
Groundwater Model.” Journal of Hydrometeorology 6 (3): 233–47. 
https://doi.org/10.1175/JHM422.1. 

McAfee, Stephanie A. 2014. “Consistency and the Lack Thereof in Pacific Decadal Oscillation Impacts on 
North American Winter Climate.” Journal of Climate 27 (19): 7410–31. 
https://doi.org/10.1175/JCLI-D-14-00143.1. 

McAfee, Stephanie A., Galina Guentchev, and Jon Eischeid. 2014. “Reconciling Precipitation Trends in 
Alaska: 2. Gridded Data Analyses.” Journal of Geophysical Research: Atmospheres 119 (24): 
13,820-13,837. https://doi.org/10.1002/2014JD022461. 

McAfee, Stephanie A., Gregory J. McCabe, Stephen T. Gray, and Gregory T. Pederson. 2019. 
“Changing Station Coverage Impacts Temperature Trends in the Upper Colorado River Basin.” 
International Journal of Climatology 39 (3): 1517–38. https://doi.org/10.1002/joc.5898. 

McAfee, Stephanie A., Joellen L. Russell, and Paul J. Goodman. 2011. “Evaluating IPCC AR4 Cool-
Season Precipitation Simulations and Projections for Impacts Assessment over North America.” 
Climate Dynamics 37 (11–12): 2271–87. https://doi.org/10.1007/s00382-011-1136-8. 



References 473 
 

McCabe, Gregory J., and Steven L. Markstrom. 2007. “A Monthly Water-Balance Model Driven By a 
Graphical User Interface.” Open-File Report 2007–1088. U.S. Geological Survey. 

McCabe, Gregory J., Michael A. Palecki, and Julio L. Betancourt. 2004. “Pacific and Atlantic Ocean 
Influences on Multidecadal Drought Frequency in the United States.” Proceedings of the 
National Academy of Sciences 101 (12): 4136–41. https://doi.org/10.1073/pnas.0306738101. 

McCabe, Gregory J., and David M. Wolock. 2007. “Warming May Create Substantial Water Supply 
Shortages in the Colorado River Basin.” Geophysical Research Letters 34 (22). 
https://doi.org/10.1029/2007GL031764. 

———. 2011. “Independent Effects of Temperature and Precipitation on Modeled Runoff in the 
Conterminous United States.” Water Resources Research 47 (11). 
https://doi.org/10.1029/2011WR010630. 

———. 2019. “Hydroclimatology of the Mississippi River Basin.” JAWRA Journal of the American Water 
Resources Association 55 (4): 1053–64. https://doi.org/10.1111/1752-1688.12749. 

McCabe, Gregory J., David M. Wolock, Gregory T. Pederson, Connie A. Woodhouse, and Stephanie A. 
McAfee. 2017. “Evidence That Recent Warming Is Reducing Upper Colorado River Flows.” Earth 
Interactions 21 (10): 1–14. https://doi.org/10.1175/EI-D-17-0007.1. 

McGuire, Marketa, Andrew W. Wood, Alan F. Hamlet, and Dennis P. Lettenmaier. 2006. “Use of Satellite 
Data for Streamflow and Reservoir Storage Forecasts in the Snake River Basin.” Journal of Water 
Resources Planning and Management 132 (2): 97–110. https://doi.org/10.1061/(ASCE)0733-
9496(2006)132:2(97). 

McKinnon, Karen A., Andrew Poppick, Etienne Dunn-Sigouin, and Clara Deser. 2017. “An ‘Observational 
Large Ensemble’ to Compare Observed and Modeled Temperature Trend Uncertainty Due to 
Internal Variability.” Journal of Climate 30 (19): 7585–98. https://doi.org/10.1175/JCLI-D-16-
0905.1. 

McMahon, Thomas A., Richard M. Vogel, Murray C. Peel, and Geoffrey G.S. Pegram. 2007. “Global 
Streamflows – Part 1: Characteristics of Annual Streamflows.” Journal of Hydrology 347 (3–4): 
243–59. https://doi.org/10.1016/j.jhydrol.2007.09.002. 

McMillan, Hilary, Tobias Krueger, and Jim Freer. 2012. “Benchmarking Observational Uncertainties for 
Hydrology: Rainfall, River Discharge and Water Quality.” Hydrological Processes 26 (26): 4078–
4111. https://doi.org/10.1002/hyp.9384. 

McMillan, Hilary, Jan Seibert, Asgeir Petersen‐Overleir, Michel Lang, Paul White, Ton Snelder, Kit 
Rutherford, Tobias Krueger, Robert Mason, and Julie Kiang. 2017. “How Uncertainty Analysis of 
Streamflow Data Can Reduce Costs and Promote Robust Decisions in Water Management 
Applications.” Water Resources Research 53 (7): 5220–28. 
https://doi.org/10.1002/2016WR020328. 

Mearns, Linda, S. Sain, L. R. Leung, M. S. Bukovsky, S. McGinnis, S. Biner, D. Caya, et al. 2013. “Climate 
Change Projections of the North American Regional Climate Change Assessment Program 
(NARCCAP).” Climatic Change 120 (4): 965–75. https://doi.org/10.1007/s10584-013-0831-3. 

Mearns, Linda, Seth McGinnis, Daniel Korytina, Raymond Arritt, Sébastien Biner, Melissa Bukovsky, Hsin-I 
Chang, et al. 2017. “The NA-CORDEX Dataset.” UCAR/NCAR. https://doi.org/10.5065/d6sj1jch. 

Meko, David M., Charles W. Stockton, and W. R. Boggess. 1995. “The Tree-Ring Record of Severe 
Sustained Drought.” Journal of the American Water Resources Association 31 (5): 789–801. 
https://doi.org/10.1111/j.1752-1688.1995.tb03401.x. 

Meko, David M., and Connie A. Woodhouse. 2011. “Dendroclimatology, Dendrohydrology, and Water 
Resources Management.” In Tree Rings and Climate: Progress and Prospects. Springer. 

Meko, David M., Connie A. Woodhouse, Christopher A. Baisan, Troy Knight, Jeffrey J. Lukas, Malcolm K. 
Hughes, and Matthew W. Salzer. 2007. “Medieval Drought in the Upper Colorado River Basin.” 
Geophysical Research Letters 34 (10). https://doi.org/10.1029/2007GL029988. 



References 474 
 

Meko, David M., Connie A. Woodhouse, and E.R. Bigio. 2017. “Final Report: Southern California Tree-
Ring Study.” California Department of Water Resources. https://data.ca.gov/dataset/paleo-
dendrochronological-tree-ring-hyrdoclimatic-reconstructions-northern-and-southern-14. 

Meko, David M., Connie A. Woodhouse, and K. Morino. 2012. “Dendrochronology and Links to 
Streamflow.” Journal of Hydrology 412–413 (January): 200–209. 
https://doi.org/10.1016/j.jhydrol.2010.11.041. 

Mendoza, Pablo A., Martyn P. Clark, Michael Barlage, Balaji Rajagopalan, Luis Samaniego, Gab 
Abramowitz, and Hoshin Vijai Gupta. 2015. “Are We Unnecessarily Constraining the Agility of 
Complex Process‐based Models?” Water Resources Research 51 (1): 716–28. 

Mendoza, Pablo A., Andrew W. Wood, Elizabeth Clark, Eric Rothwell, Martyn P. Clark, Bart Nijssen, Levi 
D. Brekke, and Jeffrey R. Arnold. 2017. “An Intercomparison of Approaches for Improving 
Operational Seasonal Streamflow Forecasts.” Hydrology and Earth System Sciences 21 (7): 
3915–35. https://doi.org/10.5194/hess-21-3915-2017. 

Menne, Matthew J., Imke Durre, Russell S. Vose, Byron E. Gleason, and Tamara G. Houston. 2012. “An 
Overview of the Global Historical Climatology Network-Daily Database.” Journal of Atmospheric 
and Oceanic Technology 29 (7): 897–910. https://doi.org/10.1175/JTECH-D-11-00103.1. 

Menne, Matthew J., and Claude N. Williams. 2009. “Homogenization of Temperature Series via Pairwise 
Comparisons.” Journal of Climate 22 (7): 1700–1717. https://doi.org/10.1175/2008JCLI2263.1. 

Menne, Matthew J., Claude N. Williams, and Russell S. Vose. 2009. “The U.S. Historical Climatology 
Network Monthly Temperature Data, Version 2.” Bulletin of the American Meteorological 
Society 90 (7): 993–1008. https://doi.org/10.1175/2008BAMS2613.1. 

Mesinger, Fedor, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. Shafran, Wesley Ebisuzaki, 
Dušan Jović, et al. 2006. “North American Regional Reanalysis.” Bulletin of the American 
Meteorological Society 87 (3): 343–60. https://doi.org/10.1175/BAMS-87-3-343. 

Michaelsen, Joel. 1987. “Cross-Validation in Statistical Climate Forecast Models.” Journal of Climate and 
Applied Meteorology 26: 1589–1600. 

Michaelsen, Joel, H. A. Loaiciga, L. Haston, and S. Garver. 1990. “Estimating Drought Probabilities in 
California Using Tree Rings. California Department of Water Resources Report B- 57105.” 
University of California, Santa Barbara CA. 

Miller, Matthew P., Susan G. Buto, David D. Susong, and Christine A. Rumsey. 2016. “The Importance of 
Base Flow in Sustaining Surface Water Flow in the Upper Colorado River Basin.” Water 
Resources Research 52 (5): 3547–62. https://doi.org/10.1002/2015WR017963. 

Miller, W. Paul, R. Alan Butler, Thomas Piechota, James Prairie, Katrina Grantz, and Gina DeRosa. 2012. 
“Water Management Decisions Using Multiple Hydrologic Models within the San Juan River 
Basin under Changing Climate Conditions.” Journal of Water Resources Planning and 
Management 138 (5): 412–20. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000237. 

Miller, W. Paul, Gina M. DeRosa, Subhrendu Gangopadhyay, and Juan B. Valdés. 2013. “Predicting 
Regime Shifts in Flow of the Gunnison River under Changing Climate Conditions: Regime Shifts 
Over the Gunnison River Basin.” Water Resources Research 49 (5): 2966–74. 
https://doi.org/10.1002/wrcr.20215. 

Miller, W. Paul, Thomas Piechota, Subhrendu Gangopadhyay, and Tom Pruitt. 2011. “Development of 
Streamflow Projections Under Changing Climate Conditions Over Colorado River Basin 
Headwaters.” Hydrol. Earth Syst. Sci., 21. 

Milly, P. C. D., Julio Betancourt, Malin Falkenmark, Robert M. Hirsch, Zbigniew W. Kundzewicz, Dennis P. 
Lettenmaier, and Ronald J. Stouffer. 2008. “Stationarity Is Dead: Whither Water Management?” 
Science 319 (5863): 573–74. https://doi.org/10.1126/science.1151915. 



References 475 
 

Milly, P. C. D., Julio Betancourt, Malin Falkenmark, Robert M. Hirsch, Zbigniew W. Kundzewicz, Dennis P. 
Lettenmaier, Ronald J. Stouffer, Michael D. Dettinger, and Valentina Krysanova. 2015. “On 
Critiques of ‘Stationarity Is Dead: Whither Water Management?’” Water Resources Research 51 
(9): 7785–89. https://doi.org/10.1002/2015WR017408. 

Milly, P. C. D., and K. A. Dunne. 2020. “Colorado River Flow Dwindles as Warming-Driven Loss of 
Reflective Snow Energizes Evaporation.” Science, February. 
https://doi.org/10.1126/science.aay9187. 

Milly, P. C. D., K. A. Dunne, and A. V. Vecchia. 2005. “Global Pattern of Trends in Streamflow and Water 
Availability in a Changing Climate.” Nature 438 (7066): 347–50. 
https://doi.org/10.1038/nature04312. 

Mitchell, Kenneth E. 2004. “The Multi-Institution North American Land Data Assimilation System 
(NLDAS): Utilizing Multiple GCIP Products and Partners in a Continental Distributed Hydrological 
Modeling System.” Journal of Geophysical Research 109 (D7). 
https://doi.org/10.1029/2003JD003823. 

Mizukami, Naoki, Martyn P. Clark, Ethan D. Gutmann, Pablo A. Mendoza, Andrew J. Newman, Bart 
Nijssen, Ben Livneh, Lauren E. Hay, Jeffrey R. Arnold, and Levi D. Brekke. 2016. “Implications of 
the Methodological Choices for Hydrologic Portrayals of Climate Change over the Contiguous 
United States: Statistically Downscaled Forcing Data and Hydrologic Models.” Journal of 
Hydrometeorology 17 (1): 73–98. https://doi.org/10.1175/JHM-D-14-0187.1. 

Mizukami, Naoki, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Ethan D. Gutmann, Bart 
Nijssen, Oldrich Rakovec, and Luis Samaniego. 2017. “Towards Seamless Large-Domain 
Parameter Estimation for Hydrologic Models.” Water Resources Research 53 (9): 8020–40. 
https://doi.org/10.1002/2017WR020401. 

Mizukami, Naoki, Martyn P. Clark, K. Sampson, B. Nijssen, Yixin Mao, Hilary McMillan, R. J. Viger, et al. 
2016. “MizuRoute Version 1: A River Network Routing Tool for a Continental Domain Water 
Resources Applications.” Geoscientific Model Development 9 (6): 2223–38. 

Mo, Kingtse C. 2003. “Ensemble Canonical Correlation Prediction of Surface Temperature over the 
United States.” Journal of Climate 16 (11): 1665–83. https://doi.org/10.1175/1520-
0442(2003)016<1665:ECCPOS>2.0.CO;2. 

Mo, Kingtse C., and Dennis P. Lettenmaier. 2014. “Hydrologic Prediction over the Conterminous United 
States Using the National Multi-Model Ensemble.” Journal of Hydrometeorology 15 (4): 1457–
72. https://doi.org/10.1175/JHM-D-13-0197.1. 

Mo, Kingtse C., Jae-Kyung E. Schemm, and Soo-Hyun Yoo. 2009. “Influence of ENSO and the Atlantic 
Multidecadal Oscillation on Drought over the United States.” Journal of Climate 22 (22): 5962–
82. https://doi.org/10.1175/2009JCLI2966.1. 

Monteith, J. L. 1965. “Evaporation and Environment.” Symposia of the Society for Experimental Biology 
19: 205–34. 

Moradkhani, Hamid, and Matthew Meier. 2010. “Long-Lead Water Supply Forecast Using Large-Scale 
Climate Predictors and Independent Component Analysis.” Journal of Hydrologic Engineering 
15 (10): 744–62. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000246. 

Moreo, Michael T., and Amy Swancar. 2013. “Evaporation from Lake Mead, Nevada and Arizona, March 
2010 through February 2012.” Scientific Investigations Report 2013–5229. Scientific 
Investigations Report. U.S. Geological Survey. https://pubs.usgs.gov/sir/2013/5229/. 

Mote, Philip W., Levi Brekke, Philip B. Duffy, and Ed Maurer. 2011. “Guidelines for Constructing Climate 
Scenarios.” Eos, Transactions American Geophysical Union 92 (31): 257–58. 
https://doi.org/10.1029/2011EO310001. 

Mote, Philip W., Alan F. Hamlet, Martyn P. Clark, and Dennis P. Lettenmaier. 2005. “Declining Mountain 
Snowpack in Western North America.” Bulletin of the American Meteorological Society 86 (1): 
39–50. https://doi.org/10.1175/BAMS-86-1-39. 

https://doi.org/10.1002/2015WR017408


References 476 
 

Mote, Philip W., Sihan Li, Dennis P. Lettenmaier, Mu Xiao, and Ruth Engel. 2018. “Dramatic Declines in 
Snowpack in the Western US.” Npj Climate and Atmospheric Science 1 (1). 
https://doi.org/10.1038/s41612-018-0012-1. 

Mundhenk, Bryan D., Elizabeth A. Barnes, Eric D. Maloney, and Cory F. Baggett. 2018. “Skillful Empirical 
Subseasonal Prediction of Landfalling Atmospheric River Activity Using the Madden–Julian 
Oscillation and Quasi-Biennial Oscillation.” Npj Climate and Atmospheric Science 1 (1): 20177. 
https://doi.org/10.1038/s41612-017-0008-2. 

Munson, Seth M., Jayne Belnap, and Gregory S. Okin. 2011. “Responses of Wind Erosion to Climate-
Induced Vegetation Changes on the Colorado Plateau.” Proceedings of the National Academy 
of Sciences 108 (10): 3854–59. https://doi.org/10.1073/pnas.1014947108. 

Naghettini, Mauro. 2016. Fundamentals of Statistical Hydrology. New York, NY: Springer 
Science+Business Media. https://doi-org.colorado.idm.oclc.org/10.1007/978-3-319-43561-9. 

Najafi, Mohammad Reza, and Hamid Moradkhani. 2015. “Ensemble Combination of Seasonal 
Streamflow Forecasts.” Journal of Hydrologic Engineering 21 (1): 04015043. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001250. 

NASA. 2019. “Rising to New Challenges for California’s Snow Forecasting Program.” 
Nash, Linda L., and Peter H. Gleick. 1991. “Sensitivity of Streamflow in the Colorado Basin to Climatic 

Changes.” Journal of Hydrology 125 (3–4): 221–41. https://doi.org/10.1016/0022-
1694(91)90030-L. 

Nathanson, Milton. 1978. “Updating the Hoover Dam Documents, 1978.” Reclamation. 
http://www.riversimulator.org/Resources/LawOfTheRiver/HooverDamDocs/UpdatingHoover1978
.pdf. 

