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Volume II of the Colorado River Basin State of the Science report focuses on primary data and 
models that are relevant across all time scales. While Volumes III and IV concentrate on short- to 
mid-term forecasting and long-term outcomes, respectively, the data and models addressed in this 
volume can be applied to Colorado River Basin studies performed at all of those time scales. The 
chapters in this volume describe how primary weather, climate, and hydrology data are collected 
and how datasets of other variables are built from primary data. A simple regurgitation of the vast 
literature about the primary data would not serve the goals of this report. The focus, instead, is on 
compiling, summarizing, and offering objective assessment of the data and the work that has been 
done to make it available. The objective of this volume is to be a uniquely useful reference for 
readers.  

Chapter 4 is a reference for weather and climate data. It begins with a description of the methods 
and equipment that have been used to collect weather data, from the installation of the first weather 
stations in the basin in the late 1800s, to the emergence of remotely-sensed distributed data. It 
explains how point data become gridded datasets, how missing data are treated, how large scale 
data are disaggregated, which datasets have common source data, and how quantitative biases can 
be introduced. Knowledge about the methods behind, and idiosyncrasies of, the datasets, along with 
their strengths and weaknesses is presented to help readers determine which data sources are 
better fits for their applications. The chapter provides a detailed comparison of 11 gridded datasets. 
It explains things to consider when comparing values and trends from these datasets, and practical 
and scientific considerations when selecting a gridded dataset. 

Volume II 
Primary Data and Models That Inform All Time Horizons 

 
Chapter 4. Observations—Weather and Climate 

Chapter 5. Observations—Hydrology 

Chapter 6. Hydrologic Models 
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Chapter 5 is a reference to hydrology data—snowpack, streamflow, soil moisture, evaporation, and 
evapotranspiration—that are key inputs to streamflow forecasting and system modeling. Snowpack, 
soil moisture, and evaporation/evapotranspiration data are all gathered using three methods—in 
situ measurements, modeled estimates, and remote sensing. Chapter 5 provides a comprehensive 
description of the multiple data sets developed by each method, and an explanation of the 
advantages and limitations of each. Streamflow, on the other hand, has been measured in essentially 
the same way across the basin since measurements commenced at the end of the 19th century: 
stream gages that measure stream stage, which is subsequently translated to flow by a rating curve 
that is essentially an empirical hydraulic model of the gage site. This chapter explains the 
uncertainties in the gage record, which arise from measurement error but to a larger degree from 
errors in the rating curves. Measured streamflows are naturalized or deregulated for use in models. 
This process introduces more uncertainty, and the sources and implications of this uncertainty are 
thoroughly described in this chapter. The chapter closes with a summary of challenges and 
opportunities regarding hydrology data. 

Chapter 6 is devoted to describing the evolution, application, and trade-offs of a number of runoff 
and land surface models that are the foundation of applications at the smallest time scale, 
streamflow forecasting, to the largest time scale, climate change projections. This chapter is 
complemented by Chapters 8 and 11, which place hydrology models in the context of forecasting and 
projection applications, and by Chapters 4 and 5, which describe the provenance and qualities of the 
data used to force and validate hydrology models. The advantages and disadvantages of the 
hydrology models are summarized and their usefulness for either forecasting or simulating climate 
sensitivity or both is assessed. Not surprisingly, the evolution of hydrologic models follows a path of 
increasing complexity, from empirical conceptual runoff models, to simple water balance models, 
which led to distributed land surface models and fine-scale physically explicit models and finally to 
coupled land-atmosphere models. Models of all of these types continue to be applied in the basin, 
and Chapter 6 describes the models currently in use in the basin and explores emerging models and 
approaches that could improve forecasting and projection. The chapter closes with an examination 
of knowledge gaps, challenges and opportunities for improvement. 
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Key points 
• Weather and climate data are collected and interpolated for specific 

reasons, so not all data and datasets are suitable for all uses. Users 
should be cautious about “off-label” use of climate data and should 
thoroughly investigate the suitability of data before it is applied outside 
of its planned uses. 

• Users of weather and climate datasets should be aware that the data 
reflect average or summary conditions over their spatial and temporal 
resolution and should not expect a gridded product to accurately 
reflect conditions at any particular point on the landscape at any given 
point in time. This is particularly true for high-relief landscapes like the 
Colorado River Basin. 

• Most of the existing high-resolution gridded datasets share some base 
information or use similar processing, or both, so they are not strictly 
independent. 

• There is not now, and likely never will be, perfect weather and climate 
data. Producers of climate information need to communicate, and users 
should be cognizant of, the strengths and weaknesses of the data they 
choose and how climate data choices influence their conclusions. 

• In the Colorado River Basin, the highest elevations have the lowest 
weather station densities and likely the least precise and accurate 
weather information. This is especially problematic for water resource 
questions, because such a large fraction of the runoff is generated at 
high elevations. 

4.1 Introduction 

Weather and climate are important drivers of many hydrologic processes 
and thus have a profound influence on water availability in the Colorado 
River Basin (Nash and Gleick 1991; Christensen et al. 2004; Barnett and 
Pierce 2009; Rasmussen et al. 2011; Vano, Das, and Lettenmaier 2012). There 
is increasing awareness of the fact that weather and climate also influence 
water demand for agricultural (Wisser et al. 2008), municipal (Kenney et al. 
2008), and industrial (van Vliet et al. 2016) uses. Accordingly, any assess-
ment of hydrologic variability in the Colorado River Basin must consider the 
underlying weather and climate variability in spatially and temporally 
explicit ways, which makes climate data and datasets (gridded 
interpolations of station observations and potentially other information) 
particularly critical.  

Most climate data were initially collected in the context of weather 
observation in particular locations and largely for specific reasons, such as 
assessing irrigation demand, evaluating water supply, or ensuring aviation 
safety (Tables 4.1 and 4.2). These primarily purpose-driven measurements, 
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however, are now used in much broader ways. As part of spatially extensive 
networks, long-term records are used to understand spatio-temporal 
variability in climate and in the hydrologic processes it influences. 

Table 4.1 

Planned uses and operating agencies for station networks commonly used in hydrologic research 
within the Colorado River Basin. 

Network/Operating Agency Planned Uses Citations and Information 

Cooperative Observer 
Program (COOP) 

Routine weather 
and climate 
monitoring to track 
changes, improve 
forecasts, and 
assist with public 
safety 

National Oceanic and Atmospheric 
Administration (NOAA) 2019; National 
Weather Service (NWS), n.d.; Iowa State 
University, n.d. NWS via volunteers 

Automated Surface Observing 
System/Automated Weather 
Observing System 
(ASOS/AWOS) Aviation, weather 

monitoring 

National Weather Service (NWS), n.d.; Iowa 
State University, n.d.; National Oceanic and 
Atmospheric Administration (NOAA), n.d.; 
Federal Aviation Administration (FAA) 2019; 
National Oceanic and Atmospheric 
Administration (NOAA), n.d.; Iowa State 
University, n.d. 

NWS/FAA 

Snow Telemetry Network 
(SNOTEL) Monitoring snow 

for water resources 
Schaefer and Paetzold 2001; Natural Resource 
Conservation Service (NRCS), n.d. 

NRCS 

Remote Automated Weather 
Station Network (RAWS) Fire weather 

(primarily) 

Zachariassen et al. 2003; Western Regional 
Climate Center (WRCC), n.d.; National 
Interagency Fire Center (NIFC), n.d. USFS, BLM, NPS, BIA, FEMA, 

FWS, state 

Cooperative Agricultural 
Weather Network (AgriMET) Agriculture; ET 

calculation 
Reclamation 2019a 

Reclamation 

Colorado Mesonet 
(CoAgMET) Agriculture; ET 

calculation 
Colorado State University (CSU) 2019 

Colorado Climate Center at 
CSU 

Soil Climate Analysis Network 
(SCAN) Agriculture; ET 

calculation 

Schaefer and Paetzold 2001; Natural Resource 
Conservation Service (NRCS), n.d.; Iowa State 
University, n.d. NRCS 
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Network/Operating Agency Planned Uses Citations and Information 

Community Collaborative 
Rain, Hail and Snow Network 
(CoCoRaHS) Precipitation 

measurement 

Doesken and Reges 2010; Reges et al. 2016; 
“CoCoRaHS: Community Collaborative Rain, 
Hail & Snow Network” n.d. Colorado Climate Center at 

Colorado State University via 
volunteers 

US Climate Reference 
Network (USCRN) Long-term climate 

monitoring 

NOAA National Centers for Environmental 
Information n.d.; NOAA National 
Environmental, Satellite, Data, and Information 
Service 2007; Diamond et al. 2013 NOAA 

 
For many purposes, however, weather station data are not sufficient. 
Individual station records can contain gaps when measurements were not 
made. Moreover, there is incomplete spatial coverage. To resolve these 
problems, point weather data have been used to develop gridded data 
products. In the development of gridded datasets, the landscape is overlain 
with a grid, and station observations are interpolated or aggregated to 
estimate a value for each grid cell. This process is carried out at regular 
time steps (most frequently daily or monthly) for some number of years 
(e.g., 1950–2010). Because multiple stations—and potentially other types of 
data—are used in the development of the gridded data, the resulting 
products are spatially and temporally complete, i.e., there are values for 
every grid cell and the time series contain no gaps.  

Within the Colorado River Basin, weather and climate data are used for a 
number of purposes. First, weather and climate data are used to calibrate 
hydrologic and streamflow forecast models used in scientific studies and 
for water resource management decisions. Once these models have been 
calibrated, weather and climate data are used as inputs to drive them. 
Climate data, particularly gridded datasets, have also been used extensively 
to downscale and bias-correct climate model projections that are then used 
as inputs to hydrologic models. The output from these future simulations is 
then used in a variety of ways to assess the reliability of water supplies in 
the Colorado River Basin under a range of future climate conditions (Vano, 
Das, and Lettenmaier 2012; Vano and Lettenmaier 2014; Ayers et al. 2016). In 
addition to their use as model inputs, compiled weather data have been 
used to analyze climate patterns and trends across the basin (Hidalgo and 
Dracup 2003; Mo, Schemm, and Yoo 2009; Nowak et al. 2012) and to better 
understand historical patterns of hydrologic variability (McCabe and 
Wolock 2007; Woodhouse et al. 2016; McCabe et al. 2017). Climate data have 
also been used in the analysis and calibration of paleoclimate proxies, 
primarily tree rings, that then provide long-term histories of streamflow, 
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temperature, precipitation, and snow in the basin (Meko et al. 2007; 
Woodhouse and Pederson 2018).  

Table 4.2 

General information about station networks commonly used in hydrologic research within the Colorado 
River Basin. Network start year indicates the earliest available data collected, but not all stations in the 
network have coverage back to the start of the network. The “Available Variables” column describes 
the most common variables available from the network, although there can be data gaps, and some 
stations may provide additional variables. 

Network Available Variables 
Minimum 
Temporal 
Resolution 

Network Start 
Year 

Cooperative Observer 
Program (COOP) 

Maximum temperature, minimum 
temperature, snowfall, precipitation 

Daily 1890 

Automated Surface 
Observing 
System/Automated 
Weather Observing 
System (ASOS/AWOS) 

Temperature, pressure, wind, 
dewpoint, precipitation (type, amount, 
intensity), visibility, ceiling height, 
other comments 

Hourly or sub-
hourly; some 
stations collect 
1- and 5-
minute 
observations 

ASOS: late 
1980s/1990s, 
AWOS 
implemented 
earlier 

Snow Telemetry Network 
(SNOTEL) 

Temperature, precipitation, snow 
water equivalent. Usually also solar 
radiation, snow depth, wind, humidity; 
subset of stations: soil moisture and 
temperature 

Sub-daily; 
some stations 
are hourly 

1979 

Remote Automated 
Weather Station Network 
(RAWS) 

Precipitation, wind, air temperature, 
humidity, fuel temperature, fuel 
moisture, solar radiation 

10-minute 
Late 1970s, 
early 1980s 

Cooperative Agricultural 
Weather Network 
(AgriMET) 

Temperature, precipitation, humidity, 
soil temperature and moisture, wind, 
radiation 

Some variables 
at 15 minutes 

Early 1980s 

Colorado Mesonet 
(CoAgMET) 

Temperature, humidity, wind, 
radiation, precipitation, soil 
temperature 

5-minute Early 1990s 

Soil Climate Analysis 
Network (SCAN) 

Soil temperature and moisture, 
humidity, wind, radiation, 
precipitation, temperature 

Hourly Early 1990s 

Community Collaborative 
Rain, Hail and Snow 
Network 
(CoCoRaHS) 

Precipitation, snowfall, hail, and flood 
reports; some evapotranspiration 

Daily 1998 

US Climate Reference 
Network (USCRN) 

Temperature, precipitation, wind 
speed, humidity, radiation, soil 
temperature and moisture 

Hourly 2003 
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Numerous approaches have been taken to provide these data in ways that 
meet diverse user needs. Most data products fall into one of four main 
categories: 1) in situ point data collected at weather stations, 2) statistically 
interpolated data, 3) physically interpolated data (i.e., reanalyses), and 
4) spatially continuous data derived from a remotely sensed product. This 
chapter focuses on in situ data and statistically interpolated data, as these 
are the kinds of data that have been used most frequently to understand 
the hydrology of the basin. However, one product discussed here, the 
North American Land Data Assimilation Scheme (NLDAS-2) is derived from 
reanalysis (Xia et al. 2012). 

4.2 In situ observations 

In situ weather station data are simply records of weather variables (e.g., 
temperature and precipitation) at specific locations. These stations are the 
underlying source of all weather and climate information from the late 
1800s, when the first weather stations were installed in the Colorado River 
Basin, until the late 20th century, when remotely sensed climate monitoring 
from satellites first became widely available (Davis 2007). Although the first 
weather stations in the basin were put into place in the late 1800s, there 
were relatively few stations, and their spatial coverage was quite limited 
(Figure 4.1). As the number of stations has increased over time, their spatial 
distribution has increased, as has the diversity of environments that they 
sample in the basin (McAfee et al. 2019). That said, weather station coverage 
is still more complete in river valleys where towns and cities are located, 
and few high-quality stations were installed at high elevations prior to the 
late 1970s or early 1980s (McAfee et al. 2019).  

