Chapter 1
Introduction
Acknowledgements

Sponsors

The authors are grateful for the generous funding, collaboration, and guidance from the water resource managers of the following organizations: the Arizona Department of Water Resources, Bureau of Reclamation, California's Six Agency Committee, Central Arizona Water Conservation District, Colorado River Water Conservation District, Colorado Water Conservation Board, Denver Water, Metropolitan Water District of Southern California, New Mexico Interstate Stream Commission, Southern Nevada Water Authority, Utah Division of Water Resources, and the Wyoming State Engineer’s Office. This group of water resource managers is working to advance scientific understanding to improve the accuracy of hydrologic forecasts and projections, to enhance the performance of predictive tools, and to better understand the uncertainty related to future supply and demand conditions in the Colorado River Basin.
Reviewers

We would also like to thank the people who shared their time and expertise reviewing the first draft of this report:

Sponsor reviewers
Representatives of the sponsoring agencies named above

Technical reviewers

Chapter 2
Michael Crimmins, University of Arizona, CLIMAS
Russ Schumacher, Colorado State University, Colorado Climate Center
Brad Udall, Colorado State University, Colorado Water Center

Chapter 3
Cameron Bracken, Bonneville Power Authority
Kevin Wheeler, Water Balance Consulting

Chapter 4
Andrew Newman, NCAR Research Applications Lab
Nancy Selover, Arizona State University, Arizona State Climate Office

Chapter 5
Kat Bormann, Jet Propulsion Laboratory, Caltech and NASA
David Clow, USGS Colorado Water Science Center
Mark Landers, USGS National Streamgage Network Coordinator

Chapter 6
Ben Livneh, CU Boulder, CIRES, WWA and Civil Engineering
Mark Raleigh, CU Boulder, CIRES, NSIDC
Peter Troch, University of Arizona

Chapter 7
Emily Becker, University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS)
Kathy Pegion, George Mason University
Tom Hamill, NOAA ESRL Physical Sciences Division

Chapter 8
Guotao Cui, University of California, Merced
Kevin Werner, NOAA Northwest Fisheries Science Center

Chapter 9
Upmanu Lall, Columbia University, Columbia Water Center
David Tarboton, Utah State University, Utah Water Research Laboratory
Chapter 10
Toby Ault, Cornell University
Greg Pederson, USGS Northern Rocky Mountain Science Center

Chapter 11
David Pierce, Scripps Institution of Oceanography and California-Nevada Climate Applications Program (CNAP)
Julie Vano, Aspen Global Change Institute

Other contributors
The authors appreciate the following individuals for contributions to one or more sections of the report:

Genevieve Allan, Bureau of Reclamation, Lower Colorado Region
Sarah Baker, CU Boulder, CADSWES and Bureau of Reclamation
Dan Bunk, Bureau of Reclamation, Lower Colorado Region
Alan Butler, Bureau of Reclamation, Lower Colorado Region
Marty Hoerling, NOAA ESRL Physical Sciences Division
John Lhotak, NOAA NWS Colorado Basin River Forecast Center (CBRFC)
Scott McGettigan, Utah Division of Water Resources
Matt Miller, USGS Earth Systems Modeling Branch
Paul Miller, NOAA NWS CBRFC
Naoki Mizukami, NCAR RAL
Balaji Rajagopalan, CU Boulder, CIRES and Civil Engineering
Michelle Stokes, NOAA NWS CBRFC
Sonya Vasquez, USGS
Karl Wetlaufer, NRCS Colorado Snow Survey

Special thanks
We are especially grateful to Ethan Knight, WWA's talented student intern, whose contributions to the report have been enormous and essential. And we deeply appreciate the project coordinating efforts of Seth Shanahan of the Southern Nevada Water Authority and Rebecca Smith of the Bureau of Reclamation, whose responsiveness and good judgment kept us on target. Lisa Dilling, WWA director and CU associate professor of Environmental Studies, also deserves special mention for her support and encouragement throughout the project duration.
Credits

Design and graphics: Ami Nacu-Schmidt, CU Boulder, CIRES, Center for Science and Technology Policy Research

WWA maps of the Colorado River Basin: Lineke Woelders, CU Boulder, CIRES, WWA

Cover page photos for Chapters 1, 2, 5, 8 and 11: Adobe stock

Chapter 3 cover page photo: Clay Banks on Unsplash

Chapter 4 cover page photo: Robert Murray on Unsplash

Chapter 6 cover page photo: Sheelah Brennan on Unsplash

Chapter 7 cover page photo: John Price on Unsplash

Chapter 9 cover page photo: Rainer Krienke on Unsplash

Chapter 10 cover page photo: Grand Canyon National Park, Wikimedia Commons, https://www.flickr.com/photos/grand_canyon_nps/12199509204/
Volume I of the Colorado River Basin State of the Science report provides important background and context for considering the different datasets, models, and tools described in the subsequent volumes and chapters. Chapter 1 succinctly lays out the need for the report as well as its objectives, intended audience, approach, and organization. It also contains a primer on sources of uncertainty to help readers navigate more focused discussions of uncertainty in later chapters.

Chapter 2 is a technical report unto itself; it describes what is known about the fundamental features of the Colorado River Basin's hydroclimate, their spatial and temporal variability, and the mechanisms behind that variability. This knowledge base is dependent on the primary datasets and models described in Volume II (Chapters 4, 5, and 6) while also informing the productive application of those data and models, and similarly it underpins the application of the weather, climate, and streamflow forecasting methods described in Volume III (Chapters 7 & 8). The chapter concludes with a detailed discussion of recent trends in basin hydroclimate and their likely causes, which provides critical context for the long-term planning datasets described in Volume IV (Chapters 9–11).

Chapter 3 provides a detailed overview of the three primary Reclamation operations and planning models that support basin decision making. It describes the underlying configurations, assumptions, and applications of the three models. The chapter details how these models use observational data, streamflow forecasts, and planning hydrologies as a prelude to the discussion of those inputs in subsequent chapters.
Chapter 1
Introduction

Authors
Jeff Lukas (CU Boulder, CIRES, WWA)
Elizabeth Payton (CU Boulder, CIRES, WWA)

Chapter citation:
Lukas, Jeff, and Elizabeth Payton. 2020.
“Introduction.” Chap. 1 in Colorado River Basin
Climate and Hydrology: State of the Science,
edited by J. Lukas and E. Payton, 31-41.
Western Water Assessment, University of
Colorado Boulder.
1.1 Background and need

The Colorado River Basin is a vital source of water, ecosystem services, hydropower, recreation, and other amenities for the seven basin states (Colorado, Wyoming, Utah, New Mexico, Arizona, Nevada, and California), at least 22 federally recognized tribes, and the Republic of Mexico (Figure 1.1). The Colorado River system is managed and operated in accordance with the Law of the River, which consists of compacts, treaties, federal laws, regulations, contracts, and court decisions and decrees.

There is an increasing imbalance between supply and demand in the basin. Water use, including consumptive use, within the basin has steadily increased over time and, when combined with deliveries to Mexico, is now approaching the average historical water supply (Figure 1.2). The average conditions, over time and across the basin, suggest a (barely) sufficient supply and, by smoothing out the variability, mask existing and prospective shortages.