National Academies, Board on Atmospheric Sciences and Climate, Ocean Studies Board, Division on 
Earth and Life Studies, and National Academies of Sciences, Engineering, and Medicine. 2016. 
Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. 
Washington, D.C.: National Academies Press. https://doi.org/10.17226/21873. 

National Interagency Fire Center. n.d. “Remote Automatic Weather Stations (RAWS).” Remote 
Automatic Weather Stations. https://raws.nifc.gov/. 

National Oceanic and Atmospheric Administration. 2019. “Cooperative Observer Network.” 
Cooperative Observer Network. 2019. https://www.ncdc.noaa.gov/data-access/land-based-
station-data/land-based-datasets/cooperative-observer-network-coop. 

———. n.d. “Automated Surface Observing System (ASOS).” Automated Surface Observing System. 
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets/automated-surface-observing-system-asos. 

———. n.d. “Automated Weather Observing System (AWOS).” Automated Weather Observing System. 
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-
datasets/automated-weather-observing-system-awos. 

———. n.d. “CLIMGRID.” Readme File for CLIMGRID. https://data.noaa.gov/dataset/dataset/gridded-
5km-ghcn-daily-temperature-and-precipitation-dataset-version-1/resource/72ce7666-9b67-4f58-
b433-d9db15320702. 

National Research Council. 2003. Critical Issues in Weather Modification Research. Washington, D.C.: 
National Academies Press. https://doi.org/10.17226/10829. 

———. 2004. Assessing the National Streamflow Information Program. https://doi.org/10.17226/10967. 
———. 2007. Colorado River Basin Water Management: Evaluating and Adjusting to Hydroclimatic 

Variability. Washington, D.C.: National Academies Press. https://doi.org/10.17226/11857. 
National Weather Service. n.d. “Automated Surface Observing Systems.” ASOS National Program 

Automated Surface Observing Systems. https://www.weather.gov/asos/asostech. 
———. n.d. “Cooperative Observer Program (COOP).” Cooperative Observer Program. 

https://www.weather.gov/coop/overview. 



References 477 
 

National Wildfire Coordinating Group. 2014. “Interagency Wildland Fire Weather Station Standards & 
Guidelines,” 50. 

Natural Resource Conservation Service. n.d. “Automated Soil Climate Monitoring.” Automated Soil 
Climate Monitoring. https://www.wcc.nrcs.usda.gov/about/mon_scan.html. 

———. n.d. “Snow Telemetry (SNOTEL) and Snow Course Data and Products.” Snow Telemetry and 
Snow Course Data and Products. https://www.wcc.nrcs.usda.gov/snow/. 

NCAR, Weather Modification Incorporated, University of Wyoming, Heritage Environmental Consultants, 
Desert Research Institute (DRI), and University of Alabama. 2014. “The Wyoming Weather 
Modification Project Pilot Program: Level II Study. Draft Executive Summary.” Wyoming Water 
Development Commission. 
http://wwdc.state.wy.us/weathermod/WYWeatherModPilotProgramExecSummary.html. 

Nearing, Grey S., Benjamin L. Ruddell, Martyn P. Clark, Bart Nijssen, and Christa Peters-Lidard. 2018. 
“Benchmarking and Process Diagnostics of Land Models.” Journal of Hydrometeorology 19 (11): 
1835–52. https://doi.org/10.1175/JHM-D-17-0209.1. 

Neff, J. C., A. P. Ballantyne, G. L. Farmer, N. M. Mahowald, J. L. Conroy, C. C. Landry, J. T. Overpeck, T. 
H. Painter, C. R. Lawrence, and R. L. Reynolds. 2008. “Increasing Eolian Dust Deposition in the 
Western United States Linked to Human Activity.” Nature Geoscience 1 (3): 189–95. 
https://doi.org/10.1038/ngeo133. 

Newman, Andrew J., Martyn P. Clark, Jason Craig, Bart Nijssen, Andrew W. Wood, Ethan D. Gutmann, 
Naoki Mizukami, Levi Brekke, and Jeff R. Arnold. 2015. “Gridded Ensemble Precipitation and 
Temperature Estimates for the Contiguous United States.” Journal of Hydrometeorology 16 (6): 
2481–2500. https://doi.org/10.1175/JHM-D-15-0026.1. 

Newman, Andrew J., Martyn P. Clark, Ryan J. Longman, and Thomas W. Giambelluca. 2019. 
“Methodological Intercomparisons of Station-Based Gridded Meteorological Products: Utility, 
Limitations, and Paths Forward.” Journal of Hydrometeorology 20 (3): 531–47. 
https://doi.org/10.1175/JHM-D-18-0114.1. 

Newman, Matthew, Michael A. Alexander, Toby R. Ault, Kim M. Cobb, Clara Deser, Emanuele Di 
Lorenzo, Nathan J. Mantua, et al. 2016. “The Pacific Decadal Oscillation, Revisited.” Journal of 
Climate 29 (12): 4399–4427. https://doi.org/10.1175/JCLI-D-15-0508.1. 

Newman, Matthew, Gilbert P. Compo, and Michael A. Alexander. 2003. “ENSO-Forced Variability of the 
Pacific Decadal Oscillation.” Journal of Climate 16 (23): 3853–57. https://doi.org/10.1175/1520-
0442(2003)016<3853:EVOTPD>2.0.CO;2. 

Niu, Guo-Yue, Zong-Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil 
Kumar, et al. 2011. “The Community Noah Land Surface Model with Multiparameterization 
Options (Noah-MP): 1. Model Description and Evaluation with Local-Scale Measurements.” 
Journal of Geophysical Research: Atmospheres 116 (D12). 
https://doi.org/10.1029/2010JD015139. 

NOAA Earth System Research Laboratory. n.d. “Livneh Daily CONUS Near-Surface Gridded 
Meteorological and Derived Hydrometeorological Data.” Livneh Daily CONUS Near-Surface 
Gridded Meteorological and Derived Hydrometeorological Data. 
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html. 

NOAA National Centers for Environmental Information. n.d. “U.S. Climate Reference Network.” 
Accessed November 17, 2019. https://www.ncdc.noaa.gov/crn/. 

NOAA National Environmental, Satellite, Data, and Information Service. 2007. “United States Climate 
Reference Network Functional Requirements Document.” US Department of Commerce. NOAA-
CRN/OSD-2003-0009R1UD0. 

Nowak, Kenneth, Martin P. Hoerling, Balaji Rajagopalan, and Edith Zagona. 2012. “Colorado River Basin 
Hydroclimatic Variability.” Journal of Climate 25 (12): 4389–4403. https://doi.org/10.1175/JCLI-
D-11-00406.1. 



References 478 
 

Nowak, Kenneth, James Prairie, Balaji Rajagopalan, and Upmanu Lall. 2010. “A Nonparametric 
Stochastic Approach for Multisite Disaggregation of Annual to Daily Streamflow.” Water 
Resources Research 46 (8). https://doi.org/10.1029/2009WR008530. 

NRCS. n.d. “NRCS (Natural Resources Conservation Service) Interactive Map 4.0.” Accessed June 21, 
2019. https://www.wcc.nrcs.usda.gov/webmap_beta/index.html. 

Oaida, Catalina M., John T. Reager, Konstantinos M. Andreadis, Cédric H. David, Steve R. Levoe, 
Thomas H. Painter, Kat J. Bormann, Amy R. Trangsrud, Manuela Girotto, and James S. 
Famiglietti. 2019. “A High-Resolution Data Assimilation Framework for Snow Water Equivalent 
Estimation across the Western United States and Validation with the Airborne Snow 
Observatory.” Journal of Hydrometeorology 20 (3): 357–78. https://doi.org/10.1175/JHM-D-18-
0009.1. 

Okumura, Yuko M., Pedro DiNezio, and Clara Deser. 2017. “Evolving Impacts of Multiyear La Niña 
Events on Atmospheric Circulation and U.S. Drought.” Geophysical Research Letters 44 (22): 
11,614-11,623. https://doi.org/10.1002/2017GL075034. 

O’Lenic, Edward A., David A. Unger, Michael S. Halpert, and Kenneth S. Pelman. 2008. “Developments 
in Operational Long-Range Climate Prediction at CPC.” Weather and Forecasting 23 (3): 496–
515. https://doi.org/10.1175/2007WAF2007042.1. 

O’Neill, Brian C., Claudia Tebaldi, Detlef P. van Vuuren, Veronika Eyring, Pierre Friedlingstein, George 
Hurtt, Reto Knutti, et al. 2016. “The Scenario Model Intercomparison Project (ScenarioMIP) for 
CMIP6.” Geoscientific Model Development 9 (9): 3461–82. https://doi.org/10.5194/gmd-9-
3461-2016. 

Ostler, Don A. 2017. “Sixty-Ninth Annual Report of the Upper Colorado River Commission.” Annual 
report 69. Salt Lake City, UT: Upper Colorado River Commission. 
http://www.ucrcommission.com/RepDoc/UCRCAnnualReports/69_UCRC_Annual_Report.pdf. 

Ouarda, Taha B. M. J., John W. Labadie, and Darrell G. Fontane. 1997. “Indexed Sequential Hydrologic 
Modeling for Hyropower Capacity Estimation.” Journal of the American Water Resources 
Association 33 (6): 1337–49. https://doi.org/10.1111/j.1752-1688.1997.tb03557.x. 

Oyler, Jared W. n.d. “TopoWx.” ScriMHub. http://www.scrimhub.org/resources/topowx/. 
Oyler, Jared W., Ashley Ballantyne, Kelsey Jencso, Michael Sweet, and Steven W. Running. 2015. 

“Creating a Topoclimatic Daily Air Temperature Dataset for the Conterminous United States 
Using Homogenized Station Data and Remotely Sensed Land Skin Temperature.” International 
Journal of Climatology 35 (9): 2258–79. https://doi.org/10.1002/joc.4127. 

Oyler, Jared W., Solomon Z. Dobrowski, Ashley P. Ballantyne, Anna E. Klene, and Steven W. Running. 
2015. “Artificial Amplification of Warming Trends across the Mountains of the Western United 
States.” Geophysical Research Letters 42 (1): 153–61. https://doi.org/10.1002/2014GL062803. 

Oyler, Jared W., Solomon Z. Dobrowski, Zachary A. Holden, and Steven W. Running. 2016. “Remotely 
Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the 
Conterminous United States.” Journal of Applied Meteorology and Climatology 55 (7): 1441–57. 
https://doi.org/10.1175/JAMC-D-15-0276.1. 

Ozdogan, Mutlu, Yang Yang, George Allez, and Chelsea Cervantes. 2010. “Remote Sensing of Irrigated 
Agriculture: Opportunities and Challenges.” Remote Sensing 2 (9): 2274–2304. 
https://doi.org/10.3390/rs2092274. 

Pagano, Thomas C., and David C. Garen. 2005. “A Recent Increase in Western U.S. Streamflow 
Variability and Persistence.” Journal of Hydrometeorology 6 (2): 173–79. 
https://doi.org/10.1175/JHM410.1. 

Pagano, Thomas C., David C. Garen, Tom R. Perkins, and Phillip A. Pasteris. 2009. “Daily Updating of 
Operational Statistical Seasonal Water Supply Forecasts for the Western U.S.1.” JAWRA Journal 
of the American Water Resources Association 45 (3): 767–78. https://doi.org/10.1111/j.1752-
1688.2009.00321.x. 



References 479 
 

Pagano, Thomas C., David Garen, and Soroosh Sorooshian. 2004. “Evaluation of Official Western U.S. 
Seasonal Water Supply Outlooks, 1922–2002.” Journal of Hydrometeorology 5: 14. 

Pagano, Thomas C., Andrew W. Wood, Kevin Werner, and Rashawn Tama-Sweet. 2014. “Western U.S. 
Water Supply Forecasting: A Tradition Evolves.” Eos, Transactions American Geophysical Union 
95 (3): 28–29. https://doi.org/10.1002/2014EO030007. 

Painter, Thomas H., Andrew P. Barrett, Christopher C. Landry, Jason C. Neff, Maureen P. Cassidy, Corey 
R. Lawrence, Kathleen E. McBride, and G. Lang Farmer. 2007. “Impact of Disturbed Desert Soils 
on Duration of Mountain Snow Cover.” Geophysical Research Letters 34 (12). 
https://doi.org/10.1029/2007GL030284. 

Painter, Thomas H., Daniel F. Berisford, Joseph W. Boardman, Kathryn J. Bormann, Jeffrey S. Deems, 
Frank Gehrke, Andrew Hedrick, et al. 2016. “The Airborne Snow Observatory: Fusion of 
Scanning Lidar, Imaging Spectrometer, and Physically-Based Modeling for Mapping Snow Water 
Equivalent and Snow Albedo.” Remote Sensing of Environment 184 (October): 139–52. 
https://doi.org/10.1016/j.rse.2016.06.018. 

Painter, Thomas H., Ann C. Bryant, and S. McKenzie Skiles. 2012. “Radiative Forcing of Dust in Mountain 
Snow from MODIS Surface Reflectance Data.” Geophysical Research Letters 39 (L17502). 

Painter, Thomas H., Jeffrey S. Deems, Jayne Belnap, Alan F. Hamlet, Christopher C. Landry, and Bradley 
Udall. 2010. “Response of Colorado River Runoff to Dust Radiative Forcing in Snow.” 
Proceedings of the National Academy of Sciences 107 (40): 17125–30. 
https://doi.org/10.1073/pnas.0913139107. 

Painter, Thomas H., Karl Rittger, Ceretha McKenzie, Peter Slaughter, Robert E. Davis, and Jeff Dozier. 
2009. “Retrieval of Subpixel Snow Covered Area, Grain Size, and Albedo from MODIS.” Remote 
Sensing of Environment 113 (4): 868–79. https://doi.org/10.1016/j.rse.2009.01.001. 

Painter, Thomas H., S. McKenzie Skiles, Jeffrey S. Deems, W. Tyler Brandt, and Jeff Dozier. 2018. 
“Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust 
Radiative Forcing in Snow.” Geophysical Research Letters 45 (2): 797–808. 
https://doi.org/10.1002/2017GL075826. 

Painter, Thomas H., S. McKenzie Skiles, Jeffrey S. Deems, Ann C. Bryant, and Christopher C. Landry. 
2012. “Dust Radiative Forcing in Snow of the Upper Colorado River Basin: 1. A 6 Year Record of 
Energy Balance, Radiation, and Dust Concentrations.” Water Resources Research 48 (7). 
https://doi.org/10.1029/2012WR011985. 

Panofsky, Hans A., and G. Brier. 1968. Some Applications of Statistics to Meteorology. Earth and Mineral 
Sciences Continuing Education, College of Earth and Mineral Sciences. 

Pederson, Gregory T., Julio L. Betancourt, and Gregory J. McCabe. 2013. “Regional Patterns and 
Proximal Causes of the Recent Snowpack Decline in the Rocky Mountains, U.S.” Geophysical 
Research Letters 40 (9): 1811–16. https://doi.org/10.1002/grl.50424. 

Pederson, Gregory T., Stephen T. Gray, Connie A. Woodhouse, Julio L. Betancourt, Daniel B. Fagre, 
Jeremy S. Littell, Emma Watson, Brian H. Luckman, and Lisa J. Graumlich. 2011. “The Unusual 
Nature of Recent Snowpack Declines in the North American Cordillera.” Science 333 (6040): 
332–35. https://doi.org/10.1126/science.1201570. 

Pegion, Kathy, Ben P. Kirtman, Emily Becker, Dan C. Collins, Emerson LaJoie, Robert Burgman, Ray Bell, 
et al. 2019. “The Subseasonal Experiment (SubX): A Multi-Model Subseasonal Prediction 
Experiment.” Bulletin of the American Meteorological Society, July, BAMS-D-18-0270.1. 
https://doi.org/10.1175/BAMS-D-18-0270.1. 

Pendergrass, Angeline G., Reto Knutti, Flavio Lehner, Clara Deser, and Benjamin M. Sanderson. 2017. 
“Precipitation Variability Increases in a Warmer Climate.” Scientific Reports 7 (1). 
https://doi.org/10.1038/s41598-017-17966-y. 

Penman, H. L. 1948. “Natural Evaporation from Open Water, Bare Soil and Grass.” Proceedings of the 
Royal Society A 193 (1032). https://doi.org/10.1098/rspa.1948.0037. 



References 480 
 

Peterson, Thomas C., David R. Easterling, Thomas R. Karl, Pavel Groisman, Neville Nicholls, Neil 
Plummer, Simon Torok, et al. 1998. “Homogeneity Adjustments of in Situ Atmospheric Climate 
Data: A Review.” International Journal of Climatology 18 (13): 1493–1517. 
https://doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T. 

Peterson, Thomas C., Russell Vose, Richard Schmoyer, and Vyachevslav Razuvaëv. 1998. “Global 
Historical Climatology Network (GHCN) Quality Control of Monthly Temperature Data.” 
International Journal of Climatology 18 (11): 1169–79. https://doi.org/10.1002/(SICI)1097-
0088(199809)18:11<1169::AID-JOC309>3.0.CO;2-U. 

Phillips, Morgan. 2013. “Estimates of Sublimation in the Upper Colorado River Basin.” Master’s, 
Colorado State University. 

Piechota, Thomas C., Francis H. S. Chiew, John A. Dracup, and Thomas A. McMahon. 1998. “Seasonal 
Streamflow Forecasting in Eastern Australia and the El Niño–Southern Oscillation.” Water 
Resources Research 34 (11): 3035–44. https://doi.org/10.1029/98WR02406. 