Weather recording technology has also changed over time. Figure 4.2a 
shows a COOP station in Granger, Utah from around 1930. Temperature is 
measured inside a Cotton Region Shelter with a liquid thermometer. While 
some COOP stations still use these sensors, others use an electronic 
thermometer referred to as Maximum Minimum Temperature System or 
MMTS inside a shield composed of white plates. Both can be seen in Figure 
4.2b, the COOP station in Logan at Utah State University. Automated 
Weather Observing System, or ASOS, stations (Figure 4.2c) also use 
electronic temperature sensors. 

Almost all weather stations record daily minimum and maximum 
temperature and daily precipitation (the total liquid content of all rain, 
snow, and other precipitation that accumulates in a rain gage). The 
intended or primary use of the station dictates where it is located, what 
other variables it measures, and the temporal resolution of those data. 

NWS Cooperative 
Observer Program  

Link: 
https://www.weather.g
ov/coop/ 

https://www.weather.gov/coop
https://www.weather.gov/coop/
https://www.weather.gov/coop/
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Figure 4.1 
Map showing stations from the Global Historical Climatology Network located in or near the Colorado River Basin 
that have first record dates prior to 1950. 
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The need to monitor for specific reasons has led to the development of 
specific weather station networks—collections of stations using very similar 
instrumentation designed to measure weather for an explicit purpose. For 
example, the SNOTEL network was developed primarily to assess water 
resource availability in the western United States (Schaefer and Paetzold 
2001). (It is possible for a station to belong to multiple networks. For 
example, the weather station at Grand Junction Walker Field is an ASOS 
station that also belongs to the COOP network.)  

Because much of the western U.S. relies on water delivered as winter 
precipitation and stored in mountain snowpacks (e.g., Christensen et al. 

 
Figure 4.2 
Photos of (a) a COOP station in Granger, UT, taken around 1930, (b) the COOP station at Utah State University which 
measures temperatures using both a Cotton Region Shelter and the Minimum Maximum Temperature System. (c) the 
ASOS station at Milford, UT. Panel a is from the NOAA Photo Library. Panels b and c are from the Western Regional 
Climate Center Station Pictures resource.  

https://photolib.noaa.gov/Collections/National-Weather-Service/Measuring-Instruments-and-Methods/emodule/660/eitem/4232
https://wrcc.dri.edu/Monitoring/Stations/station_pic_show.php?snet=Coop&sstate=UT&stag=logan&ipic=1&stitle=Logan%2C+Utah+State+University
https://wrcc.dri.edu/Monitoring/Stations/station_pic_show.php?snet=ASOS&sstate=UT&stag=milford&ipic=1&stitle=Milford
https://wrcc.dri.edu/Monitoring/Stations/station_pics.php
https://wrcc.dri.edu/Monitoring/Stations/station_pics.php
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2004), stations in the SNOTEL network are typically located in small valleys 
in the mountains, where snow collects (Schaefer and Paetzold 2001). 
Stations are instrumented to provide multiple measurements of the 
snowpack such as snowfall, snow depth, and snow water equivalent (SWE) 
that are not routinely measured at other networks. They are also often 
designed to function in areas with deep snow by, for example, measuring 
precipitation at heights well above 6 feet, although the World 
Meteorological Organization notes that most gages are placed about 3 feet 
above the surface (World Meteorological Organization 2008). Normally, the 
use of tall rain gages would enhance undercatch, because wind speeds 
increase with height; however, this may not influence the degree of 
undercatch at SNOTEL stations because many SNOTEL sites are forested 
(Serreze et al. 1999). Figure 4.3 shows the Arapaho Ridge SNOTEL station in 
Colorado. The view of the rain gage relative to the surrounding vegetation 
suggests that the gage is taller than three feet. The SNOTEL station also 
includes a snow-depth sensor and a snow pillow, equipment that is 
relatively standard for SNOTEL stations but not common in other weather 
station networks. 

Tables 4.1 and 4.2 describe the characteristics of seven station networks 
that are common across the western U.S. and that are frequently used to 
understand hydrology and consumer demand in the Colorado River Basin. 
These tables are not comprehensive; there are smaller and more localized 
networks that may also be used in hydrologic analyses. In some cases, data 
from smaller networks are provided via similar, more comprehensive 

 

Figure 4.3 

Photo of the 
Arapaho Ridge 
SNOTEL site 
northwest of Longs 
Peak in Colorado. 
(Source: Brian 
Domonkos, Natural 
Resources 
Conservation 
Service) 
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networks. For example, the AgriMet webpage provides access to data from 
NICENet, AgWxNet, and some state-run stations that provide similar kinds 
of measurements (Reclamation 2019a).  

Figure 4.4 shows stations in or within 6.2 miles (10 km) of the basin in the 
Soil Climate Analysis Network (SCAN), and the AgriMET, CoAgMet, 
SNOTEL, RAWS, and COOP networks. Only stations that reported in the 21st 
century (i.e., stations that have an end date later than 2000) are shown. 
RAWS and COOP station locations were identified from the Global 
Historical Climatology Network (GHCN) database on the basis of their 
identification codes. The GHCN is an extensive collection of global weather 
station data that meet minimum criteria for record length and metadata 
(Menne et al. 2012). Station records included within the GHCN are 
subjected to automated quality control and assurance checks (Peterson, 
Vose, et al. 1998; Durre et al. 2010). 

Although different station networks were developed for different purposes, 
all station data are prone to a common set of errors. Missing data is a 
common problem that occurs at both manual and automated stations 
because of equipment malfunction and reporting failures. Station records 
are also prone to inhomogeneities—non-climatic changes in the mean or 
variance of the data—caused by changes in instrumentation, time of 
observation, local surroundings, and even observers, as well as by 
relocation of the entire station (Karl et al. 1986; Karl, Diaz, and Kukla 1988; 
Quayle et al. 1991; Peterson, Easterling, et al. 1998; Menne and Williams 
2009; Menne, Williams, and Vose 2009). Some of these inhomogeneities are 
correctable, and some are not. One notable recent example of this is the 
inhomogeneity in minimum temperature at SNOTEL sites caused by a 
network-wide changeover to new thermometers beginning in the mid-
1990s and extending through the early 2000s (Oyler, Dobrowski, et al. 2015).  

In Colorado, the change in instrumentation occurred primarily in 2004–
2006 (Rangwala et al. 2015). The change in instrumentation led to the 
appearance of rapidly warming minimum but not maximum temperatures 
and a correspondingly sharp reduction in the daily temperature range 
(Rangwala et al. 2015). This particular inhomogeneity appears to be 
correctable, either through comparison with near-by stations as in Oyler, 
Dobrowski, et al. (2015), or through corrections developed by the Natural 
Resources Conservation Service (Ma 2017). In general, there are any number 
of mechanisms for correcting inhomogeneities (Menne and Williams 2009; 
Peterson, Easterling, et al. 1998; Hamlet and Lettenmaier 2005), most of 
which rely on the presence of a nearby station with a homogenous record. 
Inhomogeneities may be more difficult to correct in areas where, or during 
times when, there are few weather stations to compare the suspect station 
against.  

USBR Agrimet Network 
Map 

 
Link: 
https://www.usbr.gov/p
n/agrimet/agrimetmap/
agrimap.html 

https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
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Figure 4.4 
Locations of presumably active weather stations in or near the Colorado River Basin. COOP and RAWS locations were 
derived from the GHCN, so COOP and RAWS stations not included in the GHCN are not shown on the map. 
Likewise, stations in the COOP network but that are also ASOS or AWOS stations may not be represented on this 
map depending on their coding the in the GHCN. 
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Inhomogeneities that develop due to gradual changes in the surrounding 
environment can be more challenging to adjust for (Menne, Williams, and 
Vose 2009). The presence of multiple kinds of inhomogeneities in a record, 
for example, at a station that is moved from one location to another while 
also being impacted by urbanization, may further complicate correcting the 
record. 

Precipitation measurements are also affected by undercatch, where less 
precipitation is captured by the gage than actually falls. Undercatch occurs 
because of 1) evaporation from the gage; 2) wetting error (i.e., water that 
adheres to the sides of the gage and may not be fully measured); 
3) turbulence, wherein turbulent air flow over the mouth of the gage 
pushes rain drops and snowflakes away from the gage opening; and 4) for 
snow, bridging across the top of the gage, which makes it more likely that 
precipitation will be lost before measurement. The last can also shift the 
apparent timing and intensity of precipitation if snow accumulates over the 
mouth of the gage only to fall in, all at once, at a later time. The degree of 
undercatch varies with the type of gage used, the use and kind of shielding, 
wind speed, precipitation phase, and precipitation intensity (Adam and 
Lettenmaier 2003; Goodison, Louie, and Yang 1998). Numerous studies have 
evaluated catch efficiency for a range of gage and shield combinations. A 
clear finding is that unshielded gages measure less rain and snow than 
shielded gages (Hanson, Johnson, and Rango 1999; Rasmussen et al. 2012). 
This may be of concern because some networks, like CoCoRaHS (Reges et 
al. 2016) and RAWS (National Wildfire Coordinating Group 2014) use 
unshielded gages. Owing to the high variability in undercatch due to 
equipment combined with environmental conditions, making accurate 
correction is difficult, although some attempts have been made (e.g., Yang 
et al. 1998). 

Although rain and snow are particularly difficult to quantify, any 
meteorological measurement can contain error. Stations that are not 
regularly maintained and calibrated can collect inaccurate or imprecise 
data, even in the absence of damage (Leeper, Rennie, and Palecki 2015). As 
with precipitation, different models of temperature sensors and logging 
equipment may measure slightly different values (Lin and Hubbard 2004), 
and different types of shielding on temperature sensors can also modify the 
temperature observed because they differ in the degree of shading and 
airflow past the temperature sensor they provide (Hubbard, Lin, and 
Walter-Shea 2001). Liquid thermometers can also be subject to parallax 
error (Linacre 1992), for example, when a thermometer at a fixed height is 
read by observers of different heights. Measurement error associated with 
other variables is also expected (Linacre 1992). Recording errors of all kinds 
can also be a problem, particularly for manual stations (Leeper, Rennie, and 
Palecki 2015; Menne et al. 2012; Linacre 1992).  
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Consequently, another consideration in the use of station data is whether 
and in what way the data have been quality controlled (QC) prior to release. 
Not all networks conduct extensive QC, those that do may use different 
procedures, and QC protocols may evolve over time. The AgriMet network 
regularly maintains and calibrates equipment, applies automated checks to 
sub-daily data collected at its stations, flags potentially erroneous values in 
near real-time and then uses manual checks daily (Hamel, n.d.). The 
SNOTEL network also relies on a combination of equipment maintenance, 
flagging, and eyes-on evaluations of data (Kuiper et al. 2014). Other 
networks, such as RAWS, may have less standardized quality control 
(Zachariassen et al. 2003; Brown et al. 2011). Integrative networks typically 
apply their own checks. The Global Historical Climatology Networks 
investigate data records independently and in relationship to nearby 
stations, typically flagging suspect data (e.g., Global Historical Climatology 
Network; Durre et al. 2010; Menne et al. 2012).  

In general, in situ weather station data are most appropriate for 
characterizing the climate variables they were designed to measure in their 
immediate surroundings, assuming that they are routinely and 
appropriately maintained. However, many stations have proven to be useful 
outside of their intended purpose, especially when analyzed in innovative 
ways. For example, SNOTEL stations are designed primarily to describe the 
depth and water content of the snowpack, understand how it developed 
over the course of the season, and track year-to-year variability in the 
snowpack at that location. Although SNOTEL stations were not necessarily 
designed for long-term climate monitoring, they are generally well 
maintained stations that, barring the instrumentation-related 
inhomogeneity, would be effective in tracking temperature trends in higher 
elevations. RAWS stations have been used for a much larger array of 
applications than originally intended (Brown et al. 2011). AgriMet stations 
are not designed to track snowpack, most notably because they are not 
usually instrumented with a snow pillow and snow-depth sensor. They are, 
however, equipped with both tipping bucket and weighing precipitation 
gages. When both types of precipitation measurements are available, they 
can be leveraged to effectively distinguish rain and snow (Strachan 2016). In 
other cases, beneficial uses have been identified for what would otherwise 
be errors or weaknesses. For example, the placement of COOP stations in 
populated areas has diminished their ability to track regional climate 
variability (without correction), but it has allowed the detection and 
quantification of urban heat islands. 

Agrimet Weather 
Station Equipment and 
Sensors 

 
Link: 
https://www.usbr.gov/p
n/agrimet/aginfo/senso
rs.html 

https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
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4.3 Statistically interpolated gridded data 

Statistically interpolated data fill spatial gaps between existing point 
measurements using a variety of techniques. Most statistically interpolated 
data are aggregated to represent grids or rasters of varying spatial 
resolution; however, there are some climate data provided not for regular 
grids, but for irregular areas like climate divisions, counties, or basins. 
Some of these irregular area products are themselves developed from 
gridded products. For example, the latest (2019) version of the climate 
division data are derived from a roughly 3.1-mi (5-km) resolution gridded 
product called nClimGrid (Vose et al. 2014).  

The interpolation used to make gridded data may be based solely on 
observations, with the value at a given point based on some, usually 
distance weighted, function of values at nearby stations. This is more 
common for coarser resolution (> 0.5°) products. Most higher-resolution (< 
10-mile) products, however, also incorporate some physiographic 
information to more accurately reflect the strong influence of terrain on 
spatial variability in climate. For example, all of the products described in 
this chapter incorporate an adjustment for the lapse rate or expected 
decrease in temperature with elevation. Different statistical methods for 
interpolation are used in different products. Although they are not 
discussed here, Daly (2006) provides an overview of commonly used 
interpolation methods. 

Gridded data products 
For most hydrologic modeling applications, relatively high-resolution 
gridded data are preferable, so the focus here is on selected, commonly 
used products listed in Table 4.3 and described in Table 4.4.  

Table 4.3 

General information about gridded data products commonly used in hydrologic research within the 
Colorado River Basin. Definitions are provided in the glossary. 