Since 2000, the basin has experienced an extended dry period in which the average annual water supply has been 18% lower than the historical average. The enormous storage capacity of the system’s reservoirs (about 60 million acre-feet), nearly full at the beginning of the dry period, combined with voluntary conservation has permitted full deliveries of water to the Lower Basin states through this period, with only local shortages to uses in Upper Basin states. But the cumulative streamflow deficit of about 40 million acre-feet (maf) since 2000 has contributed to the depletion of system storage to about 45% of capacity.

The depleted state of system reservoirs leaves the system vulnerable; the water surface elevation of Lake Mead has hovered around the upper thresholds (1075' and 1090’) for imposing curtailments on Lower Basin states under the 2007 Interim Guidelines and the 2019 Drought Contingency Plan.

This recent drought, along with the increasing recognition that rising temperatures impact the hydrology of the basin, has led to further concerns about the long-term reliability of basin water supplies. Warming temperatures observed across the basin in the last few decades have discernibly impacted snowpacks, melt and runoff timing, runoff efficiency, and total basin runoff. It is unclear whether the period of below-normal precipitation since 2000 is indicative of future precipitation, but unless average basin precipitation increases substantially, system runoff and water supply are expected to decline over the next several decades due to warming alone.
Figure 1.1
Geographic setting of the Colorado River Basin. Upper Basin: portions of the basin that lie in Colorado, Utah, Wyoming, New Mexico, and Arizona that are tributary to the river upstream of the Colorado River Compact point at Lee Ferry, Arizona. Lower Basin: portions of the basin in Arizona, California, Nevada, and New Mexico that are downstream of Lee Ferry.
Water resource managers in the basin have long relied on short-term (1 month to 2 years) forecasts of system conditions to guide operations and other decision making. Recently, the U.S. Bureau of Reclamation (hereinafter “Reclamation”) has instituted mid-term probabilistic forecasts (2 to 5 years) to bridge short-term forecasts with longer-term planning projections. When the system is close to critical operational thresholds, such as the 1075’ and 1090’ levels in Lake Mead, the need for accurate and actionable short-to-mid-term forecasts of system conditions becomes even more critical.

Until recently, long-term water planning (5 to 50 years) in the basin was based on the historical hydrologic record under the assumption of hydroclimatic stationarity, that is, that the historical average and variability would remain stable. That assumption was first challenged several decades ago by tree-ring records showing the instability of century-scale hydroclimate in the basin, and has become even less tenable due to climate change (Milly et al. 2008; 2015). When developing the 2007 Interim Guidelines, Reclamation, recognizing the limitations of the conventional assumption of stationarity, used tree-ring reconstructed, pre-historic flows to provide a broader view of flow variability (Reclamation 2007b), and also surveyed the state of knowledge regarding the potential impact of climate change on water resources in the basin (Reclamation 2007c). Since that time, climate model projections have played larger roles in informing the hydrologic traces in Reclamation planning studies (Reclamation 2012e). Reclamation’s experience, and that of other water agencies working with climate model data, has revealed considerable challenges in both...
translating global climate projections to changes in the hydrology of the Colorado River Basin and in interpreting the system impacts associated with those changes given the uncertainties in the data and models.

The past decade has seen dozens of new research efforts aimed at better understanding the climate and hydrology of the Colorado River Basin, and at refining the data and models used to guide basin management and planning. There have been parallel efforts to explore new approaches to planning and decision making under uncertainty. Many of these efforts have been conducted by, or with funding from, Reclamation and other basin water agencies. Many other research studies, while not explicitly guided by the needs of basin water managers, can still provide relevant information and insight. Given this rapidly expanding scientific knowledge base, the increasing complexity of the data and models used to operationalize that knowledge, and the growing uncertainties about the hydroclimatic future, basin stakeholders have recognized the importance of reassessing the scientific and technical basis for management and planning. The impending formal review of the 2007 Interim Guidelines, which must begin in 2020 (U.S. Secretary of the Interior 2007), and the potential renegotiation of those guidelines, has created additional impetus for such a reassessment.

In May, 2017, the Southern Nevada Water Authority hosted a conference, the Colorado River Hydrology Research Symposium (Cawthorne 2017), to give water resource practitioners and researchers an opportunity to exchange information about operational practices and research initiatives, with a focus on opportunities to improve inputs to existing basin planning tools and to enhance the utility of those tools. One outcome of that symposium was recognition that a document that synthesized the current research and assessed it in the context of the primary planning processes was necessary.

1.2 Objectives and approach

The intention of this report is to assess scientific knowledge and technical practice in a systematic way, across the multiple timescales and the diverse data and models used to inform management and planning in the basin. It describes the concepts, methods, models, and datasets that currently contribute to Reclamation's and other stakeholders’ operations and planning, as well as knowledge gaps, uncertainties, and future challenges and opportunities. No new research or quantitative analyses were performed for this report beyond the basic characterization of existing datasets.
Objectives
By synthesizing the state of the science in the Colorado River Basin regarding climate and hydrology, the report seeks to establish a broadly shared understanding that can guide the strategic integration of new research into practice. The ultimate goal of that integration, and therefore of this report, is to facilitate more accurate short- and mid-term forecasts, and more meaningful long-term projections, of basin hydroclimate and system conditions.

The specific objectives of this report include the following:

• Synthesize recent findings that can inform forecasts (short-term and mid-term) and projections (long-term) of hydroclimate and system conditions.
• Convey the knowledge gaps and uncertainties associated with each area of the science and technical practice, as well as with key datasets and models.
• Prompt research ideas and inform research priorities by describing opportunities for closing knowledge gaps.
• Inform the scientific community about Reclamation models, how they support operations and planning, and related research needs.
• Provide a broadly accepted foundation of scientific and technical issues on which to enter the formal review and potential renegotiation of the Interim Guidelines.

Sources
This report draws from over 700 primary sources, mainly peer-reviewed research articles published in academic journals, as well as agency studies, reports, analyses, and other sources. It builds on prior planning studies, research syntheses, and information needs assessments that have focused on the Colorado River Basin and water resources management that are listed in Table 1.1.

Audience
This report was written to be a clear and useful reference for readers who come to it with a moderate level of scientific and technical understanding of hydrology, though much of the text is fully accessible to any reader. The audience for the report includes water resource engineers and analysts who routinely work with inputs to, or outputs from, Reclamation models or who otherwise engage with water operations and planning in the basin; decision makers who will prescribe changes to operations, plans, and policies, and could benefit from better understanding of the science that informs these activities; research program managers seeking insights on high impact priorities to promote; and researchers who could benefit from better understanding of the planning and decision context in the basin. The report is also intended to inform the funding and production of research.
that effectively supports basin water management activities, and is therefore also aimed at the broader community of water interests in the basin.

Table 1.1
Planning studies, research syntheses, and information needs assessments referenced in this report.