Pierce, David W., Tim P. Barnett, Hugo G. Hidalgo, Tapash Das, Céline Bonfils, Benjamin D. Santer, 
Govindasamy Bala, et al. 2008. “Attribution of Declining Western U.S. Snowpack to Human 
Effects.” Journal of Climate 21 (23): 6425–44. https://doi.org/10.1175/2008JCLI2405.1. 

Pierce, David W., Tim P. Barnett, B. D. Santer, and P. J. Gleckler. 2009. “Selecting Global Climate 
Models for Regional Climate Change Studies.” Proceedings of the National Academy of 
Sciences 106 (21): 8441–46. https://doi.org/10.1073/pnas.0900094106. 

Pierce, David W., Daniel R. Cayan, Edwin P. Maurer, John T. Abatzoglou, and Katherine C. Hegewisch. 
2015. “Improved Bias Correction Techniques for Hydrological Simulations of Climate Change.” 
Journal of Hydrometeorology 16 (6): 2421–42. https://doi.org/10.1175/JHM-D-14-0236.1. 

Pierce, David W., Daniel R. Cayan, and Bridget L. Thrasher. 2014. “Statistical Downscaling Using 
Localized Constructed Analogs (LOCA).” Journal of Hydrometeorology 15 (6): 2558–85. 
https://doi.org/10.1175/JHM-D-14-0082.1. 

Pierce, David W., Julie F. Kalansky, and Daniel R. Cayan. 2018. “Climate, Drought, and Sea Level 
Scenarios for California’s Fourth Climate Change Assessment.” 

“Plans & Reports | Upper Colorado Region | Bureau of Reclamation.” n.d. Accessed December 12, 2019. 
https://www.usbr.gov/uc/envdocs/plans.html#CCULR. 

Powell, Anthony. 2015. “Utilizing Probabilistic Forecasts for Colorado River Reservoir Operations Using a 
Mid-Term Probabilistic Operations Model for Decision Making and Risk Management.” In Reno, 
NV, 11. Reno, NV: Advisory Committee on Water Information. 

Powell Consortium. 1995. “Severe Sustained Drought, Managing the Colorado River System in Time of 
Water Shortage.” 

Prairie, James, and Russell Callejo. 2005. “Natural Flow and Salt Computation Methods, Calendar Years 
1971-1995.” US Bureau of Reclamation. 

Prairie, James, Kenneth Nowak, Balaji Rajagopalan, Upmanu Lall, and Terrance Fulp. 2008. “A Stochastic 
Nonparametric Approach for Streamflow Generation Combining Observational and 
Paleoreconstructed Data: An Approach for Streamflow Generation.” Water Resources Research 
44 (6). https://doi.org/10.1029/2007WR006684. 

Prairie, James, Balaji Rajagopalan, Terry J. Fulp, and Edith A. Zagona. 2006. “Modified K-NN Model for 
Stochastic Streamflow Simulation.” Journal of Hydrologic Engineering 11 (4): 371–78. 
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(371). 

Prairie, James, Balaji Rajagopalan, Upmanu Lall, and Terrance Fulp. 2007. “A Stochastic Nonparametric 
Technique for Space-Time Disaggregation of Streamflows.” Water Resources Research 43 (3). 
https://doi.org/10.1029/2005WR004721. 



References 481 
 

Prein, Andreas F., Wolfgang Langhans, Giorgia Fosser, Andrew Ferrone, Nikolina Ban, Klaus Goergen, 
Michael Keller, et al. 2015. “A Review on Regional Convection‐permitting Climate Modeling: 
Demonstrations, Prospects, and Challenges.” Reviews of Geophysics 53 (2): 323–61. 
https://doi.org/10.1002/2014RG000475. 

PRISM. 2016. “Descriptions of PRISM Spatial Climate Datasets for the Conterminous United States.” 
http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf. 

Quayle, Robert Q., David R. Easterling, Thomas R. Karl, and Pamela J. Hughes. 1991. “Effects of Recent 
Thermomenter Changes in the Cooperative Station Network.” Bulletin of the American 
Meteorological Society 72 (11): 1718–23. 

Raff, David, Levi Brekke, Kevin Werner, Andy Wood, and Kathleen White. 2013. “Short-Term Water 
Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic 
Information.” Technical report CWTS 2013-1. U.S. Army Corps of Engineers. 
https://www.usbr.gov/research/st/roadmaps/WaterSupply.pdf. 

Rajagopalan, Balaji, Kenneth Nowak, James Prairie, Martin Hoerling, Benjamin Harding, Joseph Barsugli, 
Andrea Ray, and Bradley Udall. 2009. “Water Supply Risk on the Colorado River: Can 
Management Mitigate?” Water Resources Research 45 (8). 
https://doi.org/10.1029/2008WR007652. 

Ralph, F. Martin, Jonathan J. Rutz, Jason M. Cordeira, Michael Dettinger, Michael Anderson, David 
Reynolds, Lawrence J. Schick, and Chris Smallcomb. 2019. “A Scale to Characterize the Strength 
and Impacts of Atmospheric Rivers.” Bulletin of the American Meteorological Society 100 (2): 
269–89. https://doi.org/10.1175/BAMS-D-18-0023.1. 

Rangwala, Imtiaz, Tim Bardsley, Marcus Pescinski, and Jim Miller. 2015. “SNOTEL Sensor Upgrade Has 
Caused Temperature Record Inhomogeneities for the Intermountain West: Implications for 
Climate Change Impact Assessments.” Research Briefing. University of Colorado Boulder: 
Western Water Assessement. 

Rangwala, Imtiaz, and James R. Miller. 2010. “Twentieth Century Temperature Trends in Colorado’s San 
Juan Mountains.” Arctic, Antarctic, and Alpine Research 42 (1): 89–97. 
https://doi.org/10.1657/1938-4246-42.1.89. 

Rangwala, Imtiaz, Lesley L. Smith, Gabriel Senay, Joseph J. Barsugli, Stefanie Kagone, and Michael T. 
Hobbins. 2019. “Landscape Evaporative Response Index (LERI): A High Resolution Monitoring 
and Assessment of Evapotranspiration across the Contiguous United States.” National and 
Regional Climate Adaptation Science Centers. https://doi.org/10.21429/43r4-3q68. 

“Rapid Refresh (RAP).” n.d. Accessed December 11, 2019. https://rapidrefresh.noaa.gov/. 
Rasmussen, Roy, Bruce Baker, John Kochendorfer, Tilden Meyers, Scott Landolt, Alexandre P. Fischer, 

Jenny Black, et al. 2012. “How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter 
Precipitation Test Bed.” Bulletin of the American Meteorological Society 93 (6): 811–29. 
https://doi.org/10.1175/BAMS-D-11-00052.1. 

Rasmussen, Roy, Kyoko Ikeda, Changhai Liu, David Gochis, Martyn P. Clark, Aiguo Dai, Ethan D. 
Gutmann, et al. 2014. “Climate Change Impacts on the Water Balance of the Colorado 
Headwaters: High-Resolution Regional Climate Model Simulations.” Journal of 
Hydrometeorology 15 (3): 1091–1116. https://doi.org/10.1175/JHM-D-13-0118.1. 

Rasmussen, Roy, Changhai Liu, Kyoko Ikeda, David Gochis, David Yates, Fei Chen, Mukul Tewari, et al. 
2011. “High-Resolution Coupled Climate Runoff Simulations of Seasonal Snowfall over 
Colorado: A Process Study of Current and Warmer Climate.” Journal of Climate 24 (12): 3015–
48. https://doi.org/10.1175/2010JCLI3985.1. 



References 482 
 

Rasmussen, Roy, Sarah Tessendorf, Lulin Xue, Courtney Weeks, Kyoko Ikeda, Scott Landolt, Dan Breed, 
Terry Deshler, and Barry Lawrence. 2018. “Evaluation of the Wyoming Weather Modification 
Pilot Project (WWMPP) Using Two Approaches: Traditional Statistics and Ensemble Modeling.” 
Journal of Applied Meteorology and Climatology 57 (11): 2639–60. 
https://doi.org/10.1175/JAMC-D-17-0335.1. 

Rasmusson, Eugene M., and Thomas H. Carpenter. 1982. “Variations in Tropical Sea Surface 
Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño.” 
Monthly Weather Review 110: 354–84. https://doi.org/10.1175/1520-
0493(1982)110<0354:VITSST>2.0.CO;2. 

Rauber, Robert M., Bart Geerts, Lulin Xue, Jeffrey French, Katja Friedrich, Roy M. Rasmussen, Sarah A. 
Tessendorf, Derek R. Blestrud, Melvin L. Kunkel, and Shaun Parkinson. 2019. “Wintertime 
Orographic Cloud Seeding—A Review.” Journal of Applied Meteorology and Climatology 58 
(10): 2117–40. https://doi.org/10.1175/JAMC-D-18-0341.1. 

Ray, Andrea J., Joseph J. Barsugli, K. B. Averyt, Klaus Wolter, Martin P. Hoerling, Nolan J. Doesken, 
Bradley Udall, and R. S. Webb. 2008. “Climate Change in Colorado: A Synthesis to Support 
Water Resources Management and Adaptation.” 
https://wwa.colorado.edu/publications/reports/WWA_ClimateChangeColoradoReport_2008.pdf. 

Reclamation. 1969. “Report of the Committee on Probabilities and Test Studies to the Task Force on 
Operating Criteria for the Colorado River.” US Bureau of Reclamation. 
http://www.riversimulator.org/Resources/USBR/ProbabilitiesOnOperatingCriteriaColoradoRiverB
oR1969opt.pdf. 

———. 1983. “Colorado River Simulation System Hydrology Data Base.” US Bureau of Reclamation. 
https://www.usbr.gov/lc/region/g4000/NaturalFlow/Upper%20Basin_CRSS%20Hydrology%20Da
ta_Base_1983.pdf. 

———. 1985. Colorado River Simulation System CRSS System Overview. Denver, Colorado. 
———. 1986. “Lake Powell Evaporation.” Salt Lake City, UT: Upper Colorado Regional Office. 
———. 2007a. “Draft EIS – Colorado River Interim Guidelines for Lower Basin Shortages and 

Coordinated Operations for Lakes Powell and Mead, Appendix A – CRSS Model 
Documentation.” https://www.usbr.gov/lc/region/programs/strategies/draftEIS/AppA.pdf. 

———. 2007b. “Final EIS – Colorado River Interim Guidelines for Lower Basin Shortages and 
Coordinated Operations for Lake Powell and Lake Mead, Appendix N – Analysis of Hydrologic 
Variability Sensitivity.” https://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html. 

———. 2007c. “Final EIS – Colorado River Interim Guidelines for Lower Basin Shortages and 
Coordinated Operations for Lake Powell and Lake Mead, Appendix U – Review of Science and 
Methods for Incorporating Climate Change Information into Reclamation’s Colorado River Basin 
Planning Studies.” https://www.usbr.gov/lc/region/programs/strategies/FEIS/index.html#VolIII. 

———. 2007d. “Final EIS, Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated 
Operations for Lakes Powell and Mead, Appendix C-Upper Basin States Depletion Schedules.” 
US Bureau of Reclamation. https://www.usbr.gov/lc/region/programs/strategies/FEIS/AppC.pdf. 

———. 2007e. “Final EIS – Colorado River Interim Guidelines for  Lower Basin Shortages and 
Coordinated Operations for Lake Powell and Lake Mead, Chapter 1-Purpose and Need.” 
https://www.usbr.gov/lc/region/programs/strategies/FEIS/Chp1.pdf. 

———. 2007f. “Final EIS – Colorado River Interim Guidelines for Lower Basin Shortages and 
Coordinated Operations for Lake Powell and Lake Mead, Volume 1.” 
https://www.usbr.gov/lc/region/programs/strategies/FEIS/Vol1Front.pdf. 

———. 2010. “Colorado River Modeling Work Group Charter.” 
https://www.usbr.gov/lc/region/programs/climateresearch/Charter_ModelingWorkGroup.pdf. 

———. 2011. “West-Wide Climate Risk Assessments: Bias-Corrected and Spatially Downscaled Surface 
Water Projections.” Technical Memorandum No. 86-68210-2011-01. 



References 483 
 

———. 2012a. “Colorado River Basin Water Supply and Demand Study, Appendix C11.” 
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20C%20-
%20Water%20Demand%20Assessment/TR-C_Appendix11_FINAL.pdf. 

———. 2012b. “Colorado River Basin Water Supply and Demand Study, Technical Report B-Water 
Supply Assessment.” US Bureau of Reclamation. 
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20B%20-
%20Water%20Supply%20Assessment/TR-B_Water_Supply_Assessment_FINAL.pdf. 

———. 2012c. “Colorado River Basin Water Supply and Demand Study-Appendix B4, Variable 
Infiltration Capacity (VIC) Hydrologic Modeling Methods and Simulations.” US Bureau of 
Reclamation. 
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20B%20-
%20Water%20Supply%20Assessment/TR-B_Appendix4_FINAL.pdf. 

———. 2012d. “Colorado River Basin Water Supply and Demand Study-Technical Report C.” Technical 
report. US Bureau of Reclamation. 
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20C%20-
%20Water%20Demand%20Assessment/TR-C-Water_Demand_Assessmemt_FINAL.pdf. 

———. 2012e. “Colorado River Basin Water Supply and Demand Study.” US Bureau of Reclamation. 
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Study%20Report/CRBS_Study_Re
port_FINAL.pdf. 

———. 2012f. “Colorado River Basin Water Supply and Demand Study-Technical Report G, CRSS 
Modeling Assumptions.” 
https://www.usbr.gov/lc/region/programs/crbstudy/finalreport/Technical%20Report%20G%20-
%20System%20Reliability%20Analysis%20and%20Evaluation%20of%20Options%20and%20Stat
egies/TR-G_Appendix2_FINAL_Dec2012.pdf. 

———. 2014. “Downscaled CMIP3 and CMIP5 Hydrology Projections – Release of Hydrology 
Projections, Comparison with Preceding Information and Summary of User Needs.” Department 
of Interior, US Bureau of Reclamation. 

———. 2015a. “Colorado River Basin Mid-Term Probabilistic Operations Model (MTOM) Overview and 
Description.” US Bureau of Reclamation. 

———. 2015b. “Law of the River| Lower Colorado Region | Bureau of Reclamation.” USBR.Gov. June 30, 
2015. https://www.usbr.gov/lc/region/pao/lawofrvr.html. 

———. 2016a. “Downscaled CMIP3 and CMIP5 Climate Projections - Addendum: Release of 
Downscaled CMIP5 Climate Projections (LOCA) and Comparison with Preceding Information.” 
Reclamation. http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. 

———. 2016b. “SECURE Water Act Section 9503(c)— Reclamation Climate Change and Water 2016.” 
US Bureau of Reclamation. 

———. 2016c. “Colorado River Accounting and Water Use Report: Arizona, California, and Nevada 
Calendar Year 2015.” US Bureau of Reclamation. 
https://www.usbr.gov/lc/region/g4000/4200Rpts/DecreeRpt/2015/2015.pdf. 

———. 2018. “Colorado River Basin Ten Tribes Partnership Tribal Water Study.” 
https://www.usbr.gov/lc/region/programs/crbstudy/tws/finalreport.html. 

———. 2019a. “AgriMet.” Agrimet. 2019. https://www.usbr.gov/pn/agrimet/proginfo.html. 
———. 2019b. “Draft -Binational Task 4, Evaluation of Reclamation’s 24-Month Study.” 
———. 2019c. “Colorado River Basin Drought Contingency Plans-Final Documents.” November 2019. 

https://www.usbr.gov/dcp/finaldocs.html. 
———. 2019d. “Colorado River Basin Natural Flow and Salt Data.” April 1, 2019. 

https://www.usbr.gov/lc/region/g4000/NaturalFlow/current.html. 
———. 2020. “Exploring Climate and Hydrology Projections from the CMIP5 Archive.” US Bureau of 

Reclamation. 

https://www.usbr.gov/dcp/finaldocs.html


References 484 
 

Reclamation, and Colorado Basin River Forecast Center. in preparation. “Draft - Forecast and Reservoir 
Operation Modeling Uncertainty Scoping (FROMUS) Report.” 

Redmond, Kelly T. 2003. “Climate Variability in the West: Complex Spatial Structure Associated with 
Topography, and Observational Issues.” In Water and Climate in the Western United States, 29–
48. University of Colorado Press. 

Redmond, Kelly T., and Roy W. Koch. 1991. “Surface Climate and Streamflow Variability in the Western 
United States and Their Relationship to Large-Scale Circulation Indices.” Water Resources 
Research 27 (9): 2381–99. https://doi.org/10.1029/91WR00690. 

Reges, Henry W., Nolan Doesken, Julian Turner, Noah Newman, Antony Bergantino, and Zach 
Schwalbe. 2016. “CoCoRaHS: The Evolution and Accomplishments of a Volunteer Rain Gauge 
Network.” Bulletin of the American Meteorological Society 97 (10): 1831–46. 
https://doi.org/10.1175/BAMS-D-14-00213.1. 

Reggiani, Paolo, Murugesu Sivapalan, and S. Majid Hassanizadeh. 1998. “A Unifying Framework for 
Watershed Thermodynamics: Balance Equations for Mass, Momentum, Energy and Entropy, and 
the Second Law of Thermodynamics.” Advances in Water Resources 22 (4): 367–98. 
https://doi.org/10.1016/S0309-1708(98)00012-8. 

Regonda, Satish Kumar, Balaji Rajagopalan, Martyn P. Clark, and John Pitlick. 2005. “Seasonal Cycle 
Shifts in Hydroclimatology over the Western United States.” Journal of Climate 18 (2): 372–84. 
https://doi.org/10.1175/JCLI-3272.1. 