Product Name Variables 
Spatial 
Resolution 

Spatial 
Coverage 

Temporal 
Resolution 

Temporal 
Coverage 

PRISM AN81d 
Tmax, Tmin, Tmean, Tdew, 
VPDmax, VPDmin, Prcp 

30 sec (~0.5 mi) 
& 2.5 min (~2.5 
mi) 

CONUS Daily 
1981–near 
present  

PRISM AN81m 
Tmax, Tmin, Tmean, Tdew, 
VPDmax, VPDmin, Prcp 

30 sec (~0.5 mi) 
& 2.5 min (~2.5 
mi) 

CONUS Monthly 
1895–near 
present  

PRISM LT81m 
Tmax, Tmin, Tmean, Tdew, 
VPDmax, VPDmin, Prcp, 
VPR 

30 sec (~0.5 mi) CONUS Monthly 
1895–near 
present  

TopoWx Tmax, Tmin 30 sec (~0.5 mi) CONUS 
Daily, 
monthly 

1948–2016 
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Product Name Variables 
Spatial 
Resolution 

Spatial 
Coverage 

Temporal 
Resolution 

Temporal 
Coverage 

Livneh 2013/ 
Maurer 2002 

Tmax, Tmin, Prcp, Wind, 
SolRad & VIC-simulated 
baseflow, canopy water, 
ground heat flux, sensible 
heat flux, latent heat flux, 
net radiation, SWE, soil 
moisture, surface runoff, 
total ET 

L: 1/16° (~3.8 
mi)  

 

M: 1/8° (~7.5 
mi)  

CONUS & 
Columbia 
River Basin 

Sub-daily, 
Daily, 
monthly 

L: 1915–
2011 

 

M: 1950–
2000 

Livneh 2015 

Tmax, Tmin, Prcp, Wind, 
SolRad & VIC-simulated 
baseflow, canopy water, 
ground heat flux, sensible 
heat flux, latent heat flux, 
net radiation, SWE, soil 
moisture, surface runoff, 
total ET 

1/16° (~3.8 mi) 

N. America 
south of 53°N 
through 
Mexico 

Daily, 
monthly 

1950–2013 

gridMET 

Tmax, Tmin, Prcp, RHmin, 
RHmax, SpecHum, Wind, 
SolRad & derived burning 
index, fuel moisture, ERC, 
PDSI, rET-alfalfa, rET-grass, 
VPD 

2.5 min (~2.5 
mi) 

CONUS Daily 
1979–very 
near 
present 

Hamlet 2005 Tmax, Tmin, Prcp, Wind  1/8° (~7.5 mi) 
CONUS plus 
Columbia 
River Basin 

Daily 1915–2003 

Hamlet 2010 Tmax, Tmin, Prcp, Wind 1/16° (~3.8 mi) 
CONUS plus 
Columbia 
River Basin 

Daily 1915–2006 

Daymet v. 3 
Tmax, Tmin, Prcp, SolRad, 
DayLength, VPR, SWE 

1 km (~0.6 mi) 
N. America, 
north of 14°N 

Daily 
1980–end 
of last full 
year 

Newman 
gridded 
ensembles 

Prcp, Tave, DTR 1/8° (~7.5 mi) 

CONUS & 
portions of 
Mexico and 
Canada  

Daily 1980–2016 

nClimGrid Tmax, Tmin, Prcp 5 km (~3.1 mi) CONUS Monthly 
1895–
present 

NLDAS-2 

Tave, SpecHum, Prcp, 
Wind, Pres, SolRad, DLWR, 
& numerous land-surface 
model outputs derived 
from the forcing variables 

1/8° (~7.5 mi) 

CONUS, parts 
of Canada and 
Mexico, (125° 
to 67°W, 25° 
to 53°N)  

Hourly 
1979–near 
present 
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PRISM (Parameter-elevation Relationships on Independent Slopes Model) 
was one of the first higher-resolution (< 10-mile) gridded climate products 
(Daly et al. 1994, 1997, 2002, 2008), and it is one of the few to extend back to 
the late 19th century. Because of its long history and good temporal 
coverage, PRISM has long been considered a solid climate data choice. It 
also incorporates one of the most diverse networks of stations (Table 4.4), 
particularly for precipitation. Many new, higher-resolution gridded 
products have been developed over the last 10–20 years. Development 
decisions regarding the spatial and temporal (daily versus monthly) 
resolution, the time span of the product, and which variables to supply—
although most supply only temperature or precipitation, or both—are made 
to match the product to its intended use and the developers’ assessment of 
what the underlying data can reasonably support.  

Table 4.4 

Input data and development methodologies used in the production of commonly used gridded climate 
datasets.  

Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

PRISM AN81d / 
PRISM AN81m 

All networks listed in 
Table 4.2, plus Canadian 
and Mexican federal 
networks, numerous 
smaller networks, RADAR 
data, and information 
from the NCEP/NCAR 
Reanalysis  

Normals are developed using 
the PRISM methodology, 
wherein the regression 
accounts for distance to the 
coast, elevation, cold-air 
pooling, and boundary layer 
thickness. Climatologically 
aided interpretation is then 
used to develop the 
temporally varying datasets. 
Some radar data also used to 
inform precipitation. 

PRISM aims to make a "best 
estimate" given available 
information. Additional details 
about adjustments between 
daily and monthly data for 
different versions of each are 
provided in PRISM (2016) 
Table 5. 

Access: 
http://www.prism.oregonstate.
edu/ (2.5 min, free) 

prism_orders@nacse.org (30 
sec, $) 

Daly, Neilson, 
and Phillips 
(1994); Daly, 
Taylor, and 
Gibson (1997); 
Daly et al. (2002; 
2008); Daly, 
Smith, and Olson 
(2015; PRISM 
2016) 

PRISM LT81m AGRIMET, ASOS, AWOS 
& WBAN, COOP, RAWS, 
SNOTEL, Canadian and 
Mexican federal 
networks, and stations 
run by the H.J. Andrews 
Experimental Forest, the 
Western Regional 
Climate Center, the 
Minnesota Climatology 
Working Group, and the 
North Dakota State 
Water Commission 

Normals are developed using 
the PRISM methodology, 
wherein the regression 
accounts for distance to the 
coast, elevation, cold-air 
pooling, and boundary layer 
thickness. Climatologically 
aided interpretation is then 
used to develop the 
temporally varying datasets. 
Some information from 
RADAR is also used to inform 
precipitation. 

The LT81m version aims for 
"temporal consistency" and so 
uses only networks with 20+ 
year records. 

 

Access: 
prism_orders@nacse.org ($) 

Daly, Neilson, 
and Phillips 
(1994); Daly, 
Taylor, and 
Gibson (1997); 
Daly et al. (2002; 
2008); PRISM 
(2016); Daly, 
Smith, and Olson 
(2015) 

PRISM 

 
Link: 
http://www.prism.oreg
onstate.edu/ 

http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
mailto:prism_orders@nacse.org
mailto:prism_orders@nacse.org
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
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Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

TopoWx 

GHCN-D (incl. COOP, 
ASOS, WBAN, RAWS, 
SNOTEL), SNOTEL, 
RAWS that might not be 
in GHCN-D. Requires 5+ 
years data, MODIS LST 
(MYD11A2) 

Station records are 
homogenized and gap-filled 
prior to interpolation. A terrain 
index based on the PRISM 
DEM is used to predict cold-
air pooling. Grids of monthly 
averages are derived using 
kriging; geographically 
weighted regression is used to 
interpolate daily anomalies, 
which are added to the 
monthly averages to get daily 
values. 

Annual updates will 
incorporate both new 
observations and model 
enhancements, resulting in 
improved datasets, but 
versions will be incompatible.  

 

Access: 
http://www.scrimhub.org/reso
urces/topowx/ (free) 

Oyler, 
Dobrowski, et al. 
(2015); Oyler, 
Ballantyne, et al. 
(2015); Oyler et 
al. (2016); Oyler, 
n.d. 

Livneh 2013/ 
Maurer 2002 

COOP temperature and 
precipitation from 
stations with 20+ years of 
data. Environment 
Canada stations in 
Canada and Mexican 
Meteorological Service 
Stations in Mexico, with 
gap-filling as needed 
from NCEP/NCAR 
Reanalysis and GPCP 
precipitation. Wind from 
NCEP/NCAR R1. Wind 
values before 1948 are 
the average of available 
years. 

Temperatures were adjusted 
to the elevation of the grid cell 
before interpolation assuming 
a constant lapse rate of -
6.5°C/km (-3.6°F/1000 ft). 
Precipitation amounts were 
adjusted to be consistent with 
patterns in the 1961-90 PRISM 
climatology. VIC uses MTCLIM 
to estimate humidity and 
radiation variables from 
temperature and precipitation. 

Access: 
https://www.esrl.noaa.gov/psd
/data/gridded/data.livneh.htm
l (free) or 
http://ciresgroups.colorado.ed
u/livneh/data/daily-
obserational-
hydrometeorology-data-set-
conus-extent-canadian-extent-
columbia-river-basin (Livneh, 
free) 

http://www.engr.scu.edu/~em
aurer/gridded_obs/index_grid
ded_obs.html (Maurer 
updated, free) 

Maurer et al. 
(2002); Livneh et 
al. (2013); NOAA 
ESRL, n.d.; 
Livneh, n.d. 

Livneh 2015 

As in Livneh et al. (2013): 
COOP stations in the 
U.S. with 20+ years of 
data, Environment 
Canada (EC) stations in 
Canada, Mexican 
Meteorological Service 
stations in Mexico 

Methods are similar to 
L13/M02. Precipitation was 
adjusted to the 1981-2020 
PRISM climatology in CONUS 
and the Vose et al. (2014) 
climatology in Mexico and 
Canada.  

One of the goals was to 
reduce spatial inhomo-
geneities associated with 
differing national precipitation 
measurement standards for 
better hydrologic simulation in 
transboundary basins. 

Access: 
https://data.nodc.noaa.gov/cg
i-
bin/iso?id=gov.noaa.nodc:012
9374;view=html (free) or 
ftp://192.12.137.7/pub/dcp/ar
chive/OBS/livneh2014.1_16de
g/ (free) 

Maurer et al. 
(2002); Livneh et 
al. (2013, 2015); 
Livneh, n.d. 

http://www.scrimhub.org/resources/topowx/
http://www.scrimhub.org/resources/topowx/
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://www.engr.scu.edu/%7Eemaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/%7Eemaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/%7Eemaurer/gridded_obs/index_gridded_obs.html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
ftp://192.12.137.7/pub/dcp/archive/OBS/livneh2014.1_16deg/
ftp://192.12.137.7/pub/dcp/archive/OBS/livneh2014.1_16deg/
ftp://192.12.137.7/pub/dcp/archive/OBS/livneh2014.1_16deg/
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Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

gridMET 

NLDAS-2, PRISM, 
Climate Forecast System 
Reanalysis for the 
previous few days to 
week  

Daily NLDAS-2 output is 
interpolated to the PRISM grid 
and then temperature, 
precipitation, and humidity are 
adjusted to display spatial 
variability as in PRISM. No 
higher resolution information 
is incorporated for any other 
variable. 

Access:  
http://www.climatologylab.org
/gridmet.html (free) 

Abatzoglou 
(2013; 2019) 

Hamlet 2005 Stations with at least one 
complete year (365 
consecutive days) and at 
least five total years of 
data from COOP, EC, 
monthly U.S. Historical 
Climatology Network 
(USHCN), Historical 
Canadian Climate Data 
(HCCD); Wind from 
Maurer et al. (2002) 
where wind values before 
1949 are the average of 
available years. 

Smoothed COOP and EC data 
are adjusted against 
smoothed homogenized data 
(USHCN and HCCD) at 
monthly time scales to 
account for major 
inhomogeneities. Elevation 
adjustment and interpolation 
as per Maurer et al. (2002) 
except that the lapse rate was 
-6.1°C/km (-3.3°F/1000 ft). 
Precipitation is adjusted to the 
PRISM climatology. 

The goal in Hamlet and 
Lettenmaier (2005) was to 
develop a more temporally 
homogenous dataset 
otherwise similar to Maurer et 
al. (2002). 

Maurer et al. 
(2002); Hamlet 
and Lettenmaier 
(2005) 

Hamlet 2010 

COOP, EC, monthly 
USHCN, HCCD; Wind 
from Maurer et al. (2002) 

Hamlet 2010 is constructed 
similarly to Hamlet 2005, but 
temperature is also adjusted 
to match the PRISM 
climatology. 

Additional details about the 
Hamlet 2010 data product 
were found in Henn et al. 
2018 and Lundquist et al. 
2015 

Maurer et al. 
(2002); Hamlet 
and Lettenmaier 
(2005); Deems 
and Hamlet 
(2010) 

Daymet v.3 

GHCN 

Locally derived elevation 
relationships and distance 
weighted regressions are used 
to estimate Tmax, Tmin, and 
precipitation. All other 
variables are estimated as a 
function of one or more of 
Tmax, Tmin, and precipitation 
using MTCLIM algorithms. 

Access: 
https://daymet.ornl.gov/ (free) 

Thornton, 
Running, and 
White (1997); 
Thornton and 
Running (1999); 
Thornton, 
Hasenauer, and 
White (2000); 
Thornton et al. 
(2016) 

http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
https://daymet.ornl.gov/
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Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

Newman gridded 
ensembles 

GHCN and SNOTEL 
stations not included in 
GCHN 

This is developed using the 
probabilistic interpolation 
method of Clark and Slater 
(2006). For each grid point, T, 
DTR, and P are calculated as a 
function of distance-weighted 
station values, latitude, 
longitude, slope, aspect, and 
elevation. Uncertainty is 
gaged from the regression 
residuals, and then ensemble 
members are developed by 
combining the outcome of the 
regression with a random 
value generated from the 
uncertainty and a field of 
spatially and temporally 
correlated random numbers. 

The goal was to estimate 
potential uncertainty 
associated with preparing 
gridded climate data. 

 

Access: 
https://www.earthsystemgrid.o
rg/dataset/gridded_precip_an
d_temp.html  or 
https://doi.org/10.5065/D6TH
8JR2 (free) 

Clark and Slater 
(2006); Newman 
et al. (2015; 
2019) 

nClimGrid  GHCN stations in the 
COOP, ASOS, RAWS, 
SNOTEL, EC, and 
Mexican Meteorological 
Service networks, but 
only temperature is used 
from RAWS. Only stations 
with 10+ years of data 
since 1950 are included. 

Station values are adjusted for 
known biases, homogenized, 
and then interpolated in a way 
that accounts for latitude, 
longitude, elevation, distance 
to coast, cold-air pooling, 
slope, and aspect effects. 

This is the gridded data 
underlying the climate division 
data nClimDiv. 

 

Access: 
https://data.nodc.noaa.gov/cg
i-
bin/iso?id=gov.noaa.ncdc:C00
332 (free) 

Vose et al. 
(2014); NOAA, 
n.d. 