<table>
<thead>
<tr>
<th>Document</th>
<th>Year</th>
<th>Geographic scope</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning studies conducted by Reclamation or basin stakeholders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado River Basin Supply and Demand Study</td>
<td>2012</td>
<td>Colorado River Basin</td>
<td>Reclamation (2012e)</td>
</tr>
<tr>
<td>Colorado River Water Availability Study</td>
<td>2012</td>
<td>Major Colorado River tributary basins within the state of Colorado</td>
<td>Colorado Water Conservation Board (2012)</td>
</tr>
<tr>
<td>Climate change assessments that cover part or all of the Colorado River Basin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Change in Colorado</td>
<td>2008</td>
<td>Colorado</td>
<td>Ray et al. (2008)</td>
</tr>
<tr>
<td>Joint Front Range Climate Change Vulnerability Study</td>
<td>2012</td>
<td>Colorado</td>
<td>Woodbury et al. (2012)</td>
</tr>
<tr>
<td>Assessment of Climate Change in the Southwest United States</td>
<td>2013</td>
<td>Southwestern U.S.</td>
<td>Garfin et al. (2013)</td>
</tr>
<tr>
<td>Climate Change in Colorado</td>
<td>2014</td>
<td>Colorado</td>
<td>Lukas et al. (2014)</td>
</tr>
<tr>
<td>Stakeholder needs assessments for climate information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change</td>
<td>2009</td>
<td>U.S.</td>
<td>Barsugli et al. (2009)</td>
</tr>
<tr>
<td>Addressing Climate Change in Long-Term Water Resources Planning and Management: User Needs for Improving Tools and Information</td>
<td>2011</td>
<td>U.S.</td>
<td>Brekke (2011)</td>
</tr>
</tbody>
</table>
1.3 Organization

The organization of the report centers on the three main Reclamation operations and planning models for the basin and the respective timescales those models are designed to inform. The models are:

- 24-Month Study Model (24MS)—short term (current month to 24 to 36 months in the future)
- Mid-Term Probabilistic Operations Model (MTOM)—mid-term (current month to 2 to 5 years in the future)
- Colorado River Simulation System (CRSS)—long term (5 to 50 years)

In general, operational and planning decisions by Reclamation or basin stakeholders use information from the four categories of models or data listed below.

I. System Models. The three primary Reclamation models listed above, and equivalent models built and used by other organizations. They use as inputs the data from categories III and IV, and are also calibrated with data from category II.

II. Primary data and models. Observations, estimates, or simulations of climate and hydrologic conditions that are relevant across all time scales. They are used to calibrate, provide inputs to, and validate models and analyses in categories I, III, and IV.

III. Short- and mid-term forecast tools. Models and methods for forecasting weather, climate, and streamflow as the basis for short-to-mid-term operations.

IV. Long-term planning hydrology. Data and models (historically-based, paleo-reconstructed, and climate change-informed) used to represent past and current variability, and to project long-term future conditions for planning purposes.

This report is organized into four volumes (I–IV) corresponding to these categories, reflecting the flow of information through the chain of models and data. While that flow actually culminates with the Reclamation system models, those models are described early in the report (Volume I, Chapter 3) to set the stage for consideration of the manifold inputs to those models.
In Chapters 3 through 11, the text describes the following for each type of model or data:

- Importance to the chain of models and data, and thus to basin operations and planning
- The specific data and methods currently used in the Reclamation models, and how they compare with other data and methods
- Recent or ongoing efforts at improvement in this area
- Key challenges, knowledge gaps, and uncertainties that remain
- Opportunities for further progress

1.4 Topics beyond the scope of this report

This report does not evaluate current basin operations and policy or provide recommendations. It also does not address ecosystem processes except as they affect water supply, nor does it cover water quality concerns in any detail.

Water use is obviously a critical component of the system water balance in the Colorado River Basin. Specific aspects of water use are briefly addressed in this report: the representation of consumptive water uses and losses in the Reclamation system models (Chapter 3); methods for measuring and monitoring water uses and losses (Chapter 5); and the effects of climate change on consumptive use (Chapter 11). Other sections may include discussions of data, tools, and concepts that, while oriented toward water supply, are relevant to the quantification of current consumptive uses and losses and the forecasting of future water demand. But a comprehensive treatment of the scientific and technical issues surrounding water use in the basin is beyond the scope of this report. The state of monitoring and forecasting water use in the basin for planning purposes is described in Technical Report C of the Colorado River Basin Water Supply and Demand Study (Reclamation 2012d).
Sources of uncertainty in modeling natural systems

The uncertainties in hydroclimate forecasts and projections, and therefore in water supply expectations, present tantalizing research questions for scientists but are a source of frustration for water resource practitioners charged with providing a reliable water supply. Given the stakes involved, it is reasonable that Colorado River Basin planners and managers desire greater certainty in water supply forecasts and long-term projections; they need some sense of the likelihood of hydrologic shifts, especially shifts to the dry side.

Uncertainty stems from either randomness in the behavior of the system being modeled (aleatory uncertainty) or incomplete knowledge of the system (epistemic uncertainty). The aleatory uncertainty in hydroclimate processes is effectively synonymous with natural variability and, as such, can’t be reduced by more research or computing power or data collection. Just as we cannot buy down the uncertainty in a coin flip, we cannot buy down aleatory uncertainty in hydroclimate processes. However, aleatory uncertainty as manifested in variability is an intrinsic element of hydrologic systems, so its conceptual and practical nature is well understood by water resource managers and stakeholders.

Epistemic uncertainty, on the other hand, can be chipped away at by improving our understanding, computing power, and data collection. There is epistemic uncertainty about aleatory uncertainty (variability) which frequently will be reduced simply by making more observations. For example, the exceptional nature of the wet period at the beginning of the 20th century was revealed over time as the observed records of precipitation and streamflow became longer. There are several general types of epistemic uncertainty in modeling natural systems, illustrated in Figure 1.3 and described below:

- **Conceptual.** Uncertainty that comes from incomplete understanding of the system to be modeled, so that relevant variables and processes are not represented in the model or the underlying dependencies between and among processes and variables is poorly understood.
- **Structural.** Uncertainty that comes from inadequate specification of the underlying physics and other physical relationships in the model, or the imperfect fit of a statistical model. Approximation or simplification of processes over time and space is another source of structural uncertainty.
- **Parameter.** Uncertainty that comes from errors in specifying model parameters—usually these are fixed coefficients or terms based on observations. Aggregation or simplification of inputs over time and space is another source of parameter uncertainty.
- **Data.** Uncertainty that arises from limitations in observing systems and measurement techniques. Data uncertainty is fundamental because it confounds our conceptual and quantitative understanding of natural systems. Calibration of model parameters against imperfect data contributes to parameter uncertainty.
- **Initial conditions.** Uncertainty that comes from imperfectly capturing the state of the system that begins a model simulation; it includes measurement error, and even more so, uncertainties related to the spatial and temporal interpolation between observations.
Uncertainties accumulate such that the combined uncertainty in the ultimate planning model output is much larger than the uncertainty at any intermediate step; however, because of interdependencies, the combined uncertainty isn’t a simple addition. Ultimately, depending on the variable and time scale of interest, the combined epistemic uncertainties may be matched or exceeded by that stemming from the natural variability of the Colorado River Basin.

This report summarizes the current understanding in the research community about the uncertainties in hydroclimate analyses. However, the full range of uncertainty in future system outcomes, as it applies to the Colorado River Basin, also includes future land use, future water demand, and the future state of institutions, economies, technologies, and policies that influence and constrain water demand and allocation. Water resource practitioners in the basin are trying to make the best decisions possible about infrastructure, operations, and demand management given the uncertainty in future water supply. Studies to support decision making in this new environment are beginning to explore alternative analytical approaches that address the lack of information about the future by first evaluating system sensitivities, vulnerabilities, or failure modes. This emerging paradigm is reflected in the “decision making under deep uncertainty” (DMDU) movement. DMDU often uses computationally intensive methods, testing a system’s vulnerability to a range of possible futures under multiple policy options, to formulate robust decisions. It is possible that approaches to decision making such as these may be more likely to benefit management and planning than efforts to reduce some of the epistemic uncertainties, but discussion and evaluation of the approaches and the trade-offs is beyond the scope of this report.