Revelle, R. R., and P. E. Waggoner. 1983. “Effects of a Carbon Dioxide-Induced Climatic Change on 
Water Supplies in the Western United States.” Report of the Carbon Dioxide Assessment 
Committee. Washington, D.C.: National Academy of Sciences, National Academy Press. 

Reynolds, David. 2015. “Literature Review and Scientific Synthesis on the Efficacy of Winter Orographic 
Cloud Seeding - A Report to the Bureau of Reclamation.” CIRES. 
https://wcr.colorado.edu/sites/default/files/project/files/Literature%20Review%20and%20Scienti
fic%20Synthesis%20on%20the%20Efficacy%20of%20Winter%20Orographic%20Cloud%20Seedi
ng_BOR_June%2010%202015_with%20Exec%20Summary_0.pdf. 

Rice, Jennifer L., Connie A. Woodhouse, and Jeffrey J. Lukas. 2009. “Science and Decision Making: 
Water Management and Tree-Ring Data in the Western United States.” JAWRA Journal of the 
American Water Resources Association 45 (5): 1248–59. https://doi.org/10.1111/j.1752-
1688.2009.00358.x. 

Ritchie, Justin, and Hadi Dowlatabadi. 2017. “Why Do Climate Change Scenarios Return to Coal?” 
Energy 140 (December): 1276–91. https://doi.org/10.1016/j.energy.2017.08.083. 

Robertson, Andrew W., and Frédéric Vitart. 2019. Sub-Seasonal to Seasonal Prediction. Elsevier. 
Robertson, D. E., P. Pokhrel, and Q. J. Wang. 2013. “Improving Statistical Forecasts of Seasonal 

Streamflows Using Hydrological Model Output.” Hydrology and Earth System Sciences 17 (2): 
579–93. https://doi.org/10.5194/hess-17-579-2013. 

Ropelewski, Chester F., and Michael S. Halpert. 1987. “Global and Regional Scale Precipitation Patterns 
Associated with the El Niño/Southern Oscillation (ENSO).” Monthly Weather Review 115: 1606–
26. https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2. 

———. 1989. “Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation.” 
Journal of Climate 2: 268–84. https://doi.org/10.1175/1520-
0442(1989)002<0268:PPAWTH>2.0.CO;2. 

Rosenberg, Eric A., E. A. Clark, A. C. Steinemann, and Dennis P. Lettenmaier. 2013. “On the 
Contribution of Groundwater Storage to Interannual Streamflow Anomalies in the Colorado River 
Basin.” Hydrology and Earth System Sciences 17 (4): 1475–91. https://doi.org/10.5194/hess-17-
1475-2013. 



References 485 
 

Rosenberg, Eric A., Andrew W. Wood, and Anne C. Steinemann. 2011. “Statistical Applications of 
Physically Based Hydrologic Models to Seasonal Streamflow Forecasts.” Water Resources 
Research 47 (3). https://doi.org/10.1029/2010WR010101. 

———. 2013. “Informing Hydrometric Network Design for Statistical Seasonal Streamflow Forecasts.” 
Journal of Hydrometeorology 14 (5): 1587–1604. https://doi.org/10.1175/JHM-D-12-0136.1. 

Rumsey, Christine A., Matthew P. Miller, David D. Susong, Fred D. Tillman, and David W. Anning. 2015. 
“Regional Scale Estimates of Baseflow and Factors Influencing Baseflow in the Upper Colorado 
River Basin.” Journal of Hydrology: Regional Studies 4 (September): 91–107. 
https://doi.org/10.1016/j.ejrh.2015.04.008. 

Running, Steven, and Peter Thornton. 1996. “Generating Daily Surfaces of Temperature and 
Precipitation over Complex Topography.” In GIS and Environmental Modeling: Progress and 
Research Issues., 93–98. https://scholarworks.umt.edu/ntsg_pubs/60. 

Rupp, David E., John T. Abatzoglou, Katherine C. Hegewisch, and Philip W. Mote. 2013. “Evaluation of 
CMIP5 20th Century Climate Simulations for the Pacific Northwest USA.” Journal of Geophysical 
Research: Atmospheres 118 (19): 10,884-10,906. https://doi.org/10.1002/jgrd.50843. 

Rupp, David E., John T. Abatzoglou, and Philip W. Mote. 2017. “Projections of 21st Century Climate of 
the Columbia River Basin.” Climate Dynamics 49 (5–6): 1783–99. 
https://doi.org/10.1007/s00382-016-3418-7. 

Saha, Suranjana, Shrinivas Moorthi, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, David 
Behringer, et al. 2014. “The NCEP Climate Forecast System Version 2.” Journal of Climate 27 
(6): 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1. 

Salas, Jose D., J. W. Delleur, V. Yevjevich, and W. L. Lane. 1980. Applied Modeling of Hydrologic Time 
Series. Littleton, Colorado: Water Resources Publications. 

Salas, Jose D. 1992. “Analysis and Modeling of Hydrologic Time Series.” In Handbook of Hydrology, 
David R. Maidment, Editor in Chief. McGraw-Hill, Inc. 

Salas, Jose D., Donald Frevert, Jeffrey Rieker, David King, Steffen Meyer, William Lane, and Edith 
Zagona. 2001. “New Developments on the SAMS Stochastic Hydrology Package.” In Bridging 
the Gap, 1–6. The Rosen Plaza Hotel, Orlando, Florida, United States: American Society of Civil 
Engineers. https://doi.org/10.1061/40569(2001)143. 

Samaniego, Luis, Rohini Kumar, and Sabine Attinger. 2010. “Multiscale Parameter Regionalization of a 
Grid-Based Hydrologic Model at the Mesoscale.” Water Resources Research 46 (5). 
https://doi.org/10.1029/2008WR007327. 

Sammis, Theodore W., Junming Wang, and David R. Miller. 2011. “The Transition of the Blaney-Criddle 
Formula to the Penman-Monteith Equation in the Western United States,” 12. 

Sanderson, Benjamin M., Michael Wehner, and Reto Knutti. 2017. “Skill and Independence Weighting 
for Multi-Model Assessments.” Geoscientific Model Development 10 (6): 2379–95. 
https://doi.org/10.5194/gmd-10-2379-2017. 

Scanlon, Bridget R., Zizhan Zhang, Robert C. Reedy, Donald R. Pool, Himanshu Save, Di Long, Jianli 
Chen, David M. Wolock, Brian D. Conway, and Daniel Winester. 2015. “Hydrologic Implications 
of GRACE Satellite Data in the Colorado River Basin.” Water Resources Research 51 (12): 9891–
9903. https://doi.org/10.1002/2015WR018090. 

Scanlon, Bridget R., Zizhan Zhang, Himanshu Save, Alexander Y. Sun, Hannes Müller Schmied, Ludovicus 
P. H. van Beek, David N. Wiese, et al. 2018. “Global Models Underestimate Large Decadal 
Declining and Rising Water Storage Trends Relative to GRACE Satellite Data.” Proceedings of 
the National Academy of Sciences 115 (6): E1080–89. 
https://doi.org/10.1073/pnas.1704665115. 



References 486 
 

Schaake, John C., Qingyun Duan, Vazken Andréassian, Stewart Franks, Alan Hall, and George Leavesley. 
2006. “The Model Parameter Estimation Experiment (MOPEX).” Journal of Hydrology, The 
model parameter estimation experiment, 320 (1): 1–2. 
https://doi.org/10.1016/j.jhydrol.2005.07.054. 

Schaake, John C., Qingyun Duan, Victor Koren, Kenneth E. Mitchell, Paul R. Houser, Eric F. Wood, Alan 
Robock, et al. 2004. “An Intercomparison of Soil Moisture Fields in the North American Land 
Data Assimilation System (NLDAS).” Journal of Geophysical Research 109 (D1): D01S90. 
https://doi.org/10.1029/2002JD003309. 

Schaefer, Garry L., and Ron F. Paetzold. 2001. “SNOTEL (SNOwpack TELemetry) and SCAN (Soil Climate 
Analysis Network).” In Proc. Intl. Workshop on Automated Weather Stations for Applications in 
Agriculture and Water Resources Management:, 7. Lincoln, NE. 

Schlesinger, Michael E., and Navin Ramankutty. 1994. “Low-Frequency Oscillation.” Nature 372 (6506): 
508–9. https://doi.org/10.1038/372508a0. 

Schneider, Dominik, and Noah P. Molotch. 2016. “Real-Time Estimation of Snow Water Equivalent in the 
Upper Colorado River Basin Using MODIS-Based SWE Reconstructions and SNOTEL Data.” 
Water Resources Research 52 (10): 7892–7910. https://doi.org/10.1002/2016WR019067. 

Schneider, Stephen H. 2002. “Can We Estimate the Likelihood of Climatic Changes at 2100?” Climatic 
Change 52 (4): 441–51. https://doi.org/10.1023/A:1014276210717. 

Schubert, Siegfried, David Gutzler, Hailan Wang, Aiguo Dai, Tom Delworth, Clara Deser, Kirsten Findell, 
et al. 2009. “A U.S. CLIVAR Project to Assess and Compare the Responses of Global Climate 
Models to Drought-Related SST Forcing Patterns: Overview and Results.” Journal of Climate 22 
(19): 5251–72. https://doi.org/10.1175/2009JCLI3060.1. 

Schulman, Edmund. 1945. “Tree-Ring Hydrology of the Colorado Basin.” University of Arizona Bulletin 
15 (4): 51. 

———. 1956. Dendroclimatic Changes in Semiarid America. University of Arizona Press, Tucson. 
Scott, David W. 2015. Multivariate Density Estimation: Theory, Practice, and Visualization. Somerset, 

UNITED STATES: John Wiley & Sons, Incorporated. 
http://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1895499. 

Seager, Richard, Robert Burgman, Yochanan Kushnir, Amy Clement, Ed Cook, Naomi Naik, and Jennifer 
Miller. 2008. “Tropical Pacific Forcing of North American Medieval Megadroughts: Testing the 
Concept with an Atmosphere Model Forced by Coral-Reconstructed SSTs.” Journal of Climate 
21 (23): 6175–90. https://doi.org/10.1175/2008JCLI2170.1. 

Seager, Richard, Naomi Naik, and Gabriel A. Vecchi. 2010. “Thermodynamic and Dynamic Mechanisms 
for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming.” Journal of 
Climate 23 (17): 4651–68. https://doi.org/10.1175/2010JCLI3655.1. 

Seager, Richard, M. Ting, I. Held, Y. Kushnir, J. Lu, G. Vecchi, H.-P. Huang, et al. 2007. “Model 
Projections of an Imminent Transition to a More Arid Climate in Southwestern North America.” 
Science 316 (5828): 1181–84. https://doi.org/10.1126/science.1139601. 

Seager, Richard, Mingfang Ting, Cuihua Li, Naomi Naik, Ben Cook, Jennifer Nakamura, and Haibo Liu. 
2013. “Projections of Declining Surface-Water Availability for the Southwestern United States.” 
Nature Climate Change 3 (5): 482–86. https://doi.org/10.1038/nclimate1787. 

SEI. 2019. “WEAP (Water Evaluation and Planning).” 2019. https://www.weap21.org. 
Senay, Gabriel B., Michael Budde, James Verdin, and Assefa Melesse. 2007. “A Coupled Remote 

Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration 
from Irrigated Fields.” Sensors 7 (6): 979–1000. https://doi.org/10.3390/s7060979. 

Seo, Dong-Jun, Lee Cajina, Robert Corby, and Tracy Howieson. 2009. “Automatic State Updating for 
Operational Streamflow Forecasting via Variational Data Assimilation.” Journal of Hydrology 367 
(3–4): 255–75. https://doi.org/10.1016/j.jhydrol.2009.01.019. 



References 487 
 

Seo, Dong-Jun, Victor Koren, and Neftali Cajina. 2003. “Real-Time Variational Assimilation of Hydrologic 
and Hydrometeorological Data into Operational Hydrologic Forecasting.” Journal of 
Hydrometeorology 4: 627–41. 

Serinaldi, Francesco, and Chris G. Kilsby. 2015. “Stationarity Is Undead: Uncertainty Dominates the 
Distribution of Extremes.” Advances in Water Resources 77 (March): 17–36. 
https://doi.org/10.1016/j.advwatres.2014.12.013. 

Serreze, Mark C., Martyn P. Clark, Richard L. Armstrong, David A. McGinnis, and Roger S. Pulwarty. 
1999. “Characteristics of the Western United States Snowpack from Snowpack Telemetry 
(SNOTEL) Data.” Water Resources Research 35 (7): 2145–60. 
https://doi.org/10.1029/1999WR900090. 

Seyfried, M. S., and B. P. Wilcox. 1995. “Scale and the Nature of Spatial Variability: Field Examples 
Having Implications for Hydrologic Modeling.” Water Resources Research 31 (1): 173–84. 
https://doi.org/10.1029/94WR02025. 

Sharifazari, Salman, and Shahab Araghinejad. 2015. “Development of a Nonparametric Model for 
Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts.” 
Water Resources Management 29 (14): 5309–22. https://doi.org/10.1007/s11269-015-1119-3. 

Sharma, Ashish, David G. Tarboton, and Upmanu Lall. 1997. “Streamflow Simulation: A Nonparametric 
Approach.” Water Resources Research 33 (2): 291–308. https://doi.org/10.1029/96WR02839. 

Shelton, M. L. 2009. Hydroclimatology: Perspectives and Applications. Cambridge University Press. 
https://books.google.com/books?id=7a2TspPRWmsC. 

Shen, Chaopeng. 2018. “A Transdisciplinary Review of Deep Learning Research and Its Relevance for 
Water Resources Scientists.” Water Resources Research 54 (11): 8558–93. 
https://doi.org/10.1029/2018WR022643. 

Shepherd, Theodore G., Emily Boyd, Raphael A. Calel, Sandra C. Chapman, Suraje Dessai, Ioana M. 
Dima-West, Hayley J. Fowler, et al. 2018. “Storylines: An Alternative Approach to Representing 
Uncertainty in Physical Aspects of Climate Change.” Climatic Change 151 (3–4): 555–71. 
https://doi.org/10.1007/s10584-018-2317-9. 

Sheppard, Paul R., Andrew C. Comrie, Gregory D. Packin, Kurt Angersbach, and Malcolm K. Hughes. 
2002. “The Climate of the US Southwest.” Climate Research 21: 219–38. 
https://doi.org/10.3354/cr021219. 

Siler, Nicholas, Cristian Proistosescu, and Stephen Po-Chedley. 2019. “Natural Variability Has Slowed the 
Decline in Western U.S. Snowpack since the 1980s.” Geophysical Research Letters 46 (1): 346–
55. https://doi.org/10.1029/2018GL081080. 

Singh, V. P. 1995. Computer Models of Watershed Hydrology. Highlands Ranch, CO: Water Resources 
Publications. 

Sitterson, Jan, Chris Knightes, Rajbir Parmar, Kurt Wolfe, Muluken Muche, and Brian Avant. 2017. “An 
Overview of Rainfall-Runoff Model Types.” Washington, D.C.: U.S. Environmental Protection 
Agency. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339328&Lab=NERL. 

Sivapalan, Murugesu, Günter Blöschl, Lu Zhang, and Rob Vertessy. 2003. “Downward Approach to 
Hydrological Prediction.” Hydrological Processes 17 (11): 2101–11. 
https://doi.org/10.1002/hyp.1425. 

Skamarock, William C., and Joseph B. Klemp. 2008. “A Time-Split Nonhydrostatic Atmospheric Model 
for Weather Research and Forecasting Applications.” Journal of Computational Physics 227 (7): 
3465–85. https://doi.org/10.1016/j.jcp.2007.01.037. 

Skiles, S. McKenzie, Mark Flanner, Joseph M. Cook, Marie Dumont, and Thomas H. Painter. 2018. 
“Radiative Forcing by Light-Absorbing Particles in Snow.” Nature Climate Change 8 (11): 964–
71. https://doi.org/10.1038/s41558-018-0296-5. 



References 488 
 

Skiles, S. McKenzie, Thomas H. Painter, Jayne Belnap, Lacey Holland, Richard L. Reynolds, Harland L. 
Goldstein, and John Lin. 2015. “Regional Variability in Dust-on-Snow Processes and Impacts in 
the Upper Colorado River Basin.” Hydrological Processes 29 (26): 5397–5413. 
https://doi.org/10.1002/hyp.10569. 

Skiles, S. McKenzie, Thomas H. Painter, Jeffrey S. Deems, Ann C. Bryant, and Christopher C. Landry. 
2012. “Dust Radiative Forcing in Snow of the Upper Colorado River Basin: 2. Interannual 
Variability in Radiative Forcing and Snowmelt Rates.” Water Resources Research 48 (7). 
https://doi.org/10.1029/2012WR011986. 

Slater, Andrew G. 2016. “Surface Solar Radiation in North America: A Comparison of Observations, 
Reanalyses, Satellite, and Derived Products.” Journal of Hydrometeorology 17 (1): 401–20. 
https://doi.org/10.1175/JHM-D-15-0087.1. 

“SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 Km EASE-Grid Soil Moisture, Version 2.” 
2018. NASA National Snow and Ice Data Center DAAC. https://doi.org/10.5067/ke1csvxmi95y. 

Sospedra-Alfonso, Reinel, Joe R. Melton, and William J. Merryfield. 2015. “Effects of Temperature and 
Precipitation on Snowpack Variability in the Central Rocky Mountains as a Function of Elevation.” 
Geophysical Research Letters 42 (11): 4429–38. https://doi.org/10.1002/2015GL063898. 