NLDAS-2 

NARR for most variables, 
CPC and radar for 
precipitation over U.S. 
(NARR over Canada and 
Mexico), satellite data for 
shortwave radiation 
augments NARR 

Coarse output is interpolated 
from ~20 mi to ~7.5 mi 
resolution and temporally 
interpolated to hours. 
Temperatures are adjusted 
assuming a static -6.5°C/km (-
3.6°F/1000 ft) lapse rate. 
Spatial patterns in 
precipitation are matched to 
those in PRISM. 

Access: 
https://ldas.gsfc.nasa.gov/nlda
s/nldas-2-forcing-data and 
https://disc.gsfc.nasa.gov/data
sets?keywords=NLDAS (free) 

Cosgrove 2003; 
Mitchell 2004; 
Xia et al. 2012 

 

https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://doi.org/10.5065/D6TH8JR2
https://doi.org/10.5065/D6TH8JR2
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://ldas.gsfc.nasa.gov/nldas/nldas-2-forcing-data
https://ldas.gsfc.nasa.gov/nldas/nldas-2-forcing-data
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
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All of the higher resolution products explicitly account for changes in 
temperature with elevation, although they do so in different ways (Table 
4.4, Figure 4.5). Most products include a mechanism to adjust for changes in 
precipitation with elevation, as well. Interestingly, many use the elevational 
change in precipitation estimated by PRISM (Figure 4.6). Other decisions 
made in the construction of a dataset are typically made to avoid specific 
problems that arise from changes in the number, type, and location of 
stations and the common measurement errors described above.  

 
Figure 4.5 
Flow diagram of the data sources and processes used to produce the high-resolution gridded temperature products 
featured in this chapter. Note that the diagram does not accurately indicate the order of processing. For example, 
gap-filling in TopoWx occurs prior to adjustment for cold-air pooling. In addition to differences in choice of network, 
products may select different stations from the same network. 
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Common choices that must be made in developing a gridded data product 
include 1) which station network or networks to use, 2) which stations to 
use from those networks, 3) whether additional data from satellites, radar, 
or reanalysis is included, 4) what statistical method to use for interpolation, 
5) how to account for changes in temperature and precipitation related to 
elevation, aspect, slope, or other aspects of the terrain, and 6) whether to 
apply any additional corrections, such as filling gaps in the data, accounting 
for undercatch, or homogenizing—correcting shifts in the measured 
climate that are due to changes in the station or the area around the 
station rather than to actual changes in regional climate. 

These choices introduce some disagreement between different products, 
although there are clear similarities, as well. Figure 4.7 shows time series of 
average water year minimum and maximum temperature and total water-
year precipitation averaged over the Upper Colorado Basin for several of 
the products listed in Tables 4.3 and 4.4.  

 
Figure 4.6 
Flow diagram of the data sources and processes used to produce the high-resolution gridded precipitation products 
featured in this chapter. In addition to differences in choice of network, products may select different stations from 
the same network. 
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There are clearly strong correlations between the products. All of the 
datasets that provide precipitation data estimate that basin-wide average 
water-year precipitation is between 15.5” and 16” (1981–2010 average). They 
all show that water year 1997 was quite wet—estimates range between 21.0” 
and 22.1"—and that 2002 was dry—between 9.7” and 10.2”. Earlier in the 
record, however, there are much larger differences between precipitation 
estimates. For example, in 1927, the Livneh et al. (2013) data estimate 3.2” 
more precipitation over the Upper Colorado Basin than PRISM does. 
Likewise, all of the datasets indicate increasing temperatures since the 
1970s. All indicate that 1934 and 2000 were particularly warm years and that 
the mid-1970s had relatively low minimum temperatures.  

These plots also clearly demonstrate that both Livneh datasets estimate 
substantially cooler minimum temperatures than the other datasets, even 
though their estimates for maximum temperature are similar to the other 
data products. Early in the 20th century, the PRISM and nClimGrid data sets 
provide similar estimates of minimum temperature, but nClimGrid 
estimates cooler maximum temperatures.  

Newman et al. (2019) outline a few common sources of differences between 
gridded datasets. Numerous other dataset comparison papers such as 
Behnke et al. (2016), Henn et al. (2018) Lundquist et al. (2015), and Walton 
and Hall (2018) also discuss the source of discrepancies between data 
products. One of these is the choice of which weather stations to use. 
Products that use more weather stations or a more spatially diverse set of 
weather stations are more likely to capture detailed spatial patterns in 
temperature and precipitation. Almost all of the products rely directly or 
indirectly on data from the COOP network, although they may not sample 
the same stations owing to differences in selection criteria. Exactly which 
stations are chosen in any area by any product may not be clear without in-
depth inspection of the documentation or correspondence with the data 
developers. For more discussion on this, see Guentchev, Barsugli, and 
Eischeid (2010) and Newman et al. (2019). 

Other choices made in developing gridded datasets also clearly influence 
the outcome. Gridded datasets, like the Livneh data, that use a fixed lapse 
rate of -3.6°F/1000 feet (-6.5°C/km) tend to estimate colder temperatures, 
especially colder minimum temperatures and particularly during the winter 
when cold air pooling is common, than other products (Newman et al. 
2015), as can be seen in Figure 4.7. Other choices probably also cause 
differences between different datasets, but it is not always possible to draw 
clear lines between those choices (e.g., statistical interpolation method) 
and the results (Newman et al. 2019). Products like that described in 
Newman et al. (2015) use “probabilistic interpolation” to account for 
uncertainty by producing multiple reasonable spatial patterns of 
temperature and precipitation for each time step.  

TopoWx 

 
Link:  
http://www.scrimhub.or
g/resources/topowx/ 
 

Livneh 2013/Maurer 
2002 

 
Link: 
https://www.esrl.noaa.g
ov/psd/data/gridded/d
ata.livneh.html 
 

Livneh 2015 

 
Link: 
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.no
dc:0129374;view=html 
 

gridMET 

 
Link: 
http://www.climatology
lab.org/gridmet.html 

http://www.scrimhub.org/resources/topowx/
http://www.scrimhub.org/resources/topowx/
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
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Figure 4.7 
Time series of average water-year maximum (a) and minimum (b) temperature and water-year total precipitation (c) 
averaged over the Upper Colorado Basin. Note that Livneh15 provides monthly precipitation data as the average of 
the daily precipitation rate. Monthly totals were calculated by multiplying the daily rate by the number of the days in 
each month, ignoring February 29 in leap years. 
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Tables 4.3 and 4.4 describe the characteristics of 11 statistically interpolated 
gridded products that are commonly used for hydrologic applications in the 
western U.S. Despite disagreeing in some ways, these gridded products are 
also not entirely independent. Because the number of weather stations is 
limited, particularly at higher elevations, most products share at least some 
base information. There can also be closer interrelationships between 
products. For example, the Livneh et al. (2013) product uses the Maurer et 
al. (2002) methodology and is, in fact, billed as an “update and extension” of 
the earlier effort. 

Livneh et al. (2015) uses those same methods for temperature, with 
additional data from Mexico and southern Canada to produce a gridded 
product with coverage for all of North America south of 53°N. As a result, 
their estimates of water-year average temperature over the Upper Basin 
are nearly identical—the largest difference between the two is 0.24°F in 
minimum temperature, while differences in maximum temperature are 
even smaller. GridMET is made by taking the 1/8° (7.5-mi, 12-km) resolution 
North American Land Data Assimilation System (NLDAS-2) reanalysis and 
downscaling it to 2.5mi (4 km), using PRISM to guide the interpolation 
(Abatzoglou 2013). Thus, temporal variability in gridMET will track that in 
NLDAS-2, while its spatial patterns should be very similar, if not identical, 
to those in PRISM. 

As noted above and shown in Figure 4.6, many products account for fine-
scale spatial patterns in precipitation by adjusting their precipitation 
patterns to match those in PRISM. Among the eight products mapped in 
Figure 4.6, only Daymet and Newman do not use PRISM to adjust 
precipitation for elevation (TopoWx does not produce precipitation 
estimates). Henn et al. (2018) note that PRISM is used to adjust the spatial 
variability of precipitation in data produced by Livneh et al. (2013, 2015), 
Maurer et al. (2002), Hamlet and Lettenmaier (2005), Deems and Hamlet 
(2010), NLDAS-2 (Cosgrove 2003; Mitchell 2004; Xia et al. 2012), and the 
Climate Prediction Center (CPC) unified gage-based analysis of daily 
precipitation (Higgins et al. 2000). Interestingly, NLDAS-2 incorporates 
CPC precipitation early in product development (Cosgrove 2003; Mitchell 
2004; Xia et al. 2012), so NLDAS-2 uses PRISM precipitation once indirectly 
and once directly. GridMET, which further downscales NLDAS-2 to PRISM, 
essentially uses PRISM to adjust precipitation three times (Abatzoglou 
2013).  

Fewer gridded products provide information on climate variables such as 
wind, humidity, and radiation. Wind is an essential variable in hydrology. It 
is critical for assessing snow redistribution (Liston and Elder 2006). It is 
also required to accurately estimate evapotranspiration. Hobbins et al. 
(2012) noted that winds are particularly important in driving 
evapotranspiration over parts of the Colorado River Basin during the spring 

Daymet 

 
Link:  
https://daymet.ornl.gov 
 

Newman 

 
Link: 
https://www.earthsyste
mgrid.org/dataset/grid
ded_precip_and_temp.
html 
 

NClimGrid 

 
Link: 
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.nc
dc:C00332 
 

NLDAS-2 

 
Link: 
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.no
dc:0129374;view=html 

https://daymet.ornl.gov/
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
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and summer. Yet gridded wind variables are among the least certain and 
robust of all climate variables. Figure 4.8 shows the development pathways 
for wind in the datasets evaluated here. Essentially all wind variables in 
high-resolution data products are derived from the NCEP/NCAR Reanalysis 
(Kalnay et al. 1996; Maurer et al. 2002; Hamlet and Lettenmaier 2005; 
Deems and Hamlet 2010; Livneh et al. 2013; 2015) or from the North 
American Regional Reanalysis (Mesinger et al. 2006; Cosgrove 2003; 
Mitchell 2004; Xia et al. 2012; Abatzoglou 2013). Because there are few, if 
any, higher resolution wind products to correct against, most high-
resolution wind estimates do not actually contain any high-resolution 
patterns in wind. They simply reproduce the coarse winds in smaller grid 
boxes.  

Dataset developers encounter similar problems in constructing high-
resolution fields of radiation and humidity (Figure 4.9). The gridMET 
dataset interpolates NLDAS-2 humidity and radiation outputs without any 
additional adjustment (Abatzoglou 2013). The Daymet, Maurer, and Livneh 
datasets all use some formulation of the MTCLIM algorithm (Thornton, 
Running, and White 1997; Thornton and Running 1999; Thornton, 
Hasenauer, and White 2000) to estimate humidity and radiation from 
temperature. PRISM provides humidity estimates (dewpoint temperature 
and vapor pressure deficit), but not radiation, calculated from station-
measured relative humidity and air temperature (Daly, Smith, and Olson 
2015).  

CBRFC use of weather observations and gridded data 
As described in Chapters 5, 6 and 8, the Colorado Basin River Forecast 
Center (CBRFC) forecast model system requires values for temperature and 
precipitation that are area-averaged for each forecast zone (an elevation 
band within a catchment) represented in the model. The CBRFC generates 
these mean areal temperature (MAT) and precipitation (MAP) values for 
each forecast zone in real-time to drive the daily production of seasonal 
water supply forecasts and the daily (sometimes sub-daily) production of 
short-range (1-10 days) streamflow forecasts. The CBRFC has also 
generated them retrospectively, to create a historical dataset (1981-2015) 
that is used for forecast model calibration and verification. In both cases, 
the precipitation values are much more important to the forecast outcomes 
than the temperature values, and thus greater attention is given to the 
precipitation input data. The approach used to generate the MAT and MAP 
values has some commonalities with the gridded products described above, 
although the final real-time inputs (meteorological forcings) used to drive 
the CBRFC forecast models are spatially “lumped” and not on a uniform grid 
like the gridded products described above. The CBRFC endeavors to make 
the real-time data and the historical calibration data as similar as possible, 
so that the forecast model is trained on data that is comparable to, if not 
identical to, what it sees in real-time.  
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Figure 4.8 
Flow diagram of the data sources and processes used to produce the high-resolution gridded wind products featured 
here. 

 

 
Figure 4.9 
Flow diagram of the data sources and processes used to produce the high-resolution gridded humidity products 
featured here. 



 

Chapter 4. Observations—Weather and Climate 140 
 

For the Upper Basin watersheds, which are generally snowmelt-dominated, 
real-time temperature and precipitation observations—the vast majority 
from SNOTEL stations—are used to directly produce the areal averages for 
forecast zones using station weightings determined through model 
calibration. The stations that are used have been pre-screened and vetted 
during the calibration process. Automated procedures identify potentially 
erroneous station values, which can be then manually corrected by 
forecasters. Freezing-level data from Rapid Refresh, NOAA’s hourly 
operational weather reanalysis, is used to run the SNOW-17 model which 
types the precipitation as rain or snow. The data used for real-time 
operations and for calibration are very similar, with the calibration data 
having undergone additional quality control procedures. 

For the Lower Basin watersheds, which are generally rainfall-dominated 
and respond more quickly to precipitation events, a denser station 
coverage is employed, with temperature and precipitation observations 
from multiple station networks, and then augmented by radar-based 
precipitation estimates to generate the real-time data. The radar data is 
most useful during the warm season when there is a larger radius of 
accurate information from the radar, due to reflection differences between 
rain and snow. The observations from all available stations are used, with 
no prior screening of stations, to create the highest possible station 
density. But the station temperature and precipitation values themselves 
are quality-controlled as in the Upper Basin. As in the Upper Basin, 
freezing-level data and SNOW-17 are used to type the precipitation into 
rain and snow. The real-time precipitation observations and radar 
precipitation estimates are transferred to a 4-km grid using an 
interpolation algorithm in the Multi-sensor Precipitation Estimate (MPE) 
software, the temperature observations are likewise transferred to a 4-km 
grid, and the grid cells within each forecast zone are then averaged to 
create the MAT and MAP data.  

The historical calibration data for the Lower Basin are generated in a similar 
manner as the real-time data, except only the station precipitation data are 
used—not radar-based estimates—and a different algorithm and a finer grid 
(800-m) are used for the intermediate gridding step. The CBRFC has also 
generated a matching 800-m gridded historical dataset for the Upper Basin, 
but it is not used for operations or calibration at this time. Both of these 
intermediate 800-m gridded datasets can be made available to researchers.  