Figure 1.3
Sources of uncertainty in modeling natural systems. The figure shows hypothetical probability density functions combining to representing the overall uncertainty in model output.
References

Bender, Stacie, Paul Miller, Brent Bernard, and John Lhotak. 2014. “Use of Snow Data from Remote Sensing in Operational Streamflow Prediction.” In , 11.

References

NASA. 2019. “Rising to New Challenges for California’s Snow Forecasting Program.”

———. n.d. “Snow Telemetry (SNOTEL) and Snow Course Data and Products.” Snow Telemetry and Snow Course Data and Products. https://www.wcc.nrcs.usda.gov/snow/.

Robertson, Andrew W., and Frédéric Vitart. 2019. Sub-Seasonal to Seasonal Prediction. Elsevier.

References

Western Regional Climate Center. n.d. “RAWS USA Climate Archive.” RAWS USA Climate Archive.

Glossary

ablation
The loss of snow from the snowpack due to melting, evaporation, or wind.

absolute error
The difference between the measured and actual values of x.

albedo
The percentage of incoming light that is reflected off of a surface.

aleatory uncertainty
Uncertainty due to randomness in the behavior of a system (i.e., natural variability)

anomaly
A deviation from the expected or normal value.

atmospheric river (AR)
A long and concentrated plume of low-level (<5,000') moisture originating in the tropical Pacific.

autocorrelation
Correlation between consecutive values of the same time series, typically due to time-dependencies in the dataset.

bank storage
Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative water levels.

bias correction
Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using observations in a reference period.

boundary conditions
Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, sea-ice and snowpack conditions) and can help forecast the future climate state when included in a model.

calibration
The process of comparing a model with the real system, followed by multiple revisions and comparisons so that the model outputs more closely resemble outcomes in the real system.

climate forcing
A factor causing a difference between the incoming and outgoing energy of the Earth’s climate system, e.g., increases in greenhouse-gas concentrations.

climatology
In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., “compared to climatology”). Synonymous with climate normal.
coefficient of variation (CV)
A common measure of variability in a dataset; the standard deviation divided by the mean.

consumptive use
The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage and is thus unavailable for subsequent use.

convection
The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is warmer than the surrounding atmosphere.

covariate
A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., precipitation).

cross-correlation
A method for estimating to what degree two variables or datasets are correlated.

cumulative distribution function (CDF)
A function describing the probability that a random variable, such as streamflow, is less than or equal to a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-exceedance.

Darcy's Law
The mathematical expression that describes fluid flow through a porous medium (e.g., soil).

datum
The base, or 0.0-foot gage-height (stage), for a stream gage.

dead pool
The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or released downstream.

deterministic
Referring to a system or model in which a given input always produces the same output; the input strictly determines the output.

dewpoint
The local temperature that the air would need to be cooled to (assuming atmospheric pressure and moisture content are constant) in order to achieve a relative humidity (RH) of 100%.

dipole
A pair of two equal and opposing centers of action, usually separated by a distance.

discharge
Volume of water flowing past a given point in the stream in a given period of time; synonymous with streamflow.
distributed
In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins into grid cells. Contrast with lumped model.

downsampling
Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.

dynamical
In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most of the relevant processes.

environmental flow
Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to sustain the river’s ecosystem.

epistemic uncertainty
Uncertainty due to incomplete knowledge of the behavior of a system.

evapotranspiration
A combination of evaporation from the land surface and water bodies, and transpiration of water from plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well.

fixed lapse rate
A constant rate of change of an atmospheric variable, usually temperature, with elevation.

flow routing
The process of determining the flow hydrograph at sequential points along a stream based on a known hydrograph upstream.

forcing - see climate forcing or weather forcing

forecast
A prediction of future hydrologic or climate conditions based on the initial (current) conditions and factors known to influence the evolution of the physical system.

Gaussian filter
A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-shaped statistical distribution.

gridded data
Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or otherwise derived from a set of point observations.

heat flux
The rate of heat energy transfer from one surface or layer of the atmosphere to the next.

hindcast
A forecast run for a past date or period, using the same model version as for real-time forecasts; used for model calibration and to “spin up” forecast models. Same as reforecast.
hydraulic conductivity
A measure of the ease with which water flows through a medium, such as soil or sediment.

hydroclimate
The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for a watershed or region.

hydrograph
A graph of the volume of water flowing past a location per unit time.

hydrometeorology
A branch of meteorology and hydrology that studies the transfer of water and energy between the land surface and the lower atmosphere.

imaging spectrometer
An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved image of an object or area.

in situ
Referring to a ground-based measurement site that is fixed in place.

inhomogeneity
A change in the mean or variance of a time-series of data (such as weather observations) that is caused by changes in the observing station or network, not in the climate itself.

Interim Guidelines

internal variability
Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth's oceans and atmosphere.

interpolation
The process of calculating the value of a function or set of data between two known values.

isothermal
A dynamic in which temperature remains constant while other aspects of the system change.

jet stream
A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer and colder air masses.

kriging
A smoothing technique that calculates minimum error-variance estimates for unsampled values.

kurtosis
A measure of the sharpness of the peak of a probability distribution.
lag-1 autocorrelation
Serial correlation between data values at adjacent time steps.

lapse rate
The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is adiabatic when no heat exchange occurs between the given air parcel and its surroundings.

latency
The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions.

latent heat flux
The flow of heat from the Earth’s surface to the atmosphere that involves evaporation and condensation of water; the energy absorbed/released during a phase change of a substance.

Law of the River
A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines that apportions the water and regulates the use and management of the Colorado River among the seven basin states and Mexico.

LiDAR (or lidar)
Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the variable distances from the sensor to the land surface.

longwave radiation
Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 micrometers.

Lower Basin
The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are downstream of the Colorado River Compact point at Lee Ferry, Arizona.

lumped model
In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single unit, averaging spatial characteristics across that unit. Contrast with distributed model.

Markov chain
A mathematical system in which transitions from one state to another are dependent on the current state and time elapsed.

megadrought
A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature have varied.

metadata
Data that gives information about other data or describes its own dataset.
mid-latitude cyclone
A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east and are effective at producing precipitation over broad areas.

Minute 319
The binding agreement signed in 2012 by the International Boundary and Water Commission, United States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin operations and water allocation, and humanitarian measures.

Modoki
An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as “CP” El Niño.

multicollinearity
A condition in which multiple explanatory variables that predict variation in a response variable are themselves correlated with each other.

multiple linear regression
A form of regression in which a model is created by fitting a linear equation over the observed data, typically for two or more explanatory (independent) variables and a response (dependent) variable.

multivariate
Referring to statistical methods in which there are multiple response (dependent) variables being examined.

natural flow
Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or diversion. Equivalent to naturalized flow, virgin flow, and undepleted flow.

naturalized flow – see natural flow

nearest neighbor method
A nonparametric method that examines the distances between a data point (e.g., a sampled value) and the closest data points to it in x-y space (“nearest neighbors,” e.g., historical values) and thereby obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest neighbors (i.e., K-NN).

nonparametric
A statistical method that assumes no underlying mathematical function for a sample of observations.

orographic lift
A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or mountains. This mechanism leads to increased condensation and precipitation over higher terrain.

p
A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test of statistical significance.
paleohydrology
The study of hydrologic events and processes prior to the instrumental (gage) record, typically using environmental proxies such as tree rings.

parameterized
Referring to a key variable or factor that is represented in a model by an estimated value (parameter) based on observations, rather than being explicitly modeled through physical equations.

parametric
A statistical method that assumes an underlying mathematical function, specified by a set of characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations.

persistence
In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. Hydrologic time series with persistence are autocorrelated.

phreatophytes
Plants with deep root systems that are dependent on water from the water table or adjacent soil moisture reserves.

pluvial
An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought.

principal components regression (PCR)
A statistical technique for analyzing and developing multiple regressions from data with multiple potential explanatory variables.

prior appropriation
“First in time, first in right.” The prevailing doctrine of water rights for the western United States; a legal system that determines water rights by the earliest date of diversion or storage for beneficial use.

probability density function (PDF)
A function, or curve, that defines the shape of a probability distribution for a continuous random variable.

projection
A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on specified other conditions occurring during the forecast period, typically a particular scenario of greenhouse gas emissions.

quantiles
Divisions of the range of observations of a variable into equal-sized groups.

r
Correlation coefficient. The strength and direction of a linear relationship between two variables.
\(R^2 \)
Coefficient of determination. The proportion of variance in a dependent variable that’s explained by the independent variables in a regression model.