Srinivas, V. V., and K. Srinivasan. 2005. “Hybrid Moving Block Bootstrap for Stochastic Simulation of 
Multi-Site Multi-Season Streamflows.” Journal of Hydrology 302 (1): 307–30. 
https://doi.org/10.1016/j.jhydrol.2004.07.011. 

Srivastav, Roshan K., and Slobodan P. Simonovic. 2014. “An Analytical Procedure for Multi-Site, Multi-
Season Streamflow Generation Using Maximum Entropy Bootstrapping.” Environmental 
Modelling & Software 59 (September): 59–75. https://doi.org/10.1016/j.envsoft.2014.05.005. 

Stahle, David W., Edward R. Cook, Malcolm K. Cleaveland, Matthew D. Therrell, David M. Meko, Henri 
D. Grissino-Mayer, Emma Watson, and Brian H. Luckman. 2000. “Tree-Ring Data Document 16th 
Century Megadrought over North America.” Eos, Transactions American Geophysical Union 81 
(12): 121. https://doi.org/10.1029/00EO00076. 

Stahle, David W., Falko K. Fye, Edward R. Cook, and R. Daniel Griffin. 2007. “Tree-Ring Reconstructed 
Megadroughts over North America since a.d. 1300.” Climatic Change 83 (1–2): 133–49. 
https://doi.org/10.1007/s10584-006-9171-x. 

Stainforth, David A., Thomas E. Downing, Richard Washington, Ana Lopez, and Mark New. 2007. “Issues 
in the Interpretation of Climate Model Ensembles to Inform Decisions.” Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365 
(1857): 2163–77. https://doi.org/10.1098/rsta.2007.2073. 

Stan, Cristiana, David M. Straus, Jorgen S. Frederiksen, Hai Lin, Eric D. Maloney, and Courtney 
Schumacher. 2017. “Review of Tropical-Extratropical Teleconnections on Intraseasonal Time 
Scales: The Subseasonal to Seasonal (S2S) Teleconnection Sub-Project.” Reviews of Geophysics 
55 (4): 902–37. https://doi.org/10.1002/2016RG000538. 

Staschus, Konstantin, and Jerson Kelman. 1988. “Probabilistic Dependable Hydro Capacity: The Benefits 
of Synthetic Hydrology.” In Computerized Decision Support Systems for Water Managers. New 
York, NY: American Society of Civil Engineers. 
http://www.kelman.com.br/pdf/probabilistic_dependable/probabilistic%20dependable%20hydr
o.pdf. 

Steinschneider, Scott, Rachel McCrary, Linda O. Mearns, and Casey Brown. 2015. “The Effects of 
Climate Model Similarity on Probabilistic Climate Projections and the Implications for Local, Risk-
Based Adaptation Planning: INTERMODEL CORRELATION AND RISK.” Geophysical Research 
Letters 42 (12): 5014–44. https://doi.org/10.1002/2015GL064529. 

Stewart, Iris T., Daniel R. Cayan, and Michael D. Dettinger. 2005. “Changes toward Earlier Streamflow 
Timing across Western North America.” Journal of Climate 18 (8): 1136–55. 
https://doi.org/10.1175/JCLI3321.1. 



References 489 
 

Stockton, Charles W. 1975. “Long Term Streamflow Records Reconstructed from Tree-Rings.” University 
of Arizona Press, Tucson. 

Stockton, Charles W., and W. R. Boggess. 1979. “Geohydrological Implications of Climate Change on 
Water Resource Development.” Fort Belvoir, VA: U.S. Army Coastal Engineering Research 
Center. 

Stockton, Charles W., and G. C. Jacoby. 1976. “Long-Term Surface-Water Supply and Streamflow 
Trends in the Upper Colorado River Basin. Lake Powell Research Project Bulletin No. 18, Institute 
of Geophysics and Planetary Physics.” University of California at Los Angeles. 

Strachan, Scotty. 2016. “Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, 
USA.” Dissertation, University of Nevada, Reno. 

Strachan, Scotty, and Christopher Daly. 2017. “Testing the Daily PRISM Air Temperature Model on 
Semiarid Mountain Slopes: Testing PRISM Temperature in Mountains.” Journal of Geophysical 
Research: Atmospheres 122 (11): 5697–5715. https://doi.org/10.1002/2016JD025920. 

Stratus Consulting. 2005. “Compendium on Methods and Tools to Evaluate Impacts of, and Vulnerability 
and Adaptation to, Climate Change-Final Draft Report.” UNFCCC Secretariat. 
https://unfccc.int/files/adaptation/methodologies_for/vulnerability_and_adaptation/application/
pdf/consolidated_version_updated_021204.pdf. 

Sveinsson, O. G. B., Jose D. Salas, W. L. Lane, and D. K. Frevert. 2007. “Stochastic Analysis, Modeling, 
and Simulation (SAMS) Version 2007.” Manual. 

Switanek, Matthew B., and Peter A. Troch. 2011. “Decadal Prediction of Colorado River Streamflow 
Anomalies Using Ocean-Atmosphere Teleconnections.” Geophysical Research Letters 38 (23): 
n/a-n/a. https://doi.org/10.1029/2011GL049644. 

Tapley, Byron D., Bettadpur Srinivas, John C. Ries, Paul F. Thompson, and Michael M. Watkins. 2004. 
“GRACE Measurements of Mass Variability in the Earth System.” Science 305 (5683): 503–5. 
https://doi.org/10.1126/science.1099192. 

Tarboton, David G. 1994. “The Source Hydrology of Severe Sustained Drought in the Southwestern 
United States.” Journal of Hydrology 161 (1–4): 31–69. https://doi.org/10.1016/0022-
1694(94)90120-1. 

———. 1995. “Hydrologic Scenarios for Severe Sustained Drought in the Southwestern United States.” 
Water Resources Bulletin 35 (5). 

Tarboton, David G., Ashish Sharma, and Upmanu Lall. 1998. “Disaggregation Procedures for Stochastic 
Hydrology Based on Nonparametric Density Estimation.” Water Resources Research 34 (1): 107–
19. https://doi.org/10.1029/97WR02429. 

Tebaldi, Claudia, and Reto Knutti. 2007. “The Use of the Multi-Model Ensemble in Probabilistic Climate 
Projections.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences 365 (1857): 2053–75. https://doi.org/10.1098/rsta.2007.2076. 

Technical Committee on Standardization of Reference Evapotranspiration. 2005. The ASCE Standardized 
Reference Evapotranspiration Equation. Edited by Richard G. Allen, Ivan A. Walter, Ronald L. 
Elliott, Terry A. Howell, Daniel Itenfisu, Marvin E. Jensen, and Richard L. Snyder. Reston, VA: 
American Society of Civil Engineers. https://doi.org/10.1061/9780784408056. 

Tessendorf, Sarah A., Jeffrey R. French, Katja Friedrich, Bart Geerts, Robert M. Rauber, Roy M. 
Rasmussen, Lulin Xue, et al. 2019. “A Transformational Approach to Winter Orographic Weather 
Modification Research: The SNOWIE Project.” Bulletin of the American Meteorological Society 
100 (1): 71–92. https://doi.org/10.1175/BAMS-D-17-0152.1. 

Texas A&M University. 2019a. “Hydrologic Modeling Inventory Website.” TAMU Hydrologic Modeling 
Inventory. 2019. https://hydrologicmodels.tamu.edu/. 

———. 2019b. “Water Rights Analysis Package.” 2019. https://ceprofs.civil.tamu.edu/rwurbs/wrap.htm. 



References 490 
 

Thirel, Guillaume, E. Martin, J.-F. Mahfouf, S. Massart, S. Ricci, and F. Habets. 2010. “A Past Discharges 
Assimilation System for Ensemble Streamflow Forecasts over France – Part 1: Description and 
Validation of the Assimilation System.” Hydrology and Earth System Sciences 14 (8): 1623–37. 
https://doi.org/10.5194/hess-14-1623-2010. 

Thirel, Guillaume, E. Martin, J.-F. Mahfouf, S. Massart, S. Ricci, F. Regimbeau, and F. Habets. 2010. “A 
Past Discharge Assimilation System for Ensemble Streamflow Forecasts over France – Part 2: 
Impact on the Ensemble Streamflow Forecasts.” Hydrology and Earth System Sciences 14 (8): 
1639–53. https://doi.org/10.5194/hess-14-1639-2010. 

Thober, Stephan, Rohini Kumar, Justin Sheffield, Juliane Mai, David Schäfer, and Luis Samaniego. 2015. 
“Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model 
Ensemble (NMME).” Journal of Hydrometeorology 16 (6): 2329–44. 
https://doi.org/10.1175/JHM-D-15-0053.1. 

Thornton, Peter E., Hubert Hasenauer, and Michael A. White. 2000. “Simultaneous Estimation of Daily 
Solar Radiation and Humidity from Observed Temperature and Precipitation: An Application 
over Complex Terrain in Austria.” Agricultural and Forest Meteorology 104 (4): 255–71. 
https://doi.org/10.1016/S0168-1923(00)00170-2. 

Thornton, Peter E., and Steven W. Running. 1999. “An Improved Algorithm for Estimating Incident Daily 
Solar Radiation from Measurements of Temperature, Humidity, and Precipitation.” Agricultural 
and Forest Meteorology 93 (4): 211–28. https://doi.org/10.1016/S0168-1923(98)00126-9. 

Thornton, Peter E., Steven W. Running, and Michael A. White. 1997. “Generating Surfaces of Daily 
Meteorological Variables over Large Regions of Complex Terrain.” Journal of Hydrology 190 (3–
4): 214–51. https://doi.org/10.1016/S0022-1694(96)03128-9. 

Thornton, Peter E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, Russell S. Vose, and R. B. 
Cook. 2016. “Daymet: Daily Surface Weather Data on a 1-Km Grid for North America, Version 
3.” ORNL DAAC Distributed Active Archive Center for Biogeochemical Dynamics. 2016. 

Thrasher, Bridget, Jun Xiong, Weile Wang, Forrest Melton, Andrew Michaelis, and Ramakrishna Nemani. 
2013. “Downscaled Climate Projections Suitable for Resource Management.” Eos, Transactions 
American Geophysical Union 94 (37): 321–23. https://doi.org/10.1002/2013EO370002. 

Tighi, Shana Goffman. 2006. “Uncertainty Analysis: Mid-Term Operational Model for the Lower 
Colorado River.” Master’s, University of Nevada, Las Vegas. 

Timm, Oliver Elison, Thomas W. Giambelluca, and Henry F. Diaz. 2015. “Statistical Downscaling of 
Rainfall Changes in Hawai‘i Based on the CMIP5 Global Model Projections: Downscaled Rainfall 
Changes in Hawai’i.” Journal of Geophysical Research: Atmospheres 120 (1): 92–112. 
https://doi.org/10.1002/2014JD022059. 

Tippett, Michael K., Meghana Ranganathan, Michelle L’Heureux, Anthony G. Barnston, and Timothy 
DelSole. 2017. “Assessing Probabilistic Predictions of ENSO Phase and Intensity from the North 
American Multimodel Ensemble.” Climate Dynamics, May. https://doi.org/10.1007/s00382-017-
3721-y. 

Tipton, Royce, and Olin Kalmbach. 1965. “Water Supplies of the Colorado River--Available for Use by 
the States of the Upper Division and for Use from the Main Stem by the States of Arizona, 
California and Nevada in the Lower Basin.” Engineering. Denver, Colorado: Upper Colorado 
River Commission. https://wwa.colorado.edu/resources/colorado-
river/docs/management/Tipton1965.pdf. 

Tokarska, Katarzyna B., Martin B. Stolpe, Sebastian Sippel, Erich M. Fischer, Christopher J. Smith, Flavio 
Lehner, and Reto Knutti. 2020. “Past Warming Trend Constrains Future Warming in CMIP6 
Models.” Science Advances 6 (12). https://doi.org/10.1126/sciadv.aaz9549. 

Tolson, B. A., and C. A. Shoemaker. 2006. “The Dynamically Dimensioned Search (DDS) Algorithm as a 
Robust Optimization Tool in Hydrologic Modeling.” In AGU Fall Meeting Abstracts, 41:H41I-07. 
http://adsabs.harvard.edu/abs/2006AGUFM.H41I..07T. 

https://wwa.colorado.edu/resources/colorado-river/docs/management/Tipton1965.pdf
https://wwa.colorado.edu/resources/colorado-river/docs/management/Tipton1965.pdf


References 491 
 

Tootle, Glenn A., Singh Ashok K., Thomas C. Piechota, and Farnham Irene. 2007. “Long Lead-Time 
Forecasting of U.S. Streamflow Using Partial Least Squares Regression.” Journal of Hydrologic 
Engineering 12 (5): 442–51. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(442). 

Topping, David J., John C. Schmidt, and L.E. Vierra Jr. 2003. “Computation and Analysis of the 
Instantaneous-Discharge Record for the Colorado River at Lees Ferry, Arizona : May 8, 1921, 
through September 30, 2000.” USGS Numbered Series 1677. Professional Paper. Reston, VA: 
U.S. Geological Survey. http://pubs.er.usgs.gov/publication/pp1677. 

Tourre, Yves M., Balaji Rajagopalan, Yochanan Kushnir, Mathew Barlow, and Warren B. White. 2001. 
“Patterns of Coherent Decadal and Interdecadal Climate Signals in the Pacific Basin during the 
20th Century.” Geophysical Research Letters 28 (10): 2069–72. 
https://doi.org/10.1029/2000GL012780. 

Towler, Erin, Debasish PaiMazumder, and James Done. 2018. “Toward the Application of Decadal 
Climate Predictions.” Journal of Applied Meteorology and Climatology 57 (3): 555–68. 
https://doi.org/10.1175/JAMC-D-17-0113.1. 

Udall, Bradley, and Jonathan Overpeck. 2017. “The Twenty-First Century Colorado River Hot Drought 
and Implications for the Future.” Water Resources Research 53 (3): 2404–18. 
https://doi.org/10.1002/2016WR019638. 

URS. 2013. “Assessing Agricultural Consumptive Use in the Upper Colorado River Basin - Phase I.” 
http://www.ucrcommission.com/RepDoc/Studies/Assessing%20_Ag_CU_PhaseI.pdf. 

———. 2016. “Assessing Agricultural Consumptive Use in the Upper Colorado River Basin - Phase II.” 
http://www.ucrcommission.com/RepDoc/Studies/Assessing%20_Ag_CU_PhaseII.pdf. 

US Army Corps of Engineers. 1971. “HEC-4 Monthly Streamflow Simulation User’s Manual.” United 
States Army Corps of Engineers, Department of Hydrologic Engineering Center. 
https://www.hec.usace.army.mil/publications/ComputerProgramDocumentation/HEC-
4_UsersManual_(CPD-4).pdf. 

———. 2012. “HEC-ResPRM.” 2012. https://www.hec.usace.army.mil/software/hec-resprm/. 
US Geological Survey. 1977. “Water Resources Data for Colorado, Water Year 1975. Volume 2, 

Colorado River Basin.” U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-75-2. U.S. 
Geological Survey. 

———. 2018a. “Federal Priorities Streamgages (FPS) Mapper.” 2018. 
https://water.usgs.gov/networks/fps/. 

———. 2018b. “USGS Water-Year Summary for Site 09315000.” 2018. 
https://waterdata.usgs.gov/nwis/wys_rpt/?site_no=09315000. 

———. 2018c. “USGS Water-Year Summary for Site 09380000.” 2018. 
https://waterdata.usgs.gov/nwis/wys_rpt/?site_no=09380000&agency_cd=USGS. 

———. n.d. “Water Resources of the United States—Annual Water Data Report—Documentation.” 
Annual Water Data Report. Accessed March 21, 2019. 
https://wdr.water.usgs.gov/current/documentation.html. 

U.S. Secretary of the Interior. 2007. “Record of Decision Colorado River Interim Guidelines for Lower 
Basin Shortages and the Coordinated Operations for Lake Powell and Lake Mead.” U.S. 
Department of the Interior. 
https://www.usbr.gov/lc/region/programs/strategies/RecordofDecision.pdf. 

USGCRP. 2017. “Climate Science Special Report: Fourth National Climate Assessment, Volume I.” 
Washington, D.C.: U.S Global Change Research Program. doi: 10.7930/J0J964J6. 

Van den Dool, Huug M. 1994. “Searching for Analogues, How Long Must We Wait?” Tellus A 46 (3): 
314–24. https://doi.org/10.1034/j.1600-0870.1994.t01-2-00006.x. 

———. 2003. “Performance and Analysis of the Constructed Analogue Method Applied to U.S. Soil 
Moisture over 1981–2001.” Journal of Geophysical Research 108 (D16): 8617. 
https://doi.org/10.1029/2002JD003114. 

http://pubs.er.usgs.gov/publication/pp1677


References 492 
 

———. 2007. Empirical Methods in Short-Term Climate Prediction. Oxford ; New York: Oxford University 
Press. 

Vano, Julie A., Jeffrey R. Arnold, Bart Nijssen, Martyn P. Clark, Andrew W. Wood, Ethan D. Gutmann, 
Nans Addor, Joseph Hamman, and Flavio Lehner. 2018. “DOs and DON’Ts for Using Climate 
Change Information for Water Resource Planning and Management: Guidelines for Study 
Design.” Climate Services 12 (December): 1–13. https://doi.org/10.1016/j.cliser.2018.07.002. 

Vano, Julie A., Tapash Das, and Dennis P. Lettenmaier. 2012. “Hydrologic Sensitivities of Colorado River 
Runoff to Changes in Precipitation and Temperature*.” Journal of Hydrometeorology 13 (3): 
932–49. https://doi.org/10.1175/JHM-D-11-069.1. 