In some respects, the real-time and historical meteorological forcings for 
the Colorado River Basin used by CBRFC can be considered to be of higher 
quality for hydrological modeling than many of the gridded datasets 
described earlier, since they are produced at higher resolution (at least 
during intermediate steps), use a greater number of stations, and use more 
rigorous quality control.  

Rapid Refresh 

Link: 
https://rapidrefresh.noa
a.gov/ 

https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/
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The CBRFC recently worked with Utah State University to evaluate a 
physically based snow model that uses an energy balance to estimate 
snowpack processes, rather than just temperature and precipitation. 
Adoption of the potentially more accurate snow model, however, would 
require additional observational data that better characterized, at a 
minimum, surface radiation balance (P. Miller, pers. comm.). Due to the 
increased complexity of the energy balance model, real-time data may not 
be available for use within an operational framework. Increased model 
complexity may not necessarily yield more accurate results; for example, 
while radiation data are collected by a number of weather station networks 
focused on agricultural and water resource monitoring (Slater 2016), all but 
one of the gridded meteorological datasets discussed above that provide 
information on the surface radiation balance provide simulated—not 
observed—radiation fluxes (NLDAS-2 uses remotely sensed insolation). 

4.4 Strengths and weaknesses of gridded data products 

All gridded products that incorporate station data are likely to share common 
strengths and weaknesses related to those data. For example, any product that 
incorporates gage-measured precipitation—as do all of the datasets evaluated 
here—will display precipitation amounts that reflect undercatch (see Section 
14.2) and therefore underestimate precipitation, particularly precipitation that 
falls as snow, unless some correction is applied, as in Newman et al. (2015). 
Because different areas may experience higher winds, receive a greater 
fraction of precipitation as snow, or use predominantly different styles of 
precipitation gage, the influence of undercatch may vary spatially. 

The sparseness of observational data at high elevations—particularly prior to 
the late 1970s/early 1980s initiation of the SNOTEL and RAWS networks 
(Zachariassen et al. 2003; Schaefer and Paetzold 2001)—is another common 
weakness across all gridded data products. When and where the station 
network is sparse, there is greater opportunity for gridded datasets to differ as 
a result of other choices made in their development (e.g., lapse rate 
adjustment, interpolation method, etc.) (Walton and Hall 2018). Over the upper 
Colorado River Basin, this tends to lead to greater disagreement among 
datasets prior to the late 1970s and especially before the 1950s when there 
were generally fewer stations than in more recent decades (see Figure 4.7). 
There are also larger disagreements in areas with fewer weather stations, such 
as at higher elevations. For example, Henn et al. (2018) show greater absolute 
and relative differences between precipitation datasets at higher elevations in 
the Rocky Mountains. Figures in McAfee et al. (2019) suggest somewhat greater 
differences between datasets in temperature trends at higher elevations than 
trends at lower elevations, although there is some variability by month. 
However, the same paucity of high-elevation stations, and particularly high-
elevation stations with long records, means that there is very limited ability to 
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evaluate gridded products or weather simulations against independent 
observations. This is especially problematic in the context of water resources, 
as the alpine regions are critical water supply areas within the Colorado River 
Basin (see Chapter 2).  

As discussed above, choices about dataset construction are typically made so 
that the resulting data products are most appropriate for their intended 
purpose. As a result, different gridded data products have distinct 
characteristics. For example, TopoWx fills gaps and homogenizes data prior to 
gridding; as a result, temperature trends in TopoWx appear to be less variable 
in space than temperature trends in other products (see Figure 3 in Oyler et al. 
2015). Because of limited station observations, it is difficult to determine 
whether spatially smooth gradients of trend or more spatially complex 
distributions of trend reflecting local variability in the sign and magnitude of 
trend represent actual changes. In the San Juan Mountains, temperature 
trends between 1990 and 2005 were similar at COOP and SNOTEL stations, 
despite the fact that the SNOTEL stations were, on average, located about 
2580 feet higher in elevation than the COOP stations (Rangwala and Miller 
2010), suggesting that trends may be more spatially consistent at least in some 
parts of the western U.S. While some data characteristics may seem consistent 
with the choices made in their construction or with known characteristics of 
the underlying station network or networks used, a new analysis and review by 
Newman, Clark, Longman, et al. (2019) highlights the fact that not all 
discrepancies between datasets are predictable based on their compilation. 
Some strengths and weaknesses of the datasets described in Tables 4.3 and 4.4 
are listed in Table 4.5. 

Table 4.5 
Strengths and weaknesses associated with each of the gridded products described in Tables 4.3 and 4.4 

Product Name Strengths Weaknesses 

PRISM AN81d 

Very high resolution (~0.5 mi, 800 m) daily 
product. Ability to capture cold-air 
pooling in many environments. Data 
available to near present (lag typically 
around 6 months). 

Free daily product only available back 
to 1981. 

PRISM AN81m 
and LT81m 

Record extends back to 1895. Ability to 
capture cold-air pooling in many 
environments. Responsive to coastal, 
aspect, slope influence. Long history of 
use and well-known caveats. Data 
available to near present (lag typically 
around 6 months). 

Temporally changing station network. 
There can be slight differences in 
values and spatial patterns with 
updates. More temporally stable data 
(LT81m) are not free. 
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Product Name Strengths Weaknesses 

TopoWx 

Very high spatial resolution (~0.5 mi, 800 
m) daily data back to 1948. 
Homogenization and gap filling make data 
product potentially suitable for trend 
analysis. Incorporation of satellite data 
provides additional insight to spatial 
temperature patterns. 

Only temperature is available. 
Homogenization could mask real 
spatial diversity in trends. There can 
be slight differences in values and 
spatial patterns with updates. 

Livneh 2013/ 
Maurer 2002 

Daily data available back to 1915 (1950 for 
Maurer). Internally consistent 
hydrometeorological variables simulated 
by VIC are provided. 

Lapse rates may be too steep and 
temporally stable. It is unclear whether 
cold-air pooling can be evaluated—it 
may be possible in areas with 
particularly dense station coverage. 
There do not appear to be plans to 
update data past 2011. Precipitation is 
adjusted to PRISM, so spatial pattern 
will be similar to PRISM.  

Livneh 2015 

Daily data with coverage over Mexico and 
parts of Canada back to 1950. Internally 
consistent hydrometeorological variables 
are provided. 

Lapse rates may be too steep. It is 
unclear whether or not cold-air 
pooling can be evaluated—it may be 
possible in areas with particularly 
dense station coverage. There do not 
appear to be plans to update data 
past 2013. Precipitation is adjusted to 
PRISM, so spatial pattern will be 
similar to PRISM. 

gridMET 

High-resolution (2.5 mi, 4 km) daily data 
with multiple variables suitable for 
ecological and fire weather modeling. 
Data are available in very near real time, 
but the last few days to weeks are based 
on the Climate Forecast System, rather 
than NLDAS-2. 

Data are only available back to 1979. 
Variables other than temperature and 
precipitation are interpolated to 2.5mi 
(4 km), but are not adjusted for 
physiography at that scale, so 
variables may not be physically 
consistent. Precipitation and 
temperature are adjusted to PRISM, so 
spatial patterns will be similar to 
PRISM. 

Hamlet 2005 

Long-term temperature and precipitation 
trends are adjusted to match USHCN, so 
may be suitable for trend analysis. Daily 
data back to 1915. 

Data are only available through 2003 
and not specifically updated. Lapse 
rates may be too steep and static 
owing to fixed lapse rate. Precipitation 
is adjusted to PRISM, so spatial 
pattern will be similar to PRISM. 

Hamlet 2010 

Long-term temperature and precipitation 
trends are adjusted to match USHCN, so 
may be suitable for trend analysis. Daily 
data back to 1915. 

Data are only available through 2010 
and do not appear to be updated. 
Precipitation and temperature are 
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Product Name Strengths Weaknesses 

adjusted to PRISM, so spatial patterns 
will be similar to PRISM. 

Daymet v. 3 

Very high (~0.6 mi, 1 km) resolution daily 
data, with multiple variables suitable for 
ecological modeling. Data are updated 
frequently so data are available for very 
near present. Files of input station data for 
each grid cell are provided, so users can 
accurately identify stations used. 
Coverage for all of N. America 

Data are only available back to 1980. 
Interpolation methods may not be 
able to capture very fine scale 
variability in precipitation.  

Newman 
gridded 
ensembles 

These provide multiple estimates of daily 
temperature and precipitation for each 
day for uncertainty quantification and can 
be used to explicitly predict the 
probability of precipitation occurrence. 

The spatial resolution is relatively 
coarse. Data are only available 
through 2012 and update 
potential/schedule are unclear. 
Intended use requires a large amount 
of data. 

nClimGrid 
(gridded data 
underlying the 
climate division 
data nClimDiv) 

Monthly data are available back to 1895. 
Data are homogenized so may be suitable 
for trend analysis. Data are updated 
frequently. Spatio-temporal summaries, 
ranking, etc., are readily available through 
Climate at a Glance. 

This is a relatively new product; 
caveats associated with the data are 
not yet well defined. 

NLDAS-2 
Sub-daily records for a full suite of 
meteorological variables are available. 
Data are available for close to present. 

The spatial resolution is relatively 
coarse. Data are interpolated 
reanalysis, which are relatively prone 
to error. Behnke et al. (2016) note 
NLDAS-2 has some of the highest 
errors relative to station observations. 

 
For users with particular needs, there may be relatively little choice in 
which data product to use. Applications that require spatially continuous 
hourly data are limited to NLDAS-2 of the datasets evaluated here. In other 
cases, there may appear to be greater choice, but apparently different 
products may be very similar. Only the Maurer et al. (2002), Livneh et al. 
(2013 and 2015), Hamlet and Lettenmaier (2005), and Deems and Hamlet 
(2010) products provide daily precipitation data that extend back prior to 
the early 1980s or late 1970s. These five products differ very little from each 
other in underlying data or construction methodology. All are based 
exclusively on COOP data in the U.S., although there are some differences 
in which specific stations were used (Hamlet and Lettenmaier 2005). All 
except Hamlet 2010 (Deems and Hamlet 2010) use pre-defined temperature 
lapse rates (-3.6°F/1000 feet [-6.5°C/km] or -3.3°F/1000 feet [-6.1°C/km]) 
that are, at least for minimum temperature, steeper over the Upper Basin 



 

Chapter 4. Observations—Weather and Climate 145 
 

than observed in other data products (McAfee et al. 2019; Newman et al. 
2015). Hamlet (2010) scales temperature to the PRISM climatology (Deems 
and Hamlet 2010). All of the products adjust precipitation patterns to the 
PRISM climatology, although they use different normal periods. All employ 
the same SYMAP interpolation. The primary differences between these 
products are that 1) they are supplied over different time periods and 
domains at different spatial resolutions, 2) the Hamlet (2005 and 2010) 
method homogenizes station data prior to interpolation, which the Maurer 
and Livneh methods do not (Maurer et al. 2002; Livneh et al. 2013; 2015; 
Hamlet and Lettenmaier 2005; Deems and Hamlet 2010), and 3) they adjust 
their precipitation to different PRISM precipitation climatologies—1961–
1990 for most vs. 1981–2010 for Livneh et al. (2015)—that display slightly 
different spatial patterns in precipitation. 

4.5 Considerations in the analysis of gridded data products 

Many of the characteristics of station and gridded data products discussed 
above imply certain limitations in their analysis. As noted by Newman et al. 
(2019), choices about which data to include, and particularly the density of 
input data, can have a significant influence on the effective resolution of 
the data. For example, a nominally high-resolution product based on a 
small number of stations may not be able to accurately reflect fine-scale 
spatial patterns, especially in complex terrain, such as in the Colorado River 
Basin. Users should also be aware that gridded products do not reflect 
variability that occurs at finer scales than their nominal resolution. For 
example, a product with 2.5 x 2.5 mi resolution will reflect the average 
temperature over 6.25 square miles, but local temperatures may vary 
substantially within that area. Likewise, a daily precipitation total does not 
imply information about when during the day precipitation fell or how 
heavy it was. A final consideration most pertinent to daily data is that 
different stations may use different start and end times for their day (e.g., 
9:00 a.m. vs. local midnight vs. 0:00 UTC), and those may change over time, 
so a given day may not cover the exact same period of time (see (Menne et 
al. 2012; Leeper, Rennie, and Palecki 2015). 

Intercomparison 
The first consideration is related to dataset intercomparison. Because 
different datasets are developed using different methods, disagreement in 
poorly observed areas may be expected (Walton and Hall 2018). Shared 
underlying station data can and should lead to agreement in areas where 
the station network is densest, so agreement between datasets in those 
areas or between specific grid cells and stations in those grid cells that 
contribute to the gridded product may not be effective measures of 
similarity or quality (Daly 2006). For example, Behnke et al. (2016) find the 
Livneh et al. (2013) and Maurer et al. (2002) datasets, which use only COOP 
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stations, to have relatively small biases in mean precipitation and maximum 
temperature, but they compare the gridded dataset to a set of weather 
stations that is likely dominated by COOP stations because of the chosen 
time period (1981–2010) and data completeness criteria. Station siting may 
also influence the representativeness of gridded products. Physiographic 
features that are not well sampled in the observational network may not be 
accurately portrayed in even the most complex and highest resolution 
gridded products. For example, Strachan and Daly (2017) found that 
systematic undersampling of mid-slope locations in the Great Basin drove 
biases in the representation of temperature patterns in PRISM, even at very 
high spatial resolutions. Gutmann et al. (2012) found that leeside 
precipitation amounts were overestimated in PRISM in parts of 
southwestern Colorado where there were few weather stations on leeward 
slopes.  

It is also important to be aware of interdependence between datasets 
beyond shared underlying data, so that agreement between those products 
is not over-interpreted in terms of confidence. Adjusting precipitation 
patterns in gridded datasets to match the PRISM climatology is very 
common, as is application of a pre-determined static lapse rate for both 
minimum and maximum temperatures (Figure 4.5). Even homogenization 
practices are very similar. TopoWx (Oyler, Ballantyne, et al. 2015) and 
nClimGrid (Vose et al. 2014) both use the pairwise comparison method 
described in Menne and Williams (2009), and Hamlet homogenizes station 
data to USHCN records, which are homogenized using the Menne and 
Williams (2009) pairwise method. 