Radiometer
An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy emitted from the sun and reflected by clouds, and longwave energy emitted from the earth’s surface.

Raster
A digital image or computer mapping format consisting of rows of colored pixels.

Reanalysis
An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling environment to produce consistent fields of variables over the entire period of analysis.

Reference evapotranspiration
An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the water need for irrigation.

Regression
A statistical technique used for modeling the linear relationship between two or more variables, e.g., snowpack and seasonal streamflow.

Relative humidity (RH)
The amount of moisture in the atmosphere relative to the amount that would be present if the air were saturated. RH is expressed in percent, and is a function of both moisture content and air temperature.

Remote sensing
The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other platforms distant from the object(s) being sensed.

Residual
The difference between the observed value and the estimated value of the quantity of interest.

Resolution
The level of detail in model output; the ability to distinguish two points in space (or time) as separate.

- **Spatial resolution** - Resolution across space, i.e., the ability to separate small details in a spatial representation such as in an image or model.
- **Temporal resolution** - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time step.

Return flow
The water diverted from a river or stream that returns to a water source and is available for consumptive use by others downstream.
runoff
Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is routed and measured within channels is streamflow.

runoff efficiency
The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through evapotranspiration.

sensible heat flux
The flow of heat from the Earth’s surface to the atmosphere without phase changes in the water, or the energy directly absorbed/released by an object without a phase change occurring.

shortwave radiation
Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength spectrum is between 0.2 and 3.0 micrometers.

skew
The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) distribution.

skill
The accuracy of the forecast relative to a baseline “naïve” forecast, such as the climatological average for that day. A forecast that performs better than the baseline forecast is said to have positive skill.

smoothing filter
A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. Common signal smoothing techniques include moving average and Gaussian algorithms.

snow water equivalent (SWE)
The depth, often expressed in inches, of liquid water contained within the snowpack that would theoretically result if you melted the snowpack instantaneously.

snow course
A linear site used from which manual measurements are taken periodically, to represent snowpack conditions for larger area. Courses are typically about 1,000' long and are situated in areas protected from wind in order to get the most accurate snowpack measurements.

snow pillow
A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the weight pressing down on the pillow.

stationarity
The condition in which the statistical properties of the sample data, including their probability distribution and related parameters, are stable over time.

statistically significant
Unlikely to occur by chance alone, as indicated by one of several statistical tests.
stepwise regression
The process of building a regression model from a set of values by entering and removing predictor variables in a step-by-step manner.

stochastic method
A statistical method in which randomness is considered and included in the model used to generate output; the same input may produce different outputs in successive model runs.

stratosphere
The region of the upper atmosphere extending from the top of the troposphere to the base of the mesosphere; it begins about 11–15 km above the surface in the mid-latitudes.

streamflow
Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acre-feet for flow volume. Synonymous with discharge.

sublimation
When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase without going through the intermediate liquid phase; a major source of snowpack loss over the course of the season.

surface energy balance
The net balance of the exchange of energy between the Earth’s surface and the atmosphere.

teleconnection
A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin).

temperature inversion
When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient of temperature decreasing with height.

tercile
Any of the two points that divide an ordered distribution into three parts, each containing a third of the population.

tilt
A shift in probabilities toward a certain outcome.

transpiration
Water discharged into the atmosphere from plant surfaces.

troposphere
The layer of the atmosphere from the Earth’s surface up to the tropopause (~11–15 km) below the stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor content, and sensible weather (clouds, rain, etc.).
undercatch
When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with snow, especially under windy conditions.

unregulated flow
Observed streamflow adjusted for some, but not all upstream activities, depending on the location and application.

Upper Basin
The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are upstream of the Colorado River Compact point at Lee Ferry, Arizona.

validation
The process of comparing a model and its behavior and outputs to the real system, after calibration.

variance
An instance of difference in the data set. In regard to statistics, variance is the square of the standard deviation of a variable from its mean in the data set.

wavelet analysis
A method for determining the dominant frequencies constituting the overall time-varying signal in a dataset.
<table>
<thead>
<tr>
<th>Acronyms & Abbreviations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24MS</td>
<td>24-Month Study Model</td>
</tr>
<tr>
<td>AET</td>
<td>actual evapotranspiration</td>
</tr>
<tr>
<td>AgriMET</td>
<td>Cooperative Agricultural Weather Network</td>
</tr>
<tr>
<td>AgWxNet</td>
<td>Agricultural Weather Network</td>
</tr>
<tr>
<td>AHPS</td>
<td>Advanced Hydrologic Prediction Service</td>
</tr>
<tr>
<td>ALEXI</td>
<td>Atmosphere-Land Exchange Inversion</td>
</tr>
<tr>
<td>AMJ</td>
<td>April-May-June</td>
</tr>
<tr>
<td>AMO</td>
<td>Atlantic Multidecadal Oscillation</td>
</tr>
<tr>
<td>ANN</td>
<td>artificial neural network</td>
</tr>
<tr>
<td>AOP</td>
<td>Annual Operating Plan</td>
</tr>
<tr>
<td>AR</td>
<td>atmospheric river</td>
</tr>
<tr>
<td>AR-1</td>
<td>first-order autoregression</td>
</tr>
<tr>
<td>ARKStorm</td>
<td>Atmospheric River 1,000-year Storm</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observing System</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High-Resolution Radiometer</td>
</tr>
<tr>
<td>AWOS</td>
<td>Automated Weather Observing System</td>
</tr>
<tr>
<td>BCCA</td>
<td>Bias-Corrected Constructed Analog</td>
</tr>
<tr>
<td>BCSD</td>
<td>Bias-Corrected Spatial Disaggregation (downscaling method)</td>
</tr>
<tr>
<td>BCSD5</td>
<td>BCSD applied to CMIP5</td>
</tr>
<tr>
<td>BOR</td>
<td>United States Bureau of Reclamation</td>
</tr>
<tr>
<td>BREB</td>
<td>Bowen Ratio Energy Balance method</td>
</tr>
<tr>
<td>C3S</td>
<td>Copernicus Climate Change Service</td>
</tr>
<tr>
<td>CA</td>
<td>Constructed Analogues</td>
</tr>
<tr>
<td>CADSWES</td>
<td>Center for Advanced Decision Support for Water and Environmental Systems</td>
</tr>
<tr>
<td>CADWR</td>
<td>California Department of Water Resources</td>
</tr>
<tr>
<td>CanCM4i</td>
<td>Canadian Coupled Model, 4th generation (global climate model)</td>
</tr>
<tr>
<td>CBRFC</td>
<td>Colorado Basin River Forecast Center</td>
</tr>
</tbody>
</table>
CCA
Canonical Correlation Analysis