Vano, Julie A., and Dennis P. Lettenmaier. 2014. “A Sensitivity-Based Approach to Evaluating Future 
Changes in Colorado River Discharge.” Climatic Change 122 (4): 621–34. 
https://doi.org/10.1007/s10584-013-1023-x. 

Vano, Julie A., Bradley Udall, Daniel R. Cayan, Jonathan T. Overpeck, Levi D. Brekke, Tapash Das, Holly 
C. Hartmann, et al. 2014. “Understanding Uncertainties in Future Colorado River Streamflow.” 
Bulletin of the American Meteorological Society 95 (1): 59–78. https://doi.org/10.1175/BAMS-D-
12-00228.1. 

Verdin, Andrew, Balaji Rajagopalan, William Kleiber, Guillermo Podestá, and Federico Bert. 2018. “A 
Conditional Stochastic Weather Generator for Seasonal to Multi-Decadal Simulations.” Journal 
of Hydrology 556 (January): 835–46. https://doi.org/10.1016/j.jhydrol.2015.12.036. 

Vigaud, N., Andrew W. Robertson, and M. K. Tippett. 2017. “Multimodel Ensembling of Subseasonal 
Precipitation Forecasts over North America.” Monthly Weather Review 145 (10): 3913–28. 
https://doi.org/10.1175/MWR-D-17-0092.1. 

Vliet, Michelle T. H. van, David Wiberg, Sylvain Leduc, and Keywan Riahi. 2016. “Power-Generation 
System Vulnerability and Adaptation to Changes in Climate and Water Resources.” Nature 
Climate Change 6 (4): 375–80. https://doi.org/10.1038/nclimate2903. 

Vogel, Jason M. 2015. “Actionable Science in Practice: Co-Producing Climate Change Information for 
Water Utility Vulnerability Assessments.” Water Utility Climate Alliance. 

Vogel, Richard M. 2017. “Stochastic Watershed Models for Hydrologic Risk Management.” Water 
Security 1 (July): 28–35. https://doi.org/10.1016/j.wasec.2017.06.001. 

Vose, Russell S., Scott Applequist, Mike Squires, Imke Durre, Matthew J. Menne, Claude N. Williams, 
Chris Fenimore, Karin Gleason, and Derek Arndt. 2014. “Improved Historical Temperature and 
Precipitation Time Series for U.S. Climate Divisions.” Journal of Applied Meteorology and 
Climatology 53 (5): 1232–51. https://doi.org/10.1175/JAMC-D-13-0248.1. 

Vuuren, Detlef P. van, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, 
George C. Hurtt, et al. 2011. “The Representative Concentration Pathways: An Overview.” 
Climatic Change 109 (1–2): 5–31. https://doi.org/10.1007/s10584-011-0148-z. 

Walton, Daniel, and Alex Hall. 2018. “An Assessment of High-Resolution Gridded Temperature Datasets 
over California.” Journal of Climate 31 (10): 3789–3810. https://doi.org/10.1175/JCLI-D-17-
0410.1. 

Wang, Q. J., D. E. Robertson, and F. H. S. Chiew. 2009. “A Bayesian Joint Probability Modeling 
Approach for Seasonal Forecasting of Streamflows at Multiple Sites.” Water Resources Research 
45 (5). https://doi.org/10.1029/2008WR007355. 

Wang, Shih-Yu, Robert R. Gillies, Oi-Yu Chung, and Chaopeng Shen. 2018. “Cross-Basin Decadal 
Climate Regime Connecting the Colorado River with the Great Salt Lake.” Journal of 
Hydrometeorology 19 (4): 659–65. https://doi.org/10.1175/JHM-D-17-0081.1. 

Wang, Shih-Yu, Robert R. Gillies, Lawrence E. Hipps, and Jiming Jin. 2011. “A Transition-Phase 
Teleconnection of the Pacific Quasi-Decadal Oscillation.” Climate Dynamics 36 (3–4): 681–93. 
https://doi.org/10.1007/s00382-009-0722-5. 



References 493 
 

Waring, R. H., N. C. Coops, W. Fan, and J. M. Nightingale. 2006. “MODIS Enhanced Vegetation Index 
Predicts Tree Species Richness across Forested Ecoregions in the Contiguous U.S.A.” Remote 
Sensing of Environment 103 (2): 218–26. https://doi.org/10.1016/j.rse.2006.05.007. 

Water Resources and Climate Change Workgroup. 2016. “Looking Forward: Priorities for Managing 
Freshwater Resources in a Changing Climate.” Interagency Climate Change Adaptation Task 
Force. 

Waugh, Darryn W., Adam H. Sobel, and Lorenzo M. Polvani. 2017. “What Is the Polar Vortex and How 
Does It Influence Weather?” Bulletin of the American Meteorological Society 98 (1): 37–44. 
https://doi.org/10.1175/BAMS-D-15-00212.1. 

Weerts, Albrecht H., Ghada Y. El Serafy, Stef Hummel, Juzer Dhondia, and Herman Gerritsen. 2010. 
“Application of Generic Data Assimilation Tools (DATools) for Flood Forecasting Purposes.” 
Computers & Geosciences 36 (4): 453–63. https://doi.org/10.1016/j.cageo.2009.07.009. 

Weisbecker, Leo. 1974. Snowpack, Cloud-Seeding, and the Colorado River: A Technology Assessment 
of Weather Modification. University of Oklahoma Press. 

Weisheimer, A., and T. N. Palmer. 2014. “On the Reliability of Seasonal Climate Forecasts.” Journal of 
The Royal Society Interface 11 (96): 20131162. https://doi.org/10.1098/rsif.2013.1162. 

Welles, Edwin, and Soroosh Sorooshian. 2009. “Scientific Verification of Deterministic River Stage 
Forecasts.” Journal of Hydrometeorology 10 (2): 507–20. 
https://doi.org/10.1175/2008JHM1022.1. 

Welles, Edwin, Soroosh Sorooshian, Gary Carter, and Billy Olsen. 2007. “Hydrologic Verification: A Call 
for Action and Collaboration.” Bulletin of the American Meteorological Society 88 (4): 503–12. 
https://doi.org/10.1175/BAMS-88-4-503. 

Werner, Kevin, David Brandon, Martyn P. Clark, and Subhrendu Gangopadhyay. 2004. “Climate Index 
Weighting Schemes for NWS ESP-Based Seasonal Volume Forecasts.” Journal of 
Hydrometeorology 5 (6): 1076–90. https://doi.org/10.1175/JHM-381.1. 

———. 2005. “Incorporating Medium-Range Numerical Weather Model Output into the Ensemble 
Streamflow Prediction System of the National Weather Service.” Journal of Hydrometeorology 6 
(2): 101–14. https://doi.org/10.1175/JHM411.1. 

Western Regional Climate Center. n.d. “RAWS USA Climate Archive.” RAWS USA Climate Archive. 
Westrick, Kenneth J., Pascal Storck, and Clifford F. Mass. 2002. “Description and Evaluation of a 

Hydrometeorological Forecast System for Mountainous Watersheds.” Weather and Forecasting 
17 (2): 250–62. https://doi.org/10.1175/1520-0434(2002)017<0250:DAEOAH>2.0.CO;2. 

Wetterhall, F., and F. Di Giuseppe. 2018. “The Benefit of Seamless Forecasts for Hydrological 
Predictions over Europe.” Hydrol. Earth Syst. Sci. 22 (6): 3409–20. https://doi.org/10.5194/hess-
22-3409-2018. 

Wheeler, Kevin G., David E. Rosenberg, and John C. Schmidt. 2019. “Water Resource Modeling of the 
Colorado River: Present and Future Strategies,” 47. 

Wilby, Robert L., C. W. Dawson, and E. M. Barrow. 2002. “SDSM — a Decision Support Tool for the 
Assessment of Regional Climate Change Impacts.” Environmental Modelling & Software 17 (2): 
145–57. https://doi.org/10.1016/S1364-8152(01)00060-3. 

Wilby, Robert L., and T. M. L. Wigley. 1997. “Downscaling General Circulation Model Output: A Review 
of Methods and Limitations.” Progress in Physical Geography: Earth and Environment 21 (4): 
530–48. https://doi.org/10.1177/030913339702100403. 

Wilby, Robert L., Hany Hassan, and Keisuke Hanaki. 1998. “Statistical Downscaling of 
Hydrometeorological Variables Using General Circulation Model Output.” Journal of Hydrology 
205 (1–2): 1–19. https://doi.org/10.1016/S0022-1694(97)00130-3. 

Williams, Mark W., Eran Hood, Noah P. Molotch, Nel Caine, Rory Cowie, and Fengjing Liu. 2015. “The 
‘Teflon Basin’ Myth: Hydrology and Hydrochemistry of a Seasonally Snow-Covered Catchment.” 
Plant Ecology & Diversity 8 (5–6): 639–61. https://doi.org/10.1080/17550874.2015.1123318. 



References 494 
 

Wilson, Rob, Edward Cook, Rosanne D’Arrigo, Nadja Riedwyl, Michael N. Evans, Alexander Tudhope, 
and Rob Allan. 2010. “Reconstructing ENSO: The Influence of Method, Proxy Data, Climate 
Forcing and Teleconnections.” Journal of Quaternary Science 25 (1): 62–78. 
https://doi.org/10.1002/jqs.1297. 

Wise, Erika K. 2010. “Spatiotemporal Variability of the Precipitation Dipole Transition Zone in the 
Western United States.” Geophysical Research Letters 37 (7): n/a-n/a. 
https://doi.org/10.1029/2009GL042193. 

———. 2015. “Tropical Pacific and Northern Hemisphere Influences on the Coherence of Pacific 
Decadal Oscillation Reconstructions.” International Journal of Climatology 35 (1): 154–60. 
https://doi.org/10.1002/joc.3966. 

Wisser, Dominik, Steve Frolking, Ellen M. Douglas, Balazs M. Fekete, Charles J. Vörösmarty, and 
Andreas H. Schumann. 2008. “Global Irrigation Water Demand: Variability and Uncertainties 
Arising from Agricultural and Climate Data Sets.” Geophysical Research Letters 35 (24). 
https://doi.org/10.1029/2008GL035296. 

Wolter, Klaus. 2002. “Climate Projections: Assessing Water Year (WY) 2002 Forecasts and Developing 
WY 2003 Forecasts.” CWRRI Information Series Report. Fort Collins, Colorado: Colorado Water 
Resources Research Institute. 

Wolter, Klaus, Randall Dole, and Catherine A. Smith. 1999. “Short-Term Climate Extremes over the 
Continental U.S. and ENSO. Part I: Seasonal Temperatures.” Journal of Climate 12: 3255–72. 
https://doi.org/10.1175/1520-0442(1999)012<3255:STCEOT>2.0.CO;2. 

Wolter, Klaus, and Michael S. Timlin. 2011. “El Niño/Southern Oscillation Behaviour since 1871 as 
Diagnosed in an Extended Multivariate ENSO Index (MEI.Ext).” International Journal of 
Climatology 31 (7): 1074–87. https://doi.org/10.1002/joc.2336. 

Wood, Andrew W., L. Ruby Leung, V. Sridhar, and Dennis P. Lettenmaier. 2004. “Hydrologic Implications 
of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs.” Climatic 
Change 62 (1–3): 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e. 

Wood, Andrew W. 2008. “The University of Washington Surface Water Monitor: An Experimental 
Platform for National Hydrologic Assessment and Prediction.” Proceedings of the AMS 22nd 
Conference on Hydrology, New Orleans. 
http://www.hydro.washington.edu/forecast/monitor/info/Wood_SWMonitor_AMS08.pdf. 

Wood, Andrew W., S. Arumugam, and Pablo A. Mendoza. 2018. “The Post-Processing of Seasonal 
Streamflow Forecasts, Chapter 7.3 in the Handbook of Hydrometeorological Ensemble 
Forecasting.” In Handbook of Hydrometeorological Ensemble Forecasting. Springer-Verlag 
GmbH, Berlin Heidelberg. https://link.springer.com/referenceworkentry/10.1007/978-3-642-
40457-3_37-2. 

Wood, Andrew W., Arun Kumar, and Dennis P. Lettenmaier. 2005. “A Retrospective Assessment of 
National Centers for Environmental Prediction Climate Model–Based Ensemble Hydrologic 
Forecasting in the Western United States.” Journal of Geophysical Research: Atmospheres 110 
(D4). https://doi.org/10.1029/2004JD004508. 

Wood, Andrew W., and Dennis P. Lettenmaier. 2006. “A Test Bed for New Seasonal Hydrologic 
Forecasting Approaches in the Western United States.” Bulletin of the American Meteorological 
Society 87 (12): 1699–1712. https://doi.org/10.1175/BAMS-87-12-1699. 

Wood, Andrew W., Edwin P. Maurer, Arun Kumar, and Dennis P. Lettenmaier. 2002. “Long-Range 
Experimental Hydrologic Forecasting for the Eastern United States.” Journal of Geophysical 
Research: Atmospheres 107 (D20): ACL 6-1-ACL 6-15. https://doi.org/10.1029/2001JD000659. 

Wood, Andrew W., Thomas C. Pagano, Maury Roos, and Michael Anderson. 2016. “Tracing the Origins 
of ESP: HEPEX Historical Hydrology Series, Edition 1.” HEPEX (blog). April 26, 2016. 
https://hepex.irstea.fr/tracing-the-origins-of-esp/. 



References 495 
 

Wood, Andrew W., and John C. Schaake. 2008. “Correcting Errors in Streamflow Forecast Ensemble 
Mean and Spread.” Journal of Hydrometeorology 9 (1): 132–48. 
https://doi.org/10.1175/2007JHM862.1. 

Wood, Eric F., Joshua K. Roundy, Tara J. Troy, Rens van Beek, Marc Bierkens, Eleanor Blyth, Ad de Roo, 
et al. 2012. “Reply to Comment by Keith J. Beven and Hannah L. Cloke on ‘Hyperresolution 
Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth’s Terrestrial 
Water.’” Water Resources Research 48 (1). https://doi.org/10.1029/2011WR011202. 

Woodbury, M., M. Baldo, D. Yates, and L. Kaatz. 2012. “Joint Front Range Climate Change Vulnerability 
Study.” Denver: Water Research Foundation. 

Woodhouse, Connie A. 2003. “A 431-Yr Reconstruction of Western Colorado Snowpack from Tree 
Rings.” Journal of Climate 16: 11. 

———. 2012. “A Catalogue of 20th and 21st Century Droughts for the Upper Colorado River Basin.” 
Bureau of Reclamation, Lower Colorado Region. 
https://cwoodhouse.faculty.arizona.edu/content/catalogue-20th-and-21st-century-droughts-
upper-colorado-river-basin. 

Woodhouse, Connie A., Stephen T. Gray, and David M. Meko. 2006. “Updated Streamflow 
Reconstructions for the Upper Colorado River Basin.” Water Resources Research 42 (5). 
https://doi.org/10.1029/2005WR004455. 

Woodhouse, Connie A., Kenneth E. Kunkel, David R. Easterling, and Edward R. Cook. 2005. “The 
Twentieth-Century Pluvial in the Western United States.” Geophysical Research Letters 32 (7): 
n/a-n/a. https://doi.org/10.1029/2005GL022413. 

Woodhouse, Connie A., and Jeffrey J. Lukas. 2006. “Drought, Tree Rings and Water Resource 
Management in Colorado.” Canadian Water Resources Journal 31 (4): 297–310. 
https://doi.org/10.4296/cwrj3104297. 

Woodhouse, Connie A., Jeffrey J. Lukas, Kiyomi Morino, David M. Meko, and Katherine K. Hirschboeck. 
2016. “Using the Past to Plan for the Future— the Value of Paleoclimate Reconstructions for 
Water Resource Planning.” In Water Policy and Planning in a Variable and Changing Climate. 
Drought and Water Crises. CRC Press. https://doi.org/10.1201/b19534. 

Woodhouse, Connie A., David M. Meko, Glen M. MacDonald, Dave W. Stahle, and Edward R. Cook. 
2010. “A 1,200-Year Perspective of 21st Century Drought in Southwestern North America.” 
Proceedings of the National Academy of Sciences 107 (50): 21283–88. 
https://doi.org/10.1073/pnas.0911197107. 

Woodhouse, Connie A., and Jonathan T. Overpeck. 1998. “2000 Years of Drought Variability in the 
Central United States.” Bulletin of the American Meteorological Society 79 (12): 2693–2714. 
https://doi.org/10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2. 

Woodhouse, Connie A., and Gregory T. Pederson. 2018. “Investigating Runoff Efficiency in Upper 
Colorado River Streamflow over Past Centuries.” Water Resources Research 54 (1): 286–300. 
https://doi.org/10.1002/2017WR021663. 

Woodhouse, Connie A., Gregory T. Pederson, Kiyomi Morino, Stephanie A. McAfee, and Gregory J. 
McCabe. 2016. “Increasing Influence of Air Temperature on Upper Colorado River Streamflow.” 
Geophysical Research Letters 43 (5): 2174–81. https://doi.org/10.1002/2015GL067613. 

World Meteorological Organization. 2008. Guide to Meteorological Instruments and Methods of 
Observation. Geneva, Switzerland: World Meteorological Organization. 

———. 2013. “Sub-Seasonal to Seasonal Prediction Research Implementation Plan.” Geneva. 
http://s2sprediction.net/static/documents. 

———. 2017. “Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, 
Challengesand Recommendations.” WWRP 2017-3. 
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf
. 