Analysis of trends 
The second major consideration is related to the analysis of trends. Ideally, 
trend analysis should only be performed on data that are known to be free 
from inhomogeneities. As a result, many producers of gridded data caution 
against the use of their data for trend analysis. Redundancy in the input 
data might make it less likely that gridded data will display inhomogeneities 
particular to an individual station—for example, due to a station move 
(Groisman and Easterling 1994). In areas with few stations, however, 
inhomogeneities in individual stations, or the loss of an individual station, 
may be reflected in gridded products (McAfee, Guentchev, and Eischeid 
2014). Inhomogeneities that impact an entire station network are often 
reflected in gridded data (Groisman and Easterling 1994; Oyler, Dobrowski, 
et al. 2015). Adding data from new station networks preferentially located in 
different kinds of locations or using different instrumentation than existing 
stations can also induce inhomogeneities in gridded data (McAfee et al. 
2019) even when steps have been taken to mitigate the impact. Known 
network-wide or common spatially extensive causes of inhomogeneity in 
the region include changes in the time of observation (Karl et al. 1986) and 
instrumentation (Quayle et al. 1991) at COOP sites, urbanization (Karl, Diaz, 
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and Kukla 1988; Hausfather et al. 2013), changes in instrumentation at 
SNOTEL sites (Oyler, Ballantyne, et al. 2015), and introduction of new 
station networks (McAfee et al. 2019). Even the PRISM LT81m dataset, which 
includes only longer-duration station networks, is not recommended for 
trend analysis (PRISM 2016). Of the data products evaluated here, only 
nClimGrid, TopoWx, and the Hamlet products are homogenized in a way 
that may make them suitable for trend analysis (Oyler, Ballantyne, et al. 
2015; Oyler et al. 2016; Hamlet and Lettenmaier 2005; Deems and Hamlet 
2010; Vose et al. 2014; Walton and Hall 2018). Gap-filling and 
homogenization, however, could mask real spatial variability in trends, so 
homogenized data may be more appropriate for characterizing regional 
trends than highly local ones. The effects of homogenization can be seen in 
the precipitation trend maps shown in Henn et al. (2018) Figure 7. The trend 
patterns in the homogenized Hamlet et al. 2010 data (Deems and Hamlet 
2010) are spatially smoother than in the other products evaluated. The 
trend maps shown in Henn et al. (2018) also demonstrate that while major 
features of the 1982-2006 trend patterns are replicated—reductions in 
precipitation over the Lower Colorado Basin and increasing precipitation 
over California—there are localized differences in trend patterns and 
magnitudes over parts of the Upper Colorado Basin. 

Because of the complex ways in which choices about data selection, 
adjustment, and interpolation combine (Newman et al. 2019), it may be 
impossible to know whether gridded data contain detectable 
inhomogeneities without thorough statistical investigation. Guentchev, 
Barsugli, and Eischeid (2010) analyzed precipitation from the Maurer, BL 
(which is similar in construction to the Maurer data, but uses different 
stations and is not described Table 4.4), and PRISM datasets over the full 
Colorado River Basin for the second half of the 20th century. PRISM had the 
highest percent of grid cells without detectable inhomogeneities (88%), 
followed by Maurer (83%) and BL (77%). While all of the datasets were 
generally free of inhomogeneities, the inhomogeneities that exist were in 
the same places in all datasets. They tended to be clustered in specific, 
largely high-elevation sub-basins in the Lower Basin: the Little Colorado, 
the Lower Colorado-Lake Mead, and the Upper Gila. Repeating this type of 
analysis for the increased selection of temperature and precipitation data 
that are available now, as well as for specific time periods, would be 
beneficial and would help researchers in the region identify datasets that 
might be suitable for climate trend analysis or for use in hydrologic models 
whose output will be analyzed for long-term variability. 
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4.6 Considerations in gridded data product selection 

The single most important thing to know about selecting a gridded data 
product is that there is no perfect product—if there were perfect 
observations for every point, there would still be “errors” in all of the 
gridded products. For example, Gutmann et al. (2012) note that gridded 
precipitation from the Weather Research and Forecasting Model (WRF) and 
the 1971–2000 PRISM climatology predict different amounts of 
precipitation spillover from the windward to leeward side in parts of the 
San Juan Mountains. This is an area that did not have good leeside station 
coverage until recently; data from one station installed in late 2008 suggest 
that WRF was providing more accurate precipitation totals. Nor is there a 
best product, although there might be a best choice for certain 
applications. Data selection is necessarily based on both practical and 
scientific considerations. Many of the considerations that go into choosing 
a historical gridded climate data product are similar to those that might be 
used in climate change evaluation. In-depth discussion of the topic is 
provided by Vano et al. (2018) and Daly (2006), but some practical and 
scientific guidance for data selection is briefly outlined here.  

Practical considerations 
From a practical standpoint, a user might reasonably consider eight criteria 
about data products in choosing which to use. Many of the practical 
considerations are easily assessed with basic product metadata. 

1. Does the data product supply the weather or climate variables necessary 
for the application? Some analyses or modeling efforts may require a 
single variable, while others might require a much more extensive suite 
of variables. It is often easier to use multiple variables from a single 
gridded product because they are likely to be provided on the same grid, 
minimizing geospatial processing. 

2. Does the data product provide data with the appropriate temporal 
coverage? Specific considerations related to temporal coverage include 
the length of the dataset, how frequently it is updated, and latency—the 
lag in data availability relative to real-time. There may also be concerns 
related to how new data are released. Some data products, such as 
TopoWx, may release updates with new versions of historical data and, 
thus, may not be directly comparable to previous versions (although the 
two versions of TopoWx shown here are essentially identical over the 
Upper Basin). In this case, updating the data product may require 
downloading an entirely new database for the full period. Others, such as 
gridMET, simply extend the length of the data product during most 
updates.  

3. Does the data product provide data at the appropriate temporal 
frequency? Monthly data are somewhat more widely available than daily 
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data, which are, in turn, much more common than sub-daily data—at 
least at high spatial resolution.  

4. Does the data product cover the necessary spatial domain? For 
applications entirely within the Colorado River Basin, this is not often of 
concern. Most products provide reasonable coverage over the 
contiguous United States. However, applications that include 
transnational river basins (e.g., Rio Grande, Columbia), may require data 
to be consistent across national boundaries, and such data products are 
less common. 

5. Is the data product at the appropriate spatial resolution? Questions 
about spatial resolution may be practical—a model operates at X mi2 

resolution and requires input data at that resolution—or scientific—the 
process in question occurs at Y mi2 scale and cannot be detected in 
coarser data. Conversely, the spatial resolution of a data product will also 
influence computational time and storage demands, so data that are too 
finely scaled may be inconvenient. 

6. What resources are required to use the data? Although many data 
products are served free of cost, some data (e.g., PRISM LT81m) are only 
available for purchase. The decision to use a product that is not free 
would be contingent on funding and potentially on the user’s ability to 
justify the cost to a funder. Resource issues related to file conversion—
for example, from GRIB to GeoTiff for model compatibility—data storage 
or other processing steps could also influence the choice of dataset. 

7. Is it necessary to assess uncertainty, use multiple scenarios, or identify a 
single type of scenario? Only the Newman et al. 2015 dataset is explicitly 
designed to provide uncertainty quantification. However, it may be 
possible to include multiple datasets with input data and development 
techniques that are as different as possible. Related considerations may 
include whether specific datasets seem to routinely provide “best case” 
(e.g., robust average flows, modest flood peaks), middle-of-the-road, or 
“worst case” (e.g., lower total flow, high flood peaks) outcomes and which 
of those is most appropriate for the decision at hand. 

8. Are there any other practical considerations? There may be questions 
about whether a model being used has been parameterized with a 
specific climate dataset and whether there are consistency issues that 
need to be considered—for example, a desire to compare results from a 
new study with a previous one that would be simplified by using the 
same climate data.   
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Scientific considerations 
There are also scientific considerations related to dataset choice. Unlike 
the practical decisions, however, consideration of the scientific 
characteristics of data typically require a more in-depth knowledge of the 
data product. Daly (2006) provides a discussion around dataset choice in 
relation to physiographic features, along with background information on 
how common interpolation techniques handle physiography. Scientific 
considerations may apply particularly in post-hoc analysis of the results, in 
assessing the confidence and uncertainty around certain statements, as 
well as in gauging how widely the results could be applied to other regions, 
systems, or time periods. 

1. Is the effective resolution of the grid cell consistent with its nominal or 
apparent resolution? As computational capacity has improved, it has 
become possible to interpolate climate data to a very fine apparent 
resolution, even though little to no new information has been 
incorporated. For example, gridded data with a nominally high spatial 
resolution that rely on a low-density station network may have a lower 
effective than apparent resolution (Newman et al. 2019). The gridMET 
process adds additional climate-relevant information to NLDAS-2-
derived temperature, precipitation, and humidity, but simply 
interpolates winds and radiation, so the effective resolution of gridMET 
wind and radiation are the NLDAS-2 resolution, not their nominal ~2.5-
mi resolution (Abatzoglou 2013).  

2. Do data need to be internally physically consistent? In some cases, 
detailed process modeling may require suites of variables that are 
physically consistent. For example, some applications need data that 
can accurately reflect a drop in temperatures caused by evaporation or 
melting of precipitation in order to better forecast precipitation 
amount, intensity, and whether it will fall as rain, snow, or freezing 
precipitation (e.g.,  Barros and Lettenmaier 1994; Kain, Goss, and 
Baldwin 2000). The ARkStorm@Tahoe project—which simulated 
snowfall and flooding caused by a single significant storm event to 
evaluate environmental and socio-economic impacts and real-time 
response mechanisms—required such a complex data set in order to 
develop realistic and accurate timelines and spatial maps of flooding 
and related hazards in a topographically complex region (Albano et al. 
2016). Producing such data typically requires dynamical generation or 
downscaling (e.g., Gutmann et al. 2012). Most observationally based 
gridded data products probably cannot provide this level of internal 
consistency, but it is also not clear how many applications would 
require this. 

3. How might known data characteristics influence an application? Data 
intercomparisons, such as (Behnke et al. 2016; Henn et al. 2018; Walton 
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and Hall 2018) and many others evaluate whether certain datasets are 
relatively cool or warm, or wet or dry in certain locations, and data 
documentation often highlights known errors, strengths and 
weaknesses in data products. However, it can be difficult to determine 
which data are most correct, either because station data are lacking, 
and there is no real ground-truth, or because the available station data 
were used to produce the gridded data and do not provide an 
independent check (Daly 2006). More detailed studies might be 
required to understand which datasets are more accurate and why. 
There is also the question of how much errors or biases impact any 
given application. For example, Strachan and Daly (2017) found that cool 
biases in PRISM, related to the siting of available input stations, 
impacted growing-degree day calculations more than they influenced 
assessment of the length of the frost-free season or temperature-based 
estimates of the percent of precipitation falling as snow. In that case, 
users analyzing growing degree days might be particularly cautious 
about their subsequent interpretations and conclusions.  

4. Is it appropriate to use records with particular types of 
inhomogeneities? Data containing inhomogeneities that impact only 
how climate is recorded (e.g., inhomogeneities related to changes in 
instrumentation) are likely to be problematic in many applications and 
can lead to misleading conclusions (e.g., Oyler, Dobrowski, et al. 2015). 
But inhomogeneities related to land cover change, such as 
urbanization, (Karl, Diaz, and Kukla 1988) may be valuable components 
of data for some applications. Identifying and correctly quantifying 
trends related to large-scale forcing, such as global warming, requires 
removing both sudden and “creeping” inhomogeneities (Menne and 
Williams 2009). Understanding local-scale changes in evaporative 
demand, however, might require climate records that reflect the sum of 
all changes, including any local warming related to land-cover change 
due to urbanization, conversion to agriculture, etc. In such cases, 
homogenized data may, in fact, be inappropriate. 

In sum, both practical and scientific considerations should influence users’ 
choices about which data product to use. The effect that those choices 
might have on subsequent analyses is often not well characterized. There 
are a number of open questions about weather and climate in complex 
topography, how weather and climate variability across large basins 
influences hydrology, and about how best to use imperfect gridded climate 
data to better understand natural and managed hydrologic systems. 
Research efforts to address these questions are on-going. For the time 
being, users of these products should attempt to assess basic information 
about the gridded or station data they use and consider how the 
characteristics of those data might influence their analysis. 
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4.7 Challenges and opportunities 

Challenge 
While commonly used gridded climate datasets show very similar variability 
and trends in precipitation and temperature for the basin, disagreements 
between the datasets are larger for the sparsely instrumented high-
elevation areas in the Upper Basin—the areas that generate the vast 
majority of the basin’s runoff.  

Opportunities 
• Use other types of measurements, such as streamflow and radar, to 

constrain the gridded estimates of temperature and precipitation, and 
add novel observation techniques (e.g., Airborne Snow Observatory; see 
Chapter 5) to bolster ongoing observations. 

• Use numerical weather prediction models (Chapter 7) for 
spatiotemporal interpolation and validation of observation-based 
products.  

Challenge 
It is increasingly understood that the gridded climate datasets have 
inherent uncertainties and differ from each other, but how those 
uncertainties and differences manifest in the outputs of typical 
hydroclimate modeling and analysis tasks needs to be better explored and 
communicated to users.  

Opportunities 
• Conduct formal intercomparisons between gridded datasets in the 

context of specific applications and outputs (e.g., Alder and Hostetler 
2019 on the use of different gridded climate datasets for statistical 
downscaling of GCM data; Chapter 11). 

• Application projects can consider including a testing phase in which 
multiple gridded datasets are tested on a limited portion of the project’s 
domain or analyses. 