CCSM4
Community Climate System Model, version 4 (global climate model)

CDEC
California Data Exchange Center

CDF
cumulative distribution function

CESM
Community Earth System Model (global climate model)

CFS
Climate/Coupled Forecast System

CFSv2
Coupled Forecast System version 2 (NOAA climate forecast model)

CHPS
Community Hydrologic Prediction System

CIMIS
California Irrigation Management Information System

CIR
crop irrigation requirement

CIRES
Cooperative Institute for Research in Environmental Sciences

CLIMAS
Climate Assessment for the Southwest

CLM
Community Land Model

CM2.1
Coupled Physical Model, version 2.1 (global climate model)

CMIP
Coupled Model Intercomparison Project (coordinated archive of global climate model output)

CNRFC
California-Nevada River Forecast Center

CoAgMET
Colorado Agricultural Meteorological Network

CoCoRaHS
Community Collaborative Rain, Hail and Snow Network

CODOS
Colorado Dust-on-Snow

CONUS
contiguous United States (the lower 48 states)

COOP
Cooperative Observer Program

CP
Central Pacific

CPC
Climate Prediction Center

CRB
Colorado River Basin

CRBPP
Colorado River Basin Pilot Project

CRPSS
Continuous Ranked Probability Skill Score

CRSM
Colorado River Simulation Model

CRSP
Colorado River Storage Project
CRSS Colorado River Simulation System

CRWAS Colorado River Water Availability Study

CSAS Center for Snow and Avalanche Studies

CTSM Community Terrestrial Systems Model

CU consumptive use

CUL consumptive uses and losses

CV coefficient of variation

CVP/SWP Central Valley Project/State Water Project

CWCB Colorado Water Conservation Board

CWEST Center for Water, Earth Science and Technology

DA data assimilation

Daymet v.3 daily gridded surface meteorological data

DCP Drought Contingency Plan

DEM digital elevation model

DEOS Delaware Environmental Observing System

DHSVM Distributed Hydrology Soil Vegetation Model

DJF December-January-February

DMDU Decision Making Under Deep Uncertainty

DMI Data Management Interface

DOD Department of Defense

DOE Department of Energy

DOW Doppler [radar] on Wheels

DRI Desert Research Institute

DTR diurnal temperature range

EC eddy-covariance method

EC Environment Canada

ECCA ensemble canonical correlation analysis

ECMWF European Centre for Medium-Range Weather Forecasts

EDDI Evaporative Demand Drought Index

EFAS European Flood Awareness System
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>En-GARD</td>
<td>Ensemble Generalized Analog Regression Downscaling</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño-Southern Oscillation</td>
</tr>
<tr>
<td>EOF</td>
<td>empirical orthogonal function</td>
</tr>
<tr>
<td>EP</td>
<td>Eastern Pacific</td>
</tr>
<tr>
<td>ERC</td>
<td>energy release component</td>
</tr>
<tr>
<td>ESI</td>
<td>Evaporative Stress Index</td>
</tr>
<tr>
<td>ESM</td>
<td>coupled Earth system model</td>
</tr>
<tr>
<td>ESP</td>
<td>ensemble streamflow prediction</td>
</tr>
<tr>
<td>ESRL</td>
<td>Earth System Research Laboratory</td>
</tr>
<tr>
<td>ET</td>
<td>evapotranspiration</td>
</tr>
<tr>
<td>ET<sub>0</sub></td>
<td>Reference (crop) evapotranspiration</td>
</tr>
<tr>
<td>EVI</td>
<td>Enhanced Vegetation Index</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAWN</td>
<td>Florida Automated Weather Network</td>
</tr>
<tr>
<td>FEWS</td>
<td>Famine Early Warning System</td>
</tr>
<tr>
<td>FEWS</td>
<td>Flood Early Warning System</td>
</tr>
<tr>
<td>FIRO</td>
<td>forecast-informed reservoir operations</td>
</tr>
<tr>
<td>FLOR</td>
<td>Forecast-oriented Low Ocean Resolution (global climate model)</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>Formula Translation programming language</td>
</tr>
<tr>
<td>FPS</td>
<td>Federal Priority Streamgages</td>
</tr>
<tr>
<td>FROMUS</td>
<td>Forecast and Reservoir Operation Modeling Uncertainty Scoping</td>
</tr>
<tr>
<td>fSCA</td>
<td>fractional snow covered area</td>
</tr>
<tr>
<td>FWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>GCM</td>
<td>global climate model, or general circulation model</td>
</tr>
<tr>
<td>GEFS</td>
<td>Global Ensemble Forecast System</td>
</tr>
<tr>
<td>GEM</td>
<td>Global Environmental Multiscale model</td>
</tr>
<tr>
<td>GEOS</td>
<td>Goddard Earth Observing System (global climate model)</td>
</tr>
<tr>
<td>GeoTiff</td>
<td>Georeferenced Tagged Image File Format</td>
</tr>
<tr>
<td>GFDL</td>
<td>Geophysical Fluid Dynamics Laboratory</td>
</tr>
</tbody>
</table>
GFS
Global Forecast System model

GHCN
Global Historical Climatology Network

GHCN-D
Global Historical Climate Network-Daily

GHG
greenhouse gas

GIS
gеographic information system

GLOFAS
Global Flood Awareness System

GLOFFIS
Global Flood Forecast Information System

GOES
Geostationary Operational Environmental Satellite

GRACE
Gravity Recovery and Climate Experiment

GRIB
gridded binary or general regularly-distributed information in binary form

gridMET
Gridded Surface Meteorological dataset

GSSHA
Gridded Surface/Subsurface Hydrologic Analysis

GW
groundwater

HCCD
Historical Canadian Climate Data

HCN
Historical Climatology Network

HDA
hydrologic data assimilation

HDSC
Hydrometeorological Design Studies Center

HEFS
Hydrologic Ensemble Forecast Service

HESP
Hierarchical Ensemble Streamflow Prediction

HL-RDHM
Hydrologic Laboratory-Research Distributed Hydrologic Model

HMT
Hydromet Testbed

HP
hydrological processor

HRRR
High Resolution Rapid Refresh (weather model)

HSS
Heidke Skill Score

HTESSSEL
Land-surface Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land

HUC
Hydrologic Unit Code

HUC4
A 4-digit Hydrologic Unit Code, referring to large sub-basins (e.g., Gunnison River)