References 496 
 

Wu, Limin, Dong-Jun Seo, Julie Demargne, James D. Brown, Shuzheng Cong, and John C. Schaake. 
2011. “Generation of Ensemble Precipitation Forecast from Single-Valued Quantitative 
Precipitation Forecast for Hydrologic Ensemble Prediction.” Journal of Hydrology 399 (3–4): 
281–98. https://doi.org/10.1016/j.jhydrol.2011.01.013. 

Wurbs, Ralph. 1994. “Computer Models for Water Resources Planning and Management.” IWR Report 
94-NDS-7. Institute for Water Resources, US Army Corps of Engineers. 
https://apps.dtic.mil/dtic/tr/fulltext/u2/a295807.pdf. 

———. 2012. “Reservoir/River System Management Models.” Texas Water Journal 3 (1): 16. 
Xia, Youlong, Kenneth Mitchell, Michael Ek, Justin Sheffield, Brian Cosgrove, Eric Wood, Lifeng Luo, et 

al. 2012. “Continental-Scale Water and Energy Flux Analysis and Validation for the North 
American Land Data Assimilation System Project Phase 2 (NLDAS-2): 1. Intercomparison and 
Application of Model Products.” Journal of Geophysical Research: Atmospheres 117 (D3): n/a-
n/a. https://doi.org/10.1029/2011JD016048. 

Xiao, Mu, Bradley Udall, and Dennis P. Lettenmaier. 2018. “On the Causes of Declining Colorado River 
Streamflows.” Water Resources Research 54 (9): 6739–56. 
https://doi.org/10.1029/2018WR023153. 

Yang, Daqing, Barry E. Goodison, Shig Ishida, and Carl S. Benson. 1998. “Adjustment of Daily 
Precipitation Data at 10 Climate Stations in Alaska: Application of World Meteorological 
Organization Intercomparison Results.” Water Resources Research 34 (2): 241–56. 
https://doi.org/10.1029/97WR02681. 

Yapo, Patrice Ogou, Hoshin Vijai Gupta, and Soroosh Sorooshian. 1998. “Multi-Objective Global 
Optimization for Hydrologic Models.” Journal of Hydrology 204 (1): 83–97. 
https://doi.org/10.1016/S0022-1694(97)00107-8. 

Yaseen, Zaher Mundher, Ahmed El-shafie, Othman Jaafar, Haitham Abdulmohsin Afan, and Khamis 
Naba Sayl. 2015. “Artificial Intelligence Based Models for Stream-Flow Forecasting: 2000–2015.” 
Journal of Hydrology 530 (November): 829–44. https://doi.org/10.1016/j.jhydrol.2015.10.038. 

Yeager, Stephen G., G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. 
Karspeck, et al. 2018. “Predicting Near-Term Changes in the Earth System: A Large Ensemble of 
Initialized Decadal Prediction Simulations Using the Community Earth System Model.” Bulletin of 
the American Meteorological Society 99 (9): 1867–86. https://doi.org/10.1175/BAMS-D-17-
0098.1. 

Yu, Jin-Yi, and Yuhao Zou. 2013. “The Enhanced Drying Effect of Central-Pacific El Niño on US Winter.” 
Environmental Research Letters 8 (1): 014019. https://doi.org/10.1088/1748-9326/8/1/014019. 

Yuan, Xing, Eric F. Wood, Joshua K. Roundy, and Ming Pan. 2013. “CFSv2-Based Seasonal 
Hydroclimatic Forecasts over the Conterminous United States.” Journal of Climate 26 (13): 
4828–47. https://doi.org/10.1175/JCLI-D-12-00683.1. 

Zachariassen, John, Karl F. Zeller, Ned Nikolov, and Tom McClelland. 2003. “A Review of the Forest 
Service Remote Automated Weather Station (RAWS) Network.” RMRS-GTR-119. Ft. Collins, CO: 
U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 
https://doi.org/10.2737/RMRS-GTR-119. 

Zagona, Edith, Terrance J. Fulp, Richard Shane, Timothy Magee, and H. Morgan Goranflo. 2001. 
“Riverware: A Generalized Tool for Complex Reservoir System Modeling.” JAWRA Journal of the 
American Water Resources Association 37 (4): 913–29. https://doi.org/10.1111/j.1752-
1688.2001.tb05522.x. 

Zagona, Edith. 2010. “Riverware’s Integrated Modeling and Analysis Tools for Long-Term Planning 
under Uncertainty,” 12. 

Zeng, Xubin, Patrick Broxton, and Nicholas Dawson. 2018. “Snowpack Change from 1982 to 2016 over 
Conterminous United States.” Geophysical Research Letters, December. 
https://doi.org/10.1029/2018GL079621. 

https://doi.org/10.2737/RMRS-GTR-119


References 497 
 

Zhang, Chidong. 2013. “Madden–Julian Oscillation: Bridging Weather and Climate.” Bulletin of the 
American Meteorological Society 94 (12): 1849–70. https://doi.org/10.1175/BAMS-D-12-
00026.1. 

Zhang, Lanhui, Chansheng He, Mingmin Zhang, and Yi Zhu. 2019. “Evaluation of the SMOS and SMAP 
Soil Moisture Products under Different Vegetation Types against Two Sparse in Situ Networks 
over Arid Mountainous Watersheds, Northwest China.” Science China Earth Sciences 62 (4): 
703–18. https://doi.org/10.1007/s11430-018-9308-9. 

Zhao, R. J., Y. L. Zhang, L. R. Fang, X. R. Liu, and Q. S. Zhang. 1980. “The Xinanjiang Model.” In 
Hydrological Forecasting Proceedings Oxford Symposium, 129:351–56. 

Zhou, Shuntai, Michelle L’Heureux, Scott Weaver, and Arun Kumar. 2012. “A Composite Study of the 
MJO Influence on the Surface Air Temperature and Precipitation over the Continental United 
States.” Climate Dynamics 38 (7–8): 1459–71. https://doi.org/10.1007/s00382-011-1001-9. 



Glossary 498 
 

Glossary 
ablation 
The loss of snow from the snowpack due to melting, evaporation, or wind. 

absolute error 
The difference between the measured and actual values of x. 

albedo 
The percentage of incoming light that is reflected off of a surface. 

aleatory uncertainty 
Uncertainty due to randomness in the behavior of a system (i.e., natural variability) 

anomaly 
A deviation from the expected or normal value. 

atmospheric river (AR) 
A long and concentrated plume of low-level (<5,000’) moisture originating in the tropical Pacific. 

autocorrelation 
Correlation between consecutive values of the same time series, typically due to time-dependencies in 

the dataset. 

bank storage 
Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative 

water levels. 

bias correction 
Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using 

observations in a reference period. 

boundary conditions 
Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, sea-

ice and snowpack conditions) and can help forecast the future climate state when included in a model. 

calibration 
The process of comparing a model with the real system, followed by multiple revisions and comparisons 

so that the model outputs more closely resemble outcomes in the real system. 

climate forcing 
A factor causing a difference between the incoming and outgoing energy of the Earth’s climate system, 

e.g., increases in greenhouse-gas concentrations. 

climatology 
In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., “compared 

to climatology”). Synonymous with climate normal. 
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coefficient of variation (CV) 
A common measure of variability in a dataset; the standard deviation divided by the mean. 

consumptive use 
The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage 

and is thus unavailable for subsequent use. 

convection 
The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is 

warmer than the surrounding atmosphere. 

covariate 
A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., 

precipitation).  

cross-correlation 
A method for estimating to what degree two variables or datasets are correlated. 

cumulative distribution function (CDF) 
A function describing the probability that a random variable, such as streamflow, is less than or equal to 
a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-

exceedance. 

Darcy’s Law 
The mathematical expression that describes fluid flow through a porous medium (e.g., soil). 

datum 
The base, or 0.0-foot gage-height (stage), for a stream gage. 

dead pool 
The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or 

released downstream. 

deterministic 
Referring to a system or model in which a given input always produces the same output; the input strictly 

determines the output. 

dewpoint 
The local temperature that the air would need to be cooled to (assuming atmospheric pressure and 

moisture content are constant) in order to achieve a relative humidity (RH) of 100%. 

dipole 
A pair of two equal and opposing centers of action, usually separated by a distance. 

discharge 
Volume of water flowing past a given point in the stream in a given period of time; synonymous with 

streamflow. 
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distributed 
In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins 

into grid cells. Contrast with lumped model. 

downscaling 
Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.  

dynamical 
In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most 

of the relevant processes. 

environmental flow 
Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to 

sustain the river’s ecosystem. 

epistemic uncertainty 
Uncertainty due to incomplete knowledge of the behavior of a system. 

evapotranspiration 
A combination of evaporation from the land surface and water bodies, and transpiration of water from 

plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well. 

fixed lapse rate 
A constant rate of change of an atmospheric variable, usually temperature, with elevation. 

flow routing 
The process of determining the flow hydrograph at sequential points along a stream based on a known 

hydrograph upstream. 

forcing  - see climate forcing or weather forcing 
 
forecast 
A prediction of future hydrologic or climate conditions based on the initial (current) conditions and 

factors known to influence the evolution of the physical system. 

Gaussian filter 
A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-

shaped statistical distribution. 

gridded data 
Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or 

otherwise derived from a set of point observations. 

heat flux 
The rate of heat energy transfer from one surface or layer of the atmosphere to the next. 

hindcast 
A forecast run for a past date or period, using the same model version as for real-time forecasts; used for 

model calibration and to “spin up” forecast models. Same as reforecast. 
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hydraulic conductivity 
A measure of the ease with which water flows through a medium, such as soil or sediment. 

hydroclimate 
The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for 

a watershed or region. 

hydrograph 
A graph of the volume of water flowing past a location per unit time. 

hydrometeorology 
A branch of meteorology and hydrology that studies the transfer of water and energy between the land 

surface and the lower atmosphere. 

imaging spectrometer 
An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved 

image of an object or area. 

in situ 
Referring to a ground-based measurement site that is fixed in place. 

inhomogeneity 
A change in the mean or variance of a time-series of data (such as weather observations) that is caused 

by changes in the observing station or network, not in the climate itself. 

Interim Guidelines  
The Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake 

Powell and Lake Mead, signed by the Secretary of the Interior in December 2007. The guidelines expire 

in 2026. https://www.usbr.gov/lc/region/programs/strategies.html 

internal variability 
Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth’s oceans and 

atmosphere. 

interpolation 
The process of calculating the value of a function or set of data between two known values. 

isothermal 
A dynamic in which temperature remains constant while other aspects of the system change. 

jet stream 
A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer 

and colder air masses. 

kriging 
A smoothing technique that calculates minimum error-variance estimates for unsampled values. 

kurtosis 
A measure of the sharpness of the peak of a probability distribution. 

https://www.usbr.gov/lc/region/programs/strategies.html
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lag-1 autocorrelation 
Serial correlation between data values at adjacent time steps. 

lapse rate 
The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is 

adiabatic when no heat exchange occurs between the given air parcel and its surroundings. 

latency 
The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions. 

latent heat flux 
The flow of heat from the Earth’s surface to the atmosphere that involves evaporation and condensation 

of water; the energy absorbed/released during a phase change of a substance. 

Law of the River 
A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines 

that apportions the water and regulates the use and management of the Colorado River among the 

seven basin states and Mexico. 

LiDAR (or lidar) 
Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the 

variable distances from the sensor to the land surface. 

longwave radiation 
Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 

micrometers. 

Lower Basin 
The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are 
downstream of the Colorado River Compact point at Lee Ferry, Arizona. 

lumped model 
In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single 

unit, averaging spatial characteristics across that unit. Contrast with distributed model. 

Markov chain 
A mathematical system in which transitions from one state to another are dependent on the current state 

and time elapsed. 

megadrought 
A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature 
have varied. 

metadata 
Data that gives information about other data or describes its own dataset. 
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mid-latitude cyclone 
A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, 

and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east 

and are effective at producing precipitation over broad areas.   

Minute 319 
The binding agreement signed in 2012 by the International Boundary and Water Commission, United 

States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin 

operations and water allocation, and humanitarian measures. 

Modoki 
An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as 

“CP” El Niño. 

multicollinearity 
A condition in which multiple explanatory variables that predict variation in a response variable are 

themselves correlated with each other. 

multiple linear regression 
A form of regression in which a model is created by fitting a linear equation over the observed data, 

typically for two or more explanatory (independent) variables and a response (dependent) variable. 

multivariate  
Referring to statistical methods in which there are multiple response (dependent) variables being 

examined. 

natural flow 
Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or 

diversion. Equivalent to naturalized flow, virgin flow, and undepleted flow. 

naturalized flow – see natural flow 

nearest neighbor method 
A nonparametric method that examines the distances between a data point (e.g., a sampled value) and 

the closest data points to it in x-y space (“nearest neighbors,” e.g., historical values) and thereby 
obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest 

neighbors (i.e., K-NN). 

nonparametric 
A statistical method that assumes no underlying mathematical function for a sample of observations. 

orographic lift 
A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or 

mountains. This mechanism leads to increased condensation and precipitation over higher terrain. 

p 
A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test 
of statistical significance. 
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paleohydrology 
The study of hydrologic events and processes prior to the instrumental (gaged) record, typically using 

environmental proxies such as tree rings. 

parameterized 
Referring to a key variable or factor that is represented in a model by an estimated value (parameter) 

based on observations, rather than being explicitly modeled through physical equations. 

parametric 
A statistical method that assumes an underlying mathematical function, specified by a set of 

characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations. 

persistence 
In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. 

Hydrologic time series with persistence are autocorrelated. 

phreatophytes 
Plants with deep root systems that are dependent on water from the water table or adjacent soil 

moisture reserves. 

pluvial 
An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought. 

principal components regression (PCR) 
A statistical technique for analyzing and developing multiple regressions from data with multiple 

potential explanatory variables. 

prior appropriation 
“First in time, first in right.” The prevailing doctrine of water rights for the western United States; a legal 

system that determines water rights by the earliest date of diversion or storage for beneficial use. 

probability density function (PDF) 
A function, or curve, that defines the shape of a probability distribution for a continuous random 

variable. 

projection 
A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on 

specified other conditions occurring during the forecast period, typically a particular scenario of 

greenhouse gas emissions.  

quantiles 
Divisions of the range of observations of a variable into equal-sized groups. 

r  
Correlation coefficient. The strength and direction of a linear relationship between two variables. 
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R2  
Coefficient of determination. The proportion of variance in a dependent variable that's explained by 
the independent variables in a regression model. 

radiometer 
An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy 

emitted from the sun and reflected by clouds, and longwave energy emitted from the earth’s surface. 

raster 
A digital image or computer mapping format consisting of rows of colored pixels. 

reanalysis 
An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling 

environment to produce consistent fields of variables over the entire period of analysis. 

reference evapotranspiration  
An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the 

water need for irrigation. 

regression 
A statistical technique used for modeling the linear relationship between two or more variables, e.g., 

snowpack and seasonal streamflow. 

relative humidity (RH) 
The amount of moisture in the atmosphere relative to the amount that would be present if the air were 

saturated. RH is expressed in percent, and is a function of both moisture content and air temperature. 

remote sensing 
The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other 

platforms distant from the object(s) being sensed. 

residual  
The difference between the observed value and the estimated value of the quantity of interest. 

resolution 
The level of detail in model output; the ability to distinguish two points in space (or time) as separate.  

spatial resolution - Resolution across space, i.e., the ability to separate small details in a spatial 

representation such as in an image or model. 

temporal resolution - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time 

step. 

return flow 
The water diverted from a river or stream that returns to a water source and is available for consumptive 

use by others downstream. 
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runoff 
Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is 

routed and measured within channels is streamflow. 

runoff efficiency 
The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through 

evapotranspiration. 

sensible heat flux 
The flow of heat from the Earth’s surface to the atmosphere without phase changes in the water, or the 

energy directly absorbed/released by an object without a phase change occurring. 

shortwave radiation 
Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength 

spectrum is between 0.2 and 3.0 micrometers. 

skew 
The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) 

distribution. 

skill 
The accuracy of the forecast relative to a baseline “naïve” forecast, such as the climatological average 

for that day. A forecast that performs better than the baseline forecast is said to have positive skill.    

smoothing filter 
A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. 

Common signal smoothing techniques include moving average and Gaussian algorithms. 

snow water equivalent (SWE) 
The depth, often expressed in inches, of liquid water contained within the snowpack that would 

theoretically result if you melted the snowpack instantaneously. 

snow course 
A linear site used from which manual measurements are taken periodically, to represent snowpack 

conditions for larger area. Courses are typically about 1,000’ long and are situated in areas protected 

from wind in order to get the most accurate snowpack measurements. 

snow pillow 
A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has 

accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the 

weight pressing down on the pillow. 

stationarity 
The condition in which the statistical properties of the sample data, including their probability 

distribution and related parameters, are stable over time. 

statistically significant 
Unlikely to occur by chance alone, as indicated by one of several statistical tests. 
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stepwise regression 
The process of building a regression model from a set of values by entering and removing predictor 

variables in a step-by-step manner. 

stochastic method 
A statistical method in which randomness is considered and included in the model used to generate 

output; the same input may produce different outputs in successive model runs.  

stratosphere 
The region of the upper atmosphere extending from the top of the troposphere to the base of the 

mesosphere; it begins about 11–15 km above the surface in the mid-latitudes. 

streamflow 
Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acre-

feet for flow volume. Synonymous with discharge. 

sublimation 
When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase 

without going through the intermediate liquid phase; a major source of snowpack loss over the course of 

the season. 

surface energy balance 
The net balance of the exchange of energy between the Earth’s surface and the atmosphere. 

teleconnection 
A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the 

tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin). 

temperature inversion 
When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient 

of temperature decreasing with height. 

tercile 
Any of the two points that divide an ordered distribution into three parts, each containing a third of the 

population. 

tilt 
A shift in probabilities toward a certain outcome. 

transpiration 
Water discharged into the atmosphere from plant surfaces. 

troposphere 
The layer of the atmosphere from the Earth's surface up to the tropopause (~11–15 km) below the 

stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor 

content, and sensible weather (clouds, rain, etc.). 
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undercatch 
When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with 

snow, especially under windy conditions. 

unregulated flow 
Observed streamflow adjusted for some, but not all upstream activities, depending on the location and 

application. 