• Both researchers and users can acknowledge that all data are 
imperfect, and move away from trying to identify a single “best” 
product toward greater consideration of the data characteristics that 
are, and are not, important for their questions and analyses.  
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Glossary 
ablation 
The loss of snow from the snowpack due to melting, evaporation, or wind. 

absolute error 
The difference between the measured and actual values of x. 

albedo 
The percentage of incoming light that is reflected off of a surface. 

aleatory uncertainty 
Uncertainty due to randomness in the behavior of a system (i.e., natural variability) 

anomaly 
A deviation from the expected or normal value. 

atmospheric river (AR) 
A long and concentrated plume of low-level (<5,000’) moisture originating in the tropical Pacific. 

autocorrelation 
Correlation between consecutive values of the same time series, typically due to time-dependencies in 

the dataset. 

bank storage 
Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative 

water levels. 

bias correction 
Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using 

observations in a reference period. 

boundary conditions 
Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, sea-

ice and snowpack conditions) and can help forecast the future climate state when included in a model. 

calibration 
The process of comparing a model with the real system, followed by multiple revisions and comparisons 

so that the model outputs more closely resemble outcomes in the real system. 

climate forcing 
A factor causing a difference between the incoming and outgoing energy of the Earth’s climate system, 

e.g., increases in greenhouse-gas concentrations. 

climatology 
In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., “compared 

to climatology”). Synonymous with climate normal. 
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coefficient of variation (CV) 
A common measure of variability in a dataset; the standard deviation divided by the mean. 

consumptive use 
The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage 

and is thus unavailable for subsequent use. 

convection 
The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is 

warmer than the surrounding atmosphere. 

covariate 
A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., 

precipitation).  

cross-correlation 
A method for estimating to what degree two variables or datasets are correlated. 

cumulative distribution function (CDF) 
A function describing the probability that a random variable, such as streamflow, is less than or equal to 
a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-

exceedance. 

Darcy’s Law 
The mathematical expression that describes fluid flow through a porous medium (e.g., soil). 

datum 
The base, or 0.0-foot gage-height (stage), for a stream gage. 

dead pool 
The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or 

released downstream. 

deterministic 
Referring to a system or model in which a given input always produces the same output; the input strictly 

determines the output. 

dewpoint 
The local temperature that the air would need to be cooled to (assuming atmospheric pressure and 

moisture content are constant) in order to achieve a relative humidity (RH) of 100%. 

dipole 
A pair of two equal and opposing centers of action, usually separated by a distance. 

discharge 
Volume of water flowing past a given point in the stream in a given period of time; synonymous with 

streamflow. 
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distributed 
In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins 

into grid cells. Contrast with lumped model. 

downscaling 
Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.  

dynamical 
In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most 

of the relevant processes. 

environmental flow 
Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to 

sustain the river’s ecosystem. 

epistemic uncertainty 
Uncertainty due to incomplete knowledge of the behavior of a system. 

evapotranspiration 
A combination of evaporation from the land surface and water bodies, and transpiration of water from 

plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well. 

fixed lapse rate 
A constant rate of change of an atmospheric variable, usually temperature, with elevation. 

flow routing 
The process of determining the flow hydrograph at sequential points along a stream based on a known 

hydrograph upstream. 

forcing  - see climate forcing or weather forcing 
 
forecast 
A prediction of future hydrologic or climate conditions based on the initial (current) conditions and 

factors known to influence the evolution of the physical system. 

Gaussian filter 
A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-

shaped statistical distribution. 

gridded data 
Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or 

otherwise derived from a set of point observations. 

heat flux 
The rate of heat energy transfer from one surface or layer of the atmosphere to the next. 

hindcast 
A forecast run for a past date or period, using the same model version as for real-time forecasts; used for 

model calibration and to “spin up” forecast models. Same as reforecast. 
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hydraulic conductivity 
A measure of the ease with which water flows through a medium, such as soil or sediment. 

hydroclimate 
The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for 

a watershed or region. 

hydrograph 
A graph of the volume of water flowing past a location per unit time. 

hydrometeorology 
A branch of meteorology and hydrology that studies the transfer of water and energy between the land 

surface and the lower atmosphere. 

imaging spectrometer 
An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved 

image of an object or area. 

in situ 
Referring to a ground-based measurement site that is fixed in place. 

inhomogeneity 
A change in the mean or variance of a time-series of data (such as weather observations) that is caused 

by changes in the observing station or network, not in the climate itself. 

Interim Guidelines  
The Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake 

Powell and Lake Mead, signed by the Secretary of the Interior in December 2007. The guidelines expire 

in 2026. https://www.usbr.gov/lc/region/programs/strategies.html 

internal variability 
Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth’s oceans and 

atmosphere. 

interpolation 
The process of calculating the value of a function or set of data between two known values. 

isothermal 
A dynamic in which temperature remains constant while other aspects of the system change. 

jet stream 
A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer 

and colder air masses. 

kriging 
A smoothing technique that calculates minimum error-variance estimates for unsampled values. 

kurtosis 
A measure of the sharpness of the peak of a probability distribution. 

https://www.usbr.gov/lc/region/programs/strategies.html
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lag-1 autocorrelation 
Serial correlation between data values at adjacent time steps. 

lapse rate 
The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is 

adiabatic when no heat exchange occurs between the given air parcel and its surroundings. 

latency 
The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions. 

latent heat flux 
The flow of heat from the Earth’s surface to the atmosphere that involves evaporation and condensation 

of water; the energy absorbed/released during a phase change of a substance. 

Law of the River 
A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines 

that apportions the water and regulates the use and management of the Colorado River among the 

seven basin states and Mexico. 

LiDAR (or lidar) 
Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the 

variable distances from the sensor to the land surface. 

longwave radiation 
Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 

micrometers. 

Lower Basin 
The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are 
downstream of the Colorado River Compact point at Lee Ferry, Arizona. 

lumped model 
In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single 

unit, averaging spatial characteristics across that unit. Contrast with distributed model. 

Markov chain 
A mathematical system in which transitions from one state to another are dependent on the current state 

and time elapsed. 

megadrought 
A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature 
have varied. 

metadata 
Data that gives information about other data or describes its own dataset. 
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mid-latitude cyclone 
A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, 

and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east 

and are effective at producing precipitation over broad areas.   

Minute 319 
The binding agreement signed in 2012 by the International Boundary and Water Commission, United 

States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin 

operations and water allocation, and humanitarian measures. 

Modoki 
An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as 

“CP” El Niño. 

multicollinearity 
A condition in which multiple explanatory variables that predict variation in a response variable are 

themselves correlated with each other. 

multiple linear regression 
A form of regression in which a model is created by fitting a linear equation over the observed data, 

typically for two or more explanatory (independent) variables and a response (dependent) variable. 

multivariate  
Referring to statistical methods in which there are multiple response (dependent) variables being 

examined. 

natural flow 
Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or 

diversion. Equivalent to naturalized flow, virgin flow, and undepleted flow. 

naturalized flow – see natural flow 

nearest neighbor method 
A nonparametric method that examines the distances between a data point (e.g., a sampled value) and 

the closest data points to it in x-y space (“nearest neighbors,” e.g., historical values) and thereby 
obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest 

neighbors (i.e., K-NN). 

nonparametric 
A statistical method that assumes no underlying mathematical function for a sample of observations. 

orographic lift 
A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or 

mountains. This mechanism leads to increased condensation and precipitation over higher terrain. 

p 
A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test 
of statistical significance. 
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paleohydrology 
The study of hydrologic events and processes prior to the instrumental (gaged) record, typically using 

environmental proxies such as tree rings. 

parameterized 
Referring to a key variable or factor that is represented in a model by an estimated value (parameter) 

based on observations, rather than being explicitly modeled through physical equations. 

parametric 
A statistical method that assumes an underlying mathematical function, specified by a set of 

characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations. 

persistence 
In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. 

Hydrologic time series with persistence are autocorrelated. 

phreatophytes 
Plants with deep root systems that are dependent on water from the water table or adjacent soil 

moisture reserves. 

pluvial 
An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought. 

principal components regression (PCR) 
A statistical technique for analyzing and developing multiple regressions from data with multiple 

potential explanatory variables. 

prior appropriation 
“First in time, first in right.” The prevailing doctrine of water rights for the western United States; a legal 

system that determines water rights by the earliest date of diversion or storage for beneficial use. 

probability density function (PDF) 
A function, or curve, that defines the shape of a probability distribution for a continuous random 

variable. 

projection 
A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on 

specified other conditions occurring during the forecast period, typically a particular scenario of 

greenhouse gas emissions.  

quantiles 
Divisions of the range of observations of a variable into equal-sized groups. 

r  
Correlation coefficient. The strength and direction of a linear relationship between two variables. 
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R2  
Coefficient of determination. The proportion of variance in a dependent variable that's explained by 
the independent variables in a regression model. 

radiometer 
An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy 

emitted from the sun and reflected by clouds, and longwave energy emitted from the earth’s surface. 

raster 
A digital image or computer mapping format consisting of rows of colored pixels. 

reanalysis 
An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling 

environment to produce consistent fields of variables over the entire period of analysis. 

reference evapotranspiration  
An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the 

water need for irrigation. 

regression 
A statistical technique used for modeling the linear relationship between two or more variables, e.g., 

snowpack and seasonal streamflow. 

relative humidity (RH) 
The amount of moisture in the atmosphere relative to the amount that would be present if the air were 

saturated. RH is expressed in percent, and is a function of both moisture content and air temperature. 

remote sensing 
The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other 

platforms distant from the object(s) being sensed. 

residual  
The difference between the observed value and the estimated value of the quantity of interest. 

resolution 
The level of detail in model output; the ability to distinguish two points in space (or time) as separate.  

spatial resolution - Resolution across space, i.e., the ability to separate small details in a spatial 

representation such as in an image or model. 

temporal resolution - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time 

step. 

return flow 
The water diverted from a river or stream that returns to a water source and is available for consumptive 

use by others downstream. 
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runoff 
Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is 

routed and measured within channels is streamflow. 

runoff efficiency 
The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through 

evapotranspiration. 

sensible heat flux 
The flow of heat from the Earth’s surface to the atmosphere without phase changes in the water, or the 

energy directly absorbed/released by an object without a phase change occurring. 

shortwave radiation 
Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength 

spectrum is between 0.2 and 3.0 micrometers. 

skew 
The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) 

distribution. 

skill 
The accuracy of the forecast relative to a baseline “naïve” forecast, such as the climatological average 

for that day. A forecast that performs better than the baseline forecast is said to have positive skill.    

smoothing filter 
A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. 

Common signal smoothing techniques include moving average and Gaussian algorithms. 

snow water equivalent (SWE) 
The depth, often expressed in inches, of liquid water contained within the snowpack that would 

theoretically result if you melted the snowpack instantaneously. 

snow course 
A linear site used from which manual measurements are taken periodically, to represent snowpack 

conditions for larger area. Courses are typically about 1,000’ long and are situated in areas protected 

from wind in order to get the most accurate snowpack measurements. 

snow pillow 
A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has 

accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the 

weight pressing down on the pillow. 

stationarity 
The condition in which the statistical properties of the sample data, including their probability 

distribution and related parameters, are stable over time. 

statistically significant 
Unlikely to occur by chance alone, as indicated by one of several statistical tests. 
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stepwise regression 
The process of building a regression model from a set of values by entering and removing predictor 

variables in a step-by-step manner. 

stochastic method 
A statistical method in which randomness is considered and included in the model used to generate 

output; the same input may produce different outputs in successive model runs.  

stratosphere 
The region of the upper atmosphere extending from the top of the troposphere to the base of the 

mesosphere; it begins about 11–15 km above the surface in the mid-latitudes. 

streamflow 
Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acre-

feet for flow volume. Synonymous with discharge. 

sublimation 
When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase 

without going through the intermediate liquid phase; a major source of snowpack loss over the course of 

the season. 

surface energy balance 
The net balance of the exchange of energy between the Earth’s surface and the atmosphere. 

teleconnection 
A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the 

tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin). 

temperature inversion 
When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient 

of temperature decreasing with height. 

tercile 
Any of the two points that divide an ordered distribution into three parts, each containing a third of the 

population. 

tilt 
A shift in probabilities toward a certain outcome. 

transpiration 
Water discharged into the atmosphere from plant surfaces. 

troposphere 
The layer of the atmosphere from the Earth's surface up to the tropopause (~11–15 km) below the 

stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor 

content, and sensible weather (clouds, rain, etc.). 
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undercatch 
When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with 

snow, especially under windy conditions. 

unregulated flow 
Observed streamflow adjusted for some, but not all upstream activities, depending on the location and 

application. 

Upper Basin 
The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are 

upstream of the Colorado River Compact point at Lee Ferry, Arizona.  

validation 
The process of comparing a model and its behavior and outputs to the real system, after calibration.  

variance 
An instance of difference in the data set. In regard to statistics, variance is the square of the standard 

deviation of a variable from its mean in the data set. 

wavelet analysis 
A method for determining the dominant frequencies constituting the overall time-varying signal in a 

dataset.
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Acronyms & Abbreviations 
24MS 
24-Month Study Model 

AET 
actual evapotranspiration 

AgriMET 
Cooperative Agricultural Weather Network 

AgWxNet  
Agricultural Weather Network 

AHPS  
Advanced Hydrologic Prediction Service 

ALEXI  
Atmosphere-Land Exchange Inversion 

AMJ 
April-May-June 

AMO  
Atlantic Multidecadal Oscillation 

ANN  
artificial neural network 

AOP  
Annual Operating Plan 

AR 
atmospheric river 

AR-1  
first-order autoregression 

ARkStorm  
Atmospheric River 1,000-year Storm 

ASCE  
American Society of Civil Engineers 

ASO  
Airborne Snow Observatory 

ASOS  
Automated Surface Observing System 

AVHRR  
Advanced Very High-Resolution 

Radiometer 

AWOS  
Automated Weather Observing System 

BCCA 
Bias-Corrected Constructed Analog 

BCSD 
Bias-Corrected Spatial Disaggregation 

(downscaling method) 

BCSD5 
BCSD applied to CMIP5 

BOR  
United States Bureau of Reclamation 

BREB  
Bowen Ratio Energy Balance method 

C3S  
Copernicus Climate Change Service 

CA  
Constructed Analogues 

CADSWES 
Center for Advanced Decision Support for 

Water and Environmental Systems 

CADWR 
California Department of Water Resources 

CanCM4i 
Canadian Coupled Model, 4th generation 

(global climate model) 

CBRFC  
Colorado Basin River Forecast Center 
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CCA  
Canonical Correlation Analysis 

CCSM4  
Community Climate System Model, version 

4 (global climate model) 

CDEC  
California Data Exchange Center 

CDF  
cumulative distribution function 

CESM  
Community Earth System Model (global 

climate model) 

CFS  
Climate/Coupled Forecast System 

CFSv2  
Coupled Forecast System version 2 (NOAA 

climate forecast model) 

CHPS  
Community Hydrologic Prediction System 

CIMIS  
California Irrigation Management 

Information System 

CIR 
crop irrigation requirement 

CIRES 
Cooperative Institute for Research in 

Environmental Sciences 

CLIMAS 
Climate Assessment for the Southwest 

CLM  
Community Land Model 

CM2.1 
Coupled Physical Model, version 2.1 (global 

climate model) 