HUC12
A 12-digit Hydrologic Unit Code, referring to small watersheds
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAR</td>
<td>Intermediate Complexity Atmospheric Research model</td>
</tr>
<tr>
<td>ICS</td>
<td>intentionally created surplus</td>
</tr>
<tr>
<td>IDW</td>
<td>inverse distance weighting</td>
</tr>
<tr>
<td>IFS</td>
<td>integrated forecast system</td>
</tr>
<tr>
<td>IHC</td>
<td>initial hydrologic conditions</td>
</tr>
<tr>
<td>INSTAAR</td>
<td>Institute of Arctic and Alpine Research</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPO</td>
<td>Interdecadal Pacific Oscillation</td>
</tr>
<tr>
<td>IRI</td>
<td>International Research Institute</td>
</tr>
<tr>
<td>iRON</td>
<td>Interactive Roaring Fork Observing Network</td>
</tr>
<tr>
<td>ISM</td>
<td>Index Sequential Method</td>
</tr>
<tr>
<td>JFM</td>
<td>January-February-March</td>
</tr>
<tr>
<td>JJA</td>
<td>June-July-August</td>
</tr>
<tr>
<td>K-NN</td>
<td>K-Nearest Neighbor</td>
</tr>
<tr>
<td>Landsat</td>
<td>Land Remote-Sensing Satellite (System)</td>
</tr>
<tr>
<td>LAST</td>
<td>Lane’s Applied Stochastic Techniques</td>
</tr>
<tr>
<td>LERI</td>
<td>Landscape Evaporative Response Index</td>
</tr>
<tr>
<td>lidar</td>
<td>light detection and ranging</td>
</tr>
<tr>
<td>LOCA</td>
<td>Localized Constructed Analog</td>
</tr>
<tr>
<td>LSM</td>
<td>land surface model</td>
</tr>
<tr>
<td>M&I</td>
<td>municipal and industrial (water use category)</td>
</tr>
<tr>
<td>MACA</td>
<td>Multivariate Adaptive Constructed Analog</td>
</tr>
<tr>
<td>maf</td>
<td>million acre-feet</td>
</tr>
<tr>
<td>MAM</td>
<td>March-April-May</td>
</tr>
<tr>
<td>MEFP</td>
<td>Meteorological Ensemble Forecast Processor</td>
</tr>
<tr>
<td>METRIC</td>
<td>Mapping Evapotranspiration at high Resolution with Internalized Calibration</td>
</tr>
<tr>
<td>MJO</td>
<td>Madden-Julian Oscillation</td>
</tr>
<tr>
<td>MMEFS</td>
<td>Met-Model Ensemble Forecast System</td>
</tr>
<tr>
<td>MOCOM</td>
<td>Multi-Objective Complex evolution</td>
</tr>
<tr>
<td>MODDRFS</td>
<td>MODIS Dust Radiative Forcing in Snow</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MODIS LST (MYD11A2)</td>
<td>Moderate Resolution Imaging Spectroradiometer Land Surface Temperature (MYD11A2)</td>
</tr>
<tr>
<td>MODSCAG</td>
<td>MODIS Snow Covered Area and Grain-size</td>
</tr>
<tr>
<td>MPR</td>
<td>Multiscale Parameter Regionalization</td>
</tr>
<tr>
<td>MRM</td>
<td>Multiple Run Management</td>
</tr>
<tr>
<td>MT-CLIM</td>
<td>Mountain Climate simulator</td>
</tr>
<tr>
<td>MTOM</td>
<td>Mid-Term Probabilistic Operations Model</td>
</tr>
<tr>
<td>NA-CORDEX</td>
<td>North American Coordinated Regional Downscaling Experiment</td>
</tr>
<tr>
<td>NAM</td>
<td>North American Monsoon</td>
</tr>
<tr>
<td>NAO</td>
<td>North Atlantic Oscillation</td>
</tr>
<tr>
<td>NARCCAP</td>
<td>North American Regional Climate Change Assessment Program</td>
</tr>
<tr>
<td>NARR</td>
<td>North American Regional Reanalysis</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NASA JPL</td>
<td>NASA Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCCASC</td>
<td>North Central Climate Adaptation Science Center</td>
</tr>
<tr>
<td>NCECONET</td>
<td>North Carolina Environment and Climate Observing Network</td>
</tr>
<tr>
<td>NCEI</td>
<td>National Centers for Environmental Information</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>nClimDiv</td>
<td>new Climate Divisional (NOAA climate dataset)</td>
</tr>
<tr>
<td>NDBC</td>
<td>National Data Buoy Center</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NDWI</td>
<td>Normalized Difference Water Index</td>
</tr>
<tr>
<td>NEMO</td>
<td>Nucleus for European Modelling of the Ocean (global ocean model)</td>
</tr>
<tr>
<td>NevCan</td>
<td>Nevada Climate-ecohydrological Assessment Network</td>
</tr>
<tr>
<td>NGWOS</td>
<td>Next-Generation Water Observing System</td>
</tr>
<tr>
<td>NHMM</td>
<td>Bayesian Nonhomogenous Hidden Markov Model</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>NICENET</td>
<td>Nevada Integrated Climate and Evapotranspiration Network</td>
</tr>
<tr>
<td>NIDIS</td>
<td>National Integrated Drought Information System</td>
</tr>
<tr>
<td>NLDAS</td>
<td>North American Land Data Assimilation System</td>
</tr>
<tr>
<td>NMME</td>
<td>North American Multi-Model Ensemble</td>
</tr>
<tr>
<td>NN R1</td>
<td>NCEP/NCAR Reanalysis</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOAH</td>
<td>Neural Optimization Applied Hydrology</td>
</tr>
<tr>
<td>Noah-MP</td>
<td>Noah-Multi-parameterization Model</td>
</tr>
<tr>
<td>NOHRSC</td>
<td>National Operational Hydrologic Remote Sensing Center</td>
</tr>
<tr>
<td>NPP</td>
<td>Nonparametric paleohydrologic method</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resource Conservation Service</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSIDC</td>
<td>National Snow and Ice Data Center</td>
</tr>
<tr>
<td>NSMN</td>
<td>National Soil Moisture Network</td>
</tr>
<tr>
<td>NVDWR</td>
<td>Nevada Department of Water Resources</td>
</tr>
<tr>
<td>NWCC</td>
<td>National Water and Climate Center</td>
</tr>
<tr>
<td>NWIS</td>
<td>National Water Information System</td>
</tr>
<tr>
<td>NWM</td>
<td>National Water Model</td>
</tr>
<tr>
<td>NWP</td>
<td>numerical weather prediction</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>NWSRFS</td>
<td>National Weather Service River Forecast System</td>
</tr>
<tr>
<td>NZI</td>
<td>New Zealand Index</td>
</tr>
<tr>
<td>OCN</td>
<td>Optimal Climate Normals</td>
</tr>
<tr>
<td>OHD</td>
<td>Office of Hydrologic Development</td>
</tr>
<tr>
<td>OK Mesonet</td>
<td>Oklahoma Mesoscale Network</td>
</tr>
<tr>
<td>ONI</td>
<td>Oceanic Niño Index</td>
</tr>
<tr>
<td>OWAQ</td>
<td>Office of Weather and Air Quality</td>
</tr>
<tr>
<td>OWP</td>
<td>Office of Water Prediction</td>
</tr>
<tr>
<td>PC</td>
<td>principal components</td>
</tr>
<tr>
<td>PCA</td>
<td>principal components analysis</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCR</td>
<td>principal components regression</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>PDSI</td>
<td>Palmer Drought Severity Index</td>
</tr>