Upper Basin 
The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are 

upstream of the Colorado River Compact point at Lee Ferry, Arizona.  

validation 
The process of comparing a model and its behavior and outputs to the real system, after calibration.  

variance 
An instance of difference in the data set. In regard to statistics, variance is the square of the standard 

deviation of a variable from its mean in the data set. 

wavelet analysis 
A method for determining the dominant frequencies constituting the overall time-varying signal in a 

dataset.
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Acronyms & Abbreviations 
24MS 
24-Month Study Model 

AET 
actual evapotranspiration 

AgriMET 
Cooperative Agricultural Weather Network 

AgWxNet  
Agricultural Weather Network 

AHPS  
Advanced Hydrologic Prediction Service 

ALEXI  
Atmosphere-Land Exchange Inversion 

AMJ 
April-May-June 

AMO  
Atlantic Multidecadal Oscillation 

ANN  
artificial neural network 

AOP  
Annual Operating Plan 

AR 
atmospheric river 

AR-1  
first-order autoregression 

ARkStorm  
Atmospheric River 1,000-year Storm 

ASCE  
American Society of Civil Engineers 

ASO  
Airborne Snow Observatory 

ASOS  
Automated Surface Observing System 

AVHRR  
Advanced Very High-Resolution 

Radiometer 

AWOS  
Automated Weather Observing System 

BCCA 
Bias-Corrected Constructed Analog 

BCSD 
Bias-Corrected Spatial Disaggregation 

(downscaling method) 

BCSD5 
BCSD applied to CMIP5 

BOR  
United States Bureau of Reclamation 

BREB  
Bowen Ratio Energy Balance method 

C3S  
Copernicus Climate Change Service 

CA  
Constructed Analogues 

CADSWES 
Center for Advanced Decision Support for 

Water and Environmental Systems 

CADWR 
California Department of Water Resources 

CanCM4i 
Canadian Coupled Model, 4th generation 

(global climate model) 

CBRFC  
Colorado Basin River Forecast Center 
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CCA  
Canonical Correlation Analysis 

CCSM4  
Community Climate System Model, version 

4 (global climate model) 

CDEC  
California Data Exchange Center 

CDF  
cumulative distribution function 

CESM  
Community Earth System Model (global 

climate model) 

CFS  
Climate/Coupled Forecast System 

CFSv2  
Coupled Forecast System version 2 (NOAA 

climate forecast model) 

CHPS  
Community Hydrologic Prediction System 

CIMIS  
California Irrigation Management 

Information System 

CIR 
crop irrigation requirement 

CIRES 
Cooperative Institute for Research in 

Environmental Sciences 

CLIMAS 
Climate Assessment for the Southwest 

CLM  
Community Land Model 

CM2.1 
Coupled Physical Model, version 2.1 (global 

climate model) 

CMIP  
Coupled Model Intercomparison Project 

(coordinated archive of global climate 

model output) 

CNRFC 
California-Nevada River Forecast Center 

CoAgMET  
Colorado Agricultural Meteorological 

Network 

CoCoRaHS  
Community Collaborative Rain, Hail and 

Snow Network 

CODOS 
Colorado Dust-on-Snow 

CONUS  
contiguous United States (the lower 48 

states) 

COOP  
Cooperative Observer Program 

CP  
Central Pacific 

CPC  
Climate Prediction Center 

CRB  
Colorado River Basin 

CRBPP 
Colorado River Basin Pilot Project 

CRPSS 
Continuous Ranked Probability Skill Score 

CRSM  
Colorado River Simulation Model 

CRSP 
Colorado River Storage Project 
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CRSS  
Colorado River Simulation System 

CRWAS  
Colorado River Water Availability Study 

CSAS 

CRWAS  
Center for Snow and Avalanche Studies 

CTSM  
Community Terrestrial Systems Model 

CU 
consumptive use 

CUL  
consumptive uses and losses 

CV  
coefficient of variation 

CVP/SWP  
Central Valley Project/State Water Project 

CWCB  
Colorado Water Conservation Board 

CWEST  
Center for Water, Earth Science and 

Technology 

DA  
data assimilation 

Daymet v.3  
daily gridded surface meteorological data 

DCP 
Drought Contingency Plan 

DEM  
digital elevation model 

DEOS  
Delaware Environmental Observing System 

DHSVM  
Distributed Hydrology Soil Vegetation 

Model 

DJF  
December-January-February 

DMDU  
Decision Making Under Deep Uncertainty 

DMI  
Data Management Interface 

DOD  
Department of Defense 

DOE  
Department of Energy 

DOW  
Doppler [radar] on Wheels 

DRI  
Desert Research Institute 

DTR  
diurnal temperature range 

EC  
eddy-covariance method 

EC 
Environment Canada 

ECCA  
ensemble canonical correlation analysis 

ECMWF  
European Centre for Medium-Range 

Weather Forecasts 

EDDI  
Evaporative Demand Drought Index 

EFAS  
European Flood Awareness System 
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EIS  
Environmental Impact Statement 

En-GARD  
Ensemble Generalized Analog Regression 

Downscaling 

ENSO  
El Niño-Southern Oscillation 

EOF  
empirical orthogonal function 

EP  
Eastern Pacific 

ERC 
energy release component 

ESI  
Evaporative Stress Index 

ESM  
coupled Earth system model 

ESP  
ensemble streamflow prediction 

ESRL  
Earth System Research Laboratory 

ET  
evapotranspiration 

ET0  
Reference (crop) evapotranspiration 

EVI  
Enhanced Vegetation Index 

FAA  
Federal Aviation Administration 

FAWN  
Florida Automated Weather Network 

FEWS  
Famine Early Warning System 

FEWS 
Flood Early Warning System 

FIRO  
forecast-informed reservoir operations 

FLOR 
Forecast-oriented Low Ocean Resolution 

(global climate model) 

FORTRAN  
Formula Translation programming 

language 

FPS  
Federal Priority Streamgages 

FROMUS  
Forecast and Reservoir Operation Modeling 

Uncertainty Scoping 

fSCA  
fractional snow covered area 

FWS 
U.S. Fish and Wildlife Service 

GCM  
global climate model, or general circulation 

model 

GEFS  
Global Ensemble Forecast System 

GEM  
Global Environmental Multiscale model 

GEOS 
Goddard Earth Observing System (global 

climate model) 

GeoTiff  
Georeferenced Tagged Image File Format 

GFDL  
Geophysical Fluid Dynamics Laboratory 
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GFS  
Global Forecast System model 

GHCN  
Global Historical Climatology Network 

GHCN-D  
Global Historical Climate Network-Daily 

GHG  
greenhouse gas 

GIS  
geographic information system 

GLOFAS  
Global Flood Awareness System 

GLOFFIS 
Global Flood Forecast Information System 

GOES  
Geostationary Operational Environmental 

Satellite 

GRACE  
Gravity Recovery and Climate Experiment 

GRIB  
gridded binary or general regularly-

distributed information in binary form 

gridMET  
Gridded Surface Meteorological dataset 

GSSHA  
Gridded Surface/Subsurface Hydrologic 

Analysis 

GW  
groundwater 

HCCD  
Historical Canadian Climate Data 

HCN  
Historical Climatology Network 

HDA  
hydrologic data assimilation 

HDSC  
Hydrometeorological Design Studies 

Center 

HEFS  
Hydrologic Ensemble Forecast Service 

HESP  
Hierarchical Ensemble Streamflow 

Prediction 

HL-RDHM  
Hydrologic Laboratory-Research Distributed 

Hydrologic Model 

HMT  
Hydromet Testbed 

HP  
hydrological processor 

HRRR  
High Resolution Rapid Refresh (weather 

model) 

HSS  
Heidke Skill Score 

HTESSEL  
Land-surface Hydrology Tiled ECMWF 

Scheme for Surface Exchanges over Land 

HUC  
Hydrologic Unit Code 

HUC4  
A 4-digit Hydrologic Unit Code, referring to 

large sub-basins (e.g., Gunnison River) 

HUC12  
A 12-digit Hydrologic Unit Code, referring 

to small watersheds 
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ICAR  
Intermediate Complexity Atmospheric 

Research model 

ICS  
intentionally created surplus 

IDW  
inverse distance weighting 

IFS  
integrated forecast system 

IHC  
initial hydrologic conditions 

INSTAAR  
Institute of Arctic and Alpine Research 

IPCC  
Intergovernmental Panel on Climate 

Change 

IPO  
Interdecadal Pacific Oscillation 

IRI  
International Research Institute 

iRON  
Interactive Roaring Fork Observing Network 

ISM  
Index Sequential Method 

JFM 
January-February-March 

JJA  
June-July-August 

K-NN  
K-Nearest Neighbor 

Landsat  
Land Remote-Sensing Satellite (System) 

LAST  
Lane’s Applied Stochastic Techniques 

LERI  
Landscape Evaporative Response Index 

lidar  
light detection and ranging  

LOCA  
Localized Constructed Analog 

LSM  
land surface model 

M&I  
municipal and industrial (water use 

category) 

MACA 
Multivariate Adaptive Constructed Analog 

maf  
million acre-feet 

MAM  
March-April-May 

MEFP  
Meteorological Ensemble Forecast 

Processor 

METRIC  
Mapping Evapotranspiration at high 

Resolution with Internalized Calibration 

MJO  
Madden-Julian Oscillation 

MMEFS  
Met-Model Ensemble Forecast System 

MOCOM 
Multi-Objective Complex evolution 

MODDRFS  
MODIS Dust Radiative Forcing in Snow 
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MODIS  
Moderate Resolution Imaging 

Spectroradiometer 

MODIS LST (MYD11A2)  
Moderate Resolution Imaging 

Spectroradiometer Land Surface 

Temperature (MYD11A2) 

MODSCAG  
MODIS Snow Covered Area and Grain-size 

MPR 
Multiscale Parameter Regionalization 

MRM  
Multiple Run Management 

MT-CLIM (or MTCLIM) 
Mountain Climate simulator 

MTOM  
Mid-Term Probabilistic Operations Model 

NA-CORDEX  
North American Coordinated Regional 

Downscaling Experiment 

NAM  
North American Monsoon 

NAO  
North Atlantic Oscillation 

NARCCAP  
North American Regional Climate Change 

Assessment Program 

NARR  
North American Regional Reanalysis 

NASA  
National Aeronautics and Space 

Administration 

NASA JPL  
NASA Jet Propulsion Laboratory 

NCAR  
National Center for Atmospheric Research 

NCCASC 
North Central Climate Adaptation Science 

Center 

NCECONET  
North Carolina Environment and Climate 

Observing Network 

NCEI  
National Centers for Environmental 

Information 

NCEP  
National Centers for Environmental 

Prediction  

nClimDiv  
new Climate Divisional (NOAA climate 

dataset) 

NDBC  
National Data Buoy Center 

NDVI  
Normalized Difference Vegetation Index 

NDWI  
Normalized Difference Water Index 

NEMO 
Nucleus for European Modelling of the 

Ocean (global ocean model) 

NevCan  
Nevada Climate-ecohydrological 

Assessment Network 

NGWOS 
Next-Generation Water Observing System 

NHMM  
Bayesian Nonhomogenous Hidden Markov 

Model 
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NICENET  
Nevada Integrated Climate and 

Evapotranspiration Network 

NIDIS  
National Integrated Drought Information 

System 

NLDAS  
North American Land Data Assimilation 

System 

NMME  
North American Multi-Model Ensemble 

NN R1  
NCEP/NCAR Reanalysis 

NOAA  
National Oceanic and Atmospheric 

Administration 

NOAH  
Neural Optimization Applied Hydrology  

Noah-MP 
Noah-Multi-parameterization Model 

NOHRSC  
National Operational Hydrologic Remote 

Sensing Center 

NPP  
Nonparametric paleohydrologic method 

NRCS  
Natural Resource Conservation Service 

NSF  
National Science Foundation 

NSIDC 
National Snow and Ice Data Center 

NSMN  
National Soil Moisture Network 

NVDWR  
Nevada Department of Water Resources 

NWCC 
National Water and Climate Center 

NWIS  
National Water Information System 

NWM  
National Water Model 

NWP  
numerical weather prediction 

NWS  
National Weather Service 

NWSRFS 
National Weather Service River Forecast 

System 

NZI  
New Zealand Index 

OCN  
Optimal Climate Normals 

OHD  
Office of Hydrologic Development  

OK Mesonet  
Oklahoma Mesoscale Network 

ONI  
Oceanic Niño Index 

OWAQ  
Office of Weather and Air Quality 

OWP  
Office of Water Prediction 

PC  
principal components 

PCA  
principal components analysis 
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PCR  
principal components regression 

PDO  
Pacific Decadal Oscillation 

PDSI  
Palmer Drought Severity Index 

PET  
potential evapotranspiration 

PGW  
pseudo-global warming 

PRISM  
Parameter-elevation Relationships on 

Independent Slopes Model 

PSD  
Physical Sciences Division 

QBO  
Quasi-Biennial Oscillation 

QDO  
Quasi-Decadal Oscillation 

QM 
quantile mapping 

QPE  
Quantitative Precipitation Estimate 

QPF  
Quantitative Precipitation Forecast 

QTE  
Quantitative Temperature Estimate 

QTF  
Quantitative Temperature Forecast 

radar 
radio detection and ranging 

RAP  
Rapid Refresh (weather model) 

RAWS  
Remote Automated Weather Station 

Network 

RCM  
Regional Climate Model 

RCP 
Representative Concentration Pathway 

RE 
reduction-of-error 

RFC 
River Forecast Center 

RFS  
River Forecasting System 

RH  
relative humidity 

RiverSMART  
RiverWare Study Manager and Research 

Tool 

RMSE  
root mean squared error 

S/I 
seasonal to interannual 

S2S 
subseasonal to seasonal 

Sac-SMA 
Sacramento Soil Moisture Accounting 

Model 

SAMS 
Stochastic Analysis Modeling and 

Simulation 

SCA  
snow-covered area 
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SCAN  
Soil Climate Analysis Network 

SCE  
Shuffled Complex Evolution 

SCF  
seasonal climate forecast 

SE  
standard error 

SECURE  
Science and Engineering to 

Comprehensively Understand and 

Responsibly Enhance Water 

SFWMD 
South Florida Water Management District 

SM  
soil moisture 

SMA  
Soil Moisture Accounting 

SMAP 
Soil Moisture Active Passive 

SMHI 
Swedish Meteorological and Hydrological 

Institute 

SMLR  
Screening Multiple Linear Regression 

SMOS 
Soil Moisture and Ocean Salinity 

SNODAS 
Snow Data Assimilation System 

SNOTEL  
Snow Telemetry 

SOI  
Southern Oscillation Index 

SON  
September-October-November 

SPoRT  
Short-term Prediction Research Transition 

SRES  
Special Report on Emissions Scenarios 

SRP  
Salt River Project 

SSEBOP  
Simplified Surface Energy Balance 

SSEBOP ET 
Simplified Surface Energy Balance 

Evapotranspiration 

SSP  
Societally Significant Pathway 

SST  
sea surface temperatures 

SSW  
stratospheric sudden warming 

SubX  
Subseasonal Experiment 

SUMMA  
Structure for Unifying Multiple Modeling 

Alternatives 

SVD  
singular value decomposition 

SW  
surface water 

SWANN  
Snow-Water Artificial Neural Network 

Modeling System 

SWcasts 
Southwest Forecasts 
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SWE 
snow water equivalent 

SWOT 
Surface Water and Ocean Topography 

SWS  
Statistical Water Supply 

Tair  
air temperature 

Tdew  
dew point temperature 

TopoWx  
Topography Weather (climate dataset) 

TVA  
Tennessee Valley Authority 

UC  
Upper Colorado Region (Reclamation) 

UCAR 
University Corporation for Atmospheric 

Research 

UCBOR 
Upper Colorado Bureau of Reclamation 

UCRB 
Upper Colorado River Basin 

UCRC  
Upper Colorado River Commission 

UCRSFIG 
Upper Colorado Region State-Federal 

Interagency Group 

USACE  
U.S. Army Corps of Engineers 

USBR 
U.S. Bureau of Reclamation 

USCRN  
U.S. Climate Reference Network 

USDA 
U.S. Department of Agriculture 

USGCRP 
U.S. Global Change Research Program 

USGS 
U.S. Geological Survey 

USHCN 
United States Historical Climatology 

Network 

VIC 
Variable Infiltration Capacity (model) 

VIIRS  
Visible Infrared Imaging Radiometer Suite 

VPD 
vapor pressure deficit 

WBAN  
Weather Bureau Army Navy 

WCRP  
World Climate Research Program 

WFO  
Weather Forecast Office 

WPC  
Weather Prediction Center 

WRCC  
Western Regional Climate Center 

WRF  
Weather Research and Forecasting 

WRF-Hydro 
WRF coupled with additional models to 

represent hydrologic processes 
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WSF  
water supply forecast 

WSWC  
Western States Water Council 

WUCA 
Water Utility Climate Alliance 

WWA 
Western Water Assessment 

WWCRA  
West-Wide Climate Risk Assessments 

WWMPP 
Wyoming Weather Modification Pilot 

Project 
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