CMIP  
Coupled Model Intercomparison Project 

(coordinated archive of global climate 

model output) 

CNRFC 
California-Nevada River Forecast Center 

CoAgMET  
Colorado Agricultural Meteorological 

Network 

CoCoRaHS  
Community Collaborative Rain, Hail and 

Snow Network 

CODOS 
Colorado Dust-on-Snow 

CONUS  
contiguous United States (the lower 48 

states) 

COOP  
Cooperative Observer Program 

CP  
Central Pacific 

CPC  
Climate Prediction Center 

CRB  
Colorado River Basin 

CRBPP 
Colorado River Basin Pilot Project 

CRPSS 
Continuous Ranked Probability Skill Score 

CRSM  
Colorado River Simulation Model 

CRSP 
Colorado River Storage Project 
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CRSS  
Colorado River Simulation System 

CRWAS  
Colorado River Water Availability Study 

CSAS 

CRWAS  
Center for Snow and Avalanche Studies 

CTSM  
Community Terrestrial Systems Model 

CU 
consumptive use 

CUL  
consumptive uses and losses 

CV  
coefficient of variation 

CVP/SWP  
Central Valley Project/State Water Project 

CWCB  
Colorado Water Conservation Board 

CWEST  
Center for Water, Earth Science and 

Technology 

DA  
data assimilation 

Daymet v.3  
daily gridded surface meteorological data 

DCP 
Drought Contingency Plan 

DEM  
digital elevation model 

DEOS  
Delaware Environmental Observing System 

DHSVM  
Distributed Hydrology Soil Vegetation 

Model 

DJF  
December-January-February 

DMDU  
Decision Making Under Deep Uncertainty 

DMI  
Data Management Interface 

DOD  
Department of Defense 

DOE  
Department of Energy 

DOW  
Doppler [radar] on Wheels 

DRI  
Desert Research Institute 

DTR  
diurnal temperature range 

EC  
eddy-covariance method 

EC 
Environment Canada 

ECCA  
ensemble canonical correlation analysis 

ECMWF  
European Centre for Medium-Range 

Weather Forecasts 

EDDI  
Evaporative Demand Drought Index 

EFAS  
European Flood Awareness System 
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EIS  
Environmental Impact Statement 

En-GARD  
Ensemble Generalized Analog Regression 

Downscaling 

ENSO  
El Niño-Southern Oscillation 

EOF  
empirical orthogonal function 

EP  
Eastern Pacific 

ERC 
energy release component 

ESI  
Evaporative Stress Index 

ESM  
coupled Earth system model 

ESP  
ensemble streamflow prediction 

ESRL  
Earth System Research Laboratory 

ET  
evapotranspiration 

ET0  
Reference (crop) evapotranspiration 

EVI  
Enhanced Vegetation Index 

FAA  
Federal Aviation Administration 

FAWN  
Florida Automated Weather Network 

FEWS  
Famine Early Warning System 

FEWS 
Flood Early Warning System 

FIRO  
forecast-informed reservoir operations 

FLOR 
Forecast-oriented Low Ocean Resolution 

(global climate model) 

FORTRAN  
Formula Translation programming 

language 

FPS  
Federal Priority Streamgages 

FROMUS  
Forecast and Reservoir Operation Modeling 

Uncertainty Scoping 

fSCA  
fractional snow covered area 

FWS 
U.S. Fish and Wildlife Service 

GCM  
global climate model, or general circulation 

model 

GEFS  
Global Ensemble Forecast System 

GEM  
Global Environmental Multiscale model 

GEOS 
Goddard Earth Observing System (global 

climate model) 

GeoTiff  
Georeferenced Tagged Image File Format 

GFDL  
Geophysical Fluid Dynamics Laboratory 
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GFS  
Global Forecast System model 

GHCN  
Global Historical Climatology Network 

GHCN-D  
Global Historical Climate Network-Daily 

GHG  
greenhouse gas 

GIS  
geographic information system 

GLOFAS  
Global Flood Awareness System 

GLOFFIS 
Global Flood Forecast Information System 

GOES  
Geostationary Operational Environmental 

Satellite 

GRACE  
Gravity Recovery and Climate Experiment 

GRIB  
gridded binary or general regularly-

distributed information in binary form 

gridMET  
Gridded Surface Meteorological dataset 

GSSHA  
Gridded Surface/Subsurface Hydrologic 

Analysis 

GW  
groundwater 

HCCD  
Historical Canadian Climate Data 

HCN  
Historical Climatology Network 

HDA  
hydrologic data assimilation 

HDSC  
Hydrometeorological Design Studies 

Center 

HEFS  
Hydrologic Ensemble Forecast Service 

HESP  
Hierarchical Ensemble Streamflow 

Prediction 

HL-RDHM  
Hydrologic Laboratory-Research Distributed 

Hydrologic Model 

HMT  
Hydromet Testbed 

HP  
hydrological processor 

HRRR  
High Resolution Rapid Refresh (weather 

model) 

HSS  
Heidke Skill Score 

HTESSEL  
Land-surface Hydrology Tiled ECMWF 

Scheme for Surface Exchanges over Land 

HUC  
Hydrologic Unit Code 

HUC4  
A 4-digit Hydrologic Unit Code, referring to 

large sub-basins (e.g., Gunnison River) 

HUC12  
A 12-digit Hydrologic Unit Code, referring 

to small watersheds 
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ICAR  
Intermediate Complexity Atmospheric 

Research model 

ICS  
intentionally created surplus 

IDW  
inverse distance weighting 

IFS  
integrated forecast system 

IHC  
initial hydrologic conditions 

INSTAAR  
Institute of Arctic and Alpine Research 

IPCC  
Intergovernmental Panel on Climate 

Change 

IPO  
Interdecadal Pacific Oscillation 

IRI  
International Research Institute 

iRON  
Interactive Roaring Fork Observing Network 

ISM  
Index Sequential Method 

JFM 
January-February-March 

JJA  
June-July-August 

K-NN  
K-Nearest Neighbor 

Landsat  
Land Remote-Sensing Satellite (System) 

LAST  
Lane’s Applied Stochastic Techniques 

LERI  
Landscape Evaporative Response Index 

lidar  
light detection and ranging  

LOCA  
Localized Constructed Analog 

LSM  
land surface model 

M&I  
municipal and industrial (water use 

category) 

MACA 
Multivariate Adaptive Constructed Analog 

maf  
million acre-feet 

MAM  
March-April-May 

MEFP  
Meteorological Ensemble Forecast 

Processor 

METRIC  
Mapping Evapotranspiration at high 

Resolution with Internalized Calibration 

MJO  
Madden-Julian Oscillation 

MMEFS  
Met-Model Ensemble Forecast System 

MOCOM 
Multi-Objective Complex evolution 

MODDRFS  
MODIS Dust Radiative Forcing in Snow 
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MODIS  
Moderate Resolution Imaging 

Spectroradiometer 

MODIS LST (MYD11A2)  
Moderate Resolution Imaging 

Spectroradiometer Land Surface 

Temperature (MYD11A2) 

MODSCAG  
MODIS Snow Covered Area and Grain-size 

MPR 
Multiscale Parameter Regionalization 

MRM  
Multiple Run Management 

MT-CLIM (or MTCLIM) 
Mountain Climate simulator 

MTOM  
Mid-Term Probabilistic Operations Model 

NA-CORDEX  
North American Coordinated Regional 

Downscaling Experiment 

NAM  
North American Monsoon 

NAO  
North Atlantic Oscillation 

NARCCAP  
North American Regional Climate Change 

Assessment Program 

NARR  
North American Regional Reanalysis 

NASA  
National Aeronautics and Space 

Administration 

NASA JPL  
NASA Jet Propulsion Laboratory 

NCAR  
National Center for Atmospheric Research 

NCCASC 
North Central Climate Adaptation Science 

Center 

NCECONET  
North Carolina Environment and Climate 

Observing Network 

NCEI  
National Centers for Environmental 

Information 

NCEP  
National Centers for Environmental 

Prediction  

nClimDiv  
new Climate Divisional (NOAA climate 

dataset) 

NDBC  
National Data Buoy Center 

NDVI  
Normalized Difference Vegetation Index 

NDWI  
Normalized Difference Water Index 

NEMO 
Nucleus for European Modelling of the 

Ocean (global ocean model) 

NevCan  
Nevada Climate-ecohydrological 

Assessment Network 

NGWOS 
Next-Generation Water Observing System 

NHMM  
Bayesian Nonhomogenous Hidden Markov 

Model 
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NICENET  
Nevada Integrated Climate and 

Evapotranspiration Network 

NIDIS  
National Integrated Drought Information 

System 

NLDAS  
North American Land Data Assimilation 

System 

NMME  
North American Multi-Model Ensemble 

NN R1  
NCEP/NCAR Reanalysis 

NOAA  
National Oceanic and Atmospheric 

Administration 

NOAH  
Neural Optimization Applied Hydrology  

Noah-MP 
Noah-Multi-parameterization Model 

NOHRSC  
National Operational Hydrologic Remote 

Sensing Center 

NPP  
Nonparametric paleohydrologic method 

NRCS  
Natural Resource Conservation Service 

NSF  
National Science Foundation 

NSIDC 
National Snow and Ice Data Center 

NSMN  
National Soil Moisture Network 

NVDWR  
Nevada Department of Water Resources 

NWCC 
National Water and Climate Center 

NWIS  
National Water Information System 

NWM  
National Water Model 

NWP  
numerical weather prediction 

NWS  
National Weather Service 

NWSRFS 
National Weather Service River Forecast 

System 

NZI  
New Zealand Index 

OCN  
Optimal Climate Normals 

OHD  
Office of Hydrologic Development  

OK Mesonet  
Oklahoma Mesoscale Network 

ONI  
Oceanic Niño Index 

OWAQ  
Office of Weather and Air Quality 

OWP  
Office of Water Prediction 

PC  
principal components 

PCA  
principal components analysis 
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PCR  
principal components regression 

PDO  
Pacific Decadal Oscillation 

PDSI  
Palmer Drought Severity Index 

PET  
potential evapotranspiration 

PGW  
pseudo-global warming 

PRISM  
Parameter-elevation Relationships on 

Independent Slopes Model 

PSD  
Physical Sciences Division 

QBO  
Quasi-Biennial Oscillation 

QDO  
Quasi-Decadal Oscillation 

QM 
quantile mapping 

QPE  
Quantitative Precipitation Estimate 

QPF  
Quantitative Precipitation Forecast 

QTE  
Quantitative Temperature Estimate 

QTF  
Quantitative Temperature Forecast 

radar 
radio detection and ranging 

RAP  
Rapid Refresh (weather model) 

RAWS  
Remote Automated Weather Station 

Network 

RCM  
Regional Climate Model 

RCP 
Representative Concentration Pathway 

RE 
reduction-of-error 

RFC 
River Forecast Center 

RFS  
River Forecasting System 

RH  
relative humidity 

RiverSMART  
RiverWare Study Manager and Research 

Tool 

RMSE  
root mean squared error 

S/I 
seasonal to interannual 

S2S 
subseasonal to seasonal 

Sac-SMA 
Sacramento Soil Moisture Accounting 

Model 

SAMS 
Stochastic Analysis Modeling and 

Simulation 

SCA  
snow-covered area 
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SCAN  
Soil Climate Analysis Network 

SCE  
Shuffled Complex Evolution 

SCF  
seasonal climate forecast 

SE  
standard error 

SECURE  
Science and Engineering to 

Comprehensively Understand and 

Responsibly Enhance Water 

SFWMD 
South Florida Water Management District 

SM  
soil moisture 

SMA  
Soil Moisture Accounting 

SMAP 
Soil Moisture Active Passive 

SMHI 
Swedish Meteorological and Hydrological 

Institute 

SMLR  
Screening Multiple Linear Regression 

SMOS 
Soil Moisture and Ocean Salinity 

SNODAS 
Snow Data Assimilation System 

SNOTEL  
Snow Telemetry 

SOI  
Southern Oscillation Index 

SON  
September-October-November 

SPoRT  
Short-term Prediction Research Transition 

SRES  
Special Report on Emissions Scenarios 

SRP  
Salt River Project 

SSEBOP  
Simplified Surface Energy Balance 

SSEBOP ET 
Simplified Surface Energy Balance 

Evapotranspiration 

SSP  
Societally Significant Pathway 

SST  
sea surface temperatures 

SSW  
stratospheric sudden warming 

SubX  
Subseasonal Experiment 

SUMMA  
Structure for Unifying Multiple Modeling 

Alternatives 

SVD  
singular value decomposition 

SW  
surface water 

SWANN  
Snow-Water Artificial Neural Network 

Modeling System 

SWcasts 
Southwest Forecasts 
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SWE 
snow water equivalent 

SWOT 
Surface Water and Ocean Topography 

SWS  
Statistical Water Supply 

Tair  
air temperature 

Tdew  
dew point temperature 

TopoWx  
Topography Weather (climate dataset) 

TVA  
Tennessee Valley Authority 

UC  
Upper Colorado Region (Reclamation) 

UCAR 
University Corporation for Atmospheric 

Research 

UCBOR 
Upper Colorado Bureau of Reclamation 

UCRB 
Upper Colorado River Basin 

UCRC  
Upper Colorado River Commission 

UCRSFIG 
Upper Colorado Region State-Federal 

Interagency Group 

USACE  
U.S. Army Corps of Engineers 

USBR 
U.S. Bureau of Reclamation 

USCRN  
U.S. Climate Reference Network 

USDA 
U.S. Department of Agriculture 

USGCRP 
U.S. Global Change Research Program 

USGS 
U.S. Geological Survey 

USHCN 
United States Historical Climatology 

Network 

VIC 
Variable Infiltration Capacity (model) 

VIIRS  
Visible Infrared Imaging Radiometer Suite 

VPD 
vapor pressure deficit 

WBAN  
Weather Bureau Army Navy 

WCRP  
World Climate Research Program 

WFO  
Weather Forecast Office 

WPC  
Weather Prediction Center 

WRCC  
Western Regional Climate Center 

WRF  
Weather Research and Forecasting 

WRF-Hydro 
WRF coupled with additional models to 

represent hydrologic processes 
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WSF  
water supply forecast 

WSWC  
Western States Water Council 

WUCA 
Water Utility Climate Alliance 

WWA 
Western Water Assessment 

WWCRA  
West-Wide Climate Risk Assessments 

WWMPP 
Wyoming Weather Modification Pilot 

Project 
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