<tr>
<td>PET</td>
<td>potential evapotranspiration</td>
</tr>
<tr>
<td>PGW</td>
<td>pseudo-global warming</td>
</tr>
<tr>
<td>PRISM</td>
<td>Parameter-elevation Relationships on Independent Slopes Model</td>
</tr>
<tr>
<td>PSD</td>
<td>Physical Sciences Division</td>
</tr>
<tr>
<td>QBO</td>
<td>Quasi-Biennial Oscillation</td>
</tr>
<tr>
<td>QDO</td>
<td>Quasi-Decadal Oscillation</td>
</tr>
<tr>
<td>QM</td>
<td>quantile mapping</td>
</tr>
<tr>
<td>QPE</td>
<td>Quantitative Precipitation Estimate</td>
</tr>
<tr>
<td>QPF</td>
<td>Quantitative Precipitation Forecast</td>
</tr>
<tr>
<td>QTE</td>
<td>Quantitative Temperature Estimate</td>
</tr>
<tr>
<td>QTF</td>
<td>Quantitative Temperature Forecast</td>
</tr>
<tr>
<td>radar</td>
<td>radio detection and ranging</td>
</tr>
<tr>
<td>RAP</td>
<td>Rapid Refresh (weather model)</td>
</tr>
<tr>
<td>RAWS</td>
<td>Remote Automated Weather Station Network</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Climate Model</td>
</tr>
<tr>
<td>RCP</td>
<td>Representative Concentration Pathway</td>
</tr>
<tr>
<td>RE</td>
<td>reduction-of-error</td>
</tr>
<tr>
<td>RFC</td>
<td>River Forecast Center</td>
</tr>
<tr>
<td>RFS</td>
<td>River Forecasting System</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RiverSMART</td>
<td>RiverWare Study Manager and Research Tool</td>
</tr>
<tr>
<td>RMSE</td>
<td>root mean squared error</td>
</tr>
<tr>
<td>S/I</td>
<td>seasonal to interannual</td>
</tr>
<tr>
<td>S2S</td>
<td>subseasonal to seasonal</td>
</tr>
<tr>
<td>Sac-SMA</td>
<td>Sacramento Soil Moisture Accounting Model</td>
</tr>
<tr>
<td>SAMS</td>
<td>Stochastic Analysis Modeling and Simulation</td>
</tr>
<tr>
<td>SCA</td>
<td>snow-covered area</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SCAN</td>
<td>Soil Climate Analysis Network</td>
</tr>
<tr>
<td>SCE</td>
<td>Shuffled Complex Evolution</td>
</tr>
<tr>
<td>SCF</td>
<td>seasonal climate forecast</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SECURE</td>
<td>Science and Engineering to Comprehensively Understand and Responsibly Enhance Water</td>
</tr>
<tr>
<td>SFWMD</td>
<td>South Florida Water Management District</td>
</tr>
<tr>
<td>SM</td>
<td>soil moisture</td>
</tr>
<tr>
<td>SMA</td>
<td>Soil Moisture Accounting</td>
</tr>
<tr>
<td>SMAP</td>
<td>Soil Moisture Active Passive</td>
</tr>
<tr>
<td>SMHI</td>
<td>Swedish Meteorological and Hydrological Institute</td>
</tr>
<tr>
<td>SMLR</td>
<td>Screening Multiple Linear Regression</td>
</tr>
<tr>
<td>SMOS</td>
<td>Soil Moisture and Ocean Salinity</td>
</tr>
<tr>
<td>SNODAS</td>
<td>Snow Data Assimilation System</td>
</tr>
<tr>
<td>SNOTEL</td>
<td>Snow Telemetry</td>
</tr>
<tr>
<td>SOI</td>
<td>Southern Oscillation Index</td>
</tr>
<tr>
<td>SON</td>
<td>September-October-November</td>
</tr>
<tr>
<td>SPoRT</td>
<td>Short-term Prediction Research Transition</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emissions Scenarios</td>
</tr>
<tr>
<td>SRP</td>
<td>Salt River Project</td>
</tr>
<tr>
<td>SSEBOP</td>
<td>Simplified Surface Energy Balance</td>
</tr>
<tr>
<td>SSEBOP ET</td>
<td>Simplified Surface Energy Balance Evapotranspiration</td>
</tr>
<tr>
<td>SSP</td>
<td>Societally Significant Pathway</td>
</tr>
<tr>
<td>SST</td>
<td>sea surface temperatures</td>
</tr>
<tr>
<td>SSW</td>
<td>stratospheric sudden warming</td>
</tr>
<tr>
<td>SubX</td>
<td>Subseasonal Experiment</td>
</tr>
<tr>
<td>SUMMA</td>
<td>Structure for Unifying Multiple Modeling Alternatives</td>
</tr>
<tr>
<td>SVD</td>
<td>singular value decomposition</td>
</tr>
<tr>
<td>SW</td>
<td>surface water</td>
</tr>
<tr>
<td>SWANN</td>
<td>Snow-Water Artificial Neural Network Modeling System</td>
</tr>
<tr>
<td>SWcasts</td>
<td>Southwest Forecasts</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>SWE</td>
<td>snow water equivalent</td>
</tr>
<tr>
<td>SWOT</td>
<td>Surface Water and Ocean Topography</td>
</tr>
<tr>
<td>SWS</td>
<td>Statistical Water Supply</td>
</tr>
<tr>
<td>Tair</td>
<td>air temperature</td>
</tr>
<tr>
<td>Tdew</td>
<td>dew point temperature</td>
</tr>
<tr>
<td>TopoWx</td>
<td>Topography Weather (climate dataset)</td>
</tr>
<tr>
<td>TVA</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>UC</td>
<td>Upper Colorado Region (Reclamation)</td>
</tr>
<tr>
<td>UCAR</td>
<td>University Corporation for Atmospheric Research</td>
</tr>
<tr>
<td>UCBOR</td>
<td>Upper Colorado Bureau of Reclamation</td>
</tr>
<tr>
<td>UCRB</td>
<td>Upper Colorado River Basin</td>
</tr>
<tr>
<td>UCRC</td>
<td>Upper Colorado River Commission</td>
</tr>
<tr>
<td>UCRSFIG</td>
<td>Upper Colorado Region State-Federal Interagency Group</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USBR</td>
<td>U.S. Bureau of Reclamation</td>
</tr>
<tr>
<td>USCRN</td>
<td>U.S. Climate Reference Network</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USGCRP</td>
<td>U.S. Global Change Research Program</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>USHCN</td>
<td>United States Historical Climatology Network</td>
</tr>
<tr>
<td>VIC</td>
<td>Variable Infiltration Capacity (model)</td>
</tr>
<tr>
<td>VIIRS</td>
<td>Visible Infrared Imaging Radiometer Suite</td>
</tr>
<tr>
<td>VPD</td>
<td>vapor pressure deficit</td>
</tr>
<tr>
<td>WBAN</td>
<td>Weather Bureau Army Navy</td>
</tr>
<tr>
<td>WCRP</td>
<td>World Climate Research Program</td>
</tr>
<tr>
<td>WFO</td>
<td>Weather Forecast Office</td>
</tr>
<tr>
<td>WPC</td>
<td>Weather Prediction Center</td>
</tr>
<tr>
<td>WRCC</td>
<td>Western Regional Climate Center</td>
</tr>
<tr>
<td>WRF</td>
<td>Weather Research and Forecasting</td>
</tr>
<tr>
<td>WRF-Hydro</td>
<td>WRF coupled with additional models to represent hydrologic processes</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>WSF</td>
<td>water supply forecast</td>
</tr>
<tr>
<td>WSWC</td>
<td>Western States Water Council</td>
</tr>
<tr>
<td>WUCA</td>
<td>Water Utility Climate Alliance</td>
</tr>
<tr>
<td>WWA</td>
<td>Western Water Assessment</td>
</tr>
<tr>
<td>WWCRA</td>
<td>West-Wide Climate Risk Assessments</td>
</tr>
<tr>
<td>WWMPP</td>
<td>Wyoming Weather Modification Pilot Project</td>
</tr>
</tbody>
</table>