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The Anthropocene affects how we manage the environment in many ways, perhaps most importantly by

undermining how past conditions act as baselines for future expectations. In a period when historical

analogues become less meaningful, we need to forge new practices and methods of environmental

monitoring and management, including how to categorize, manage, and analyze the deluge of environmental

data. In particular, we need practices to detect emerging hazards, changing baselines, and amplified risk.

Some current data practices, however, especially the designation and dismissal of outliers, might mislead

efforts to better adapt to new environmental conditions. In this article we ask these questions: What are the

politics of determining what counts as “abnormal” and is worthy of exclusion in an era of the ever-changing

“normal”? What do data exclusions, often in the form of outliers, do to our ability to understand and

regulate in the Anthropocene? We identify a recursive process of distortion at play where constructing

categories of abnormal–normal allows for the exclusion of “outliers” from data sets, which ultimately

produces a false rarity and hides environmental changes. To illustrate this, we draw on a handful of

examples in regulatory science and management, including the Exceptional Event Rule of the Clean Air

Act, beach erosion models for nourishment projects, and the undetected ozone hole. We conclude with a

call for attention to the construction of “normal” and “abnormal” events, systems, data, and natures in the

Anthropocene. Key Words: climate adaptation, data exclusions, environmental change, extreme events, rarity.

O
ne expected consequence of continuing

global change is that the behavior of envi-

ronmental systems will transform, particularly

in ways that increase extreme events (Walsh et al.

2014; Hayhoe et al. 2018). Extremes—those rare,

high-magnitude events that stretch out into the tail

of a distribution—destroy property and infrastruc-

ture, strain government functioning and budgets,

and in many cases lead to injury or death. To make

decisions about how to protect populations—how

high to build a levee, designate evacuation routes, or

restrict zoning for new development—regulators rely

on historical data to calculate probabilities and risk

and to compare costs and benefits. Although using

historic ranges or baselines is a well-established prac-

tice (Ruhl and Salzman 2011), it is losing efficacy as

historic variability becomes a less reliable guide to

future variability (Hirsch 2020).
The Anthropocene is a recognition that we have

entered a phase in which human–environment inter-

actions pervade most major earth systems (Crutzen

and Steffen 2003; Zalasiewicz et al. 2010; S. L. Lewis

and Maslin 2015). In many ways, this is a step by

physical geographers closer to the work and critiques

of human geographers to recognize the powerful role

that social processes play in shaping the physical

environment. The process of designating, and even

naming, the Anthropocene has drawn thoughtful cri-

tique (Buck 2015; Haraway 2015, 2016; Moore

2016); here, rather than delve into its driving forces

and debates over definition and onset, we focus on

how society might engage with the impacts of the

Anthropocene on environmental management.
Even in a past when distributions of environmen-

tal variables were seen as stable, determining what

data counted as “abnormal” or “outlier” was difficult

and consequential work, and the challenge only

increases in an era of environmental change. As the

Anthropocene brings novel conditions, it is worth

asking how scientific practices, like the exclusion of

outliers meant to clean up and normalize data by

removing “bad” or “atypical” observations, might

fundamentally alter our understanding and manage-

ment of changing earth systems. In an era where
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normal is a moving target and baselines will shift,

determining what is abnormal, atypical, and bad

data will be difficult. It is an overstatement to claim

as some have that “outliers are now the norm”

(Coleman 2019), but how do we evolve our thinking

about both outliers and normals, as well as our corre-

sponding data management practices, to effectively

apprehend the Anthropocene?

In the Anthropocene we need practices that

acknowledge changing baselines to detect emerging

hazards and better adapt to new environmental con-

ditions. What are the stakes of determining what

counts as “abnormal” and is worthy of inclusion or

exclusion in environmental analyses during an era of

change, of ever-shifting “normal”? How do data out-

liers affect our ability to understand and manage the

environment in the Anthropocene?

We argue for attention to the construction of nor-

mal and abnormal events, data, and natures in the

Anthropocene, an era in which environmental

change makes seemingly simple divisions between

normal and abnormal more complex. More specifi-

cally, scholars need to look at how constructions of

abnormality influence data exclusions and under-

standings of rarity in a way that focuses on the rela-

tional and mutually dependent processes of

(mis)understanding a changing environment. This

type of inquiry requires combining approaches often

not in conversation: quantitative risk assessment and

critical theory. In this article we, as geographers

steeped in two different subfields, attempt to build a

bridge between hazards and risk analysis and science

and technology studies (STS) and other critical

geographies of the environment. Our aim is that this

article speaks to both sets of scholars and makes

ideas from one subfield accessible to the other.

New Normals, Shifting Baselines,

and Outliers

Most systems for managing the environment, from

stormwater infrastructure to forestry to agriculture,

are predicated on the notion of an expected or

“normal” range of conditions, usually arrayed in a

statistical distribution of values huddled around the

mean (in normal distributions) or the median (in

skewed distributions; Figure 1). Distributions might

be empirically derived (a histogram of observed val-

ues) or theoretical (a distribution with a shape that

fits theoretical understanding of a system’s behavior

and can be used to estimate values not yet
observed). In both cases the past is prologue, and

although environmental scientists recognize that sys-
tems evolve over time, many analytical and manage-
ment approaches still rely on the future behaving

like the past. The death knell of stationarity (Milly
et al. 2008) was perhaps sounded too early. This is
especially true, we argue, in approaches that crave

Figure 1. A range of statistical distributions: (A) normal, (B)

negative skew, and (C) positive skew.
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the longest historical records to flesh out the statisti-

cal distributions on which risk assessments for

extremes and intervention plans are based.

Alternatively, a key intellectual pursuit of the

Anthropocene should be to understand how environ-

mental systems are changing, to better envision how

different they will look in the future. An army of cli-

mate and earth systems modelers has been engaged in

precisely this complicated and important work, build-

ing new worlds within their models to offer glimpses

of what is to come (Edwards 2001). One of their

challenges is not to allow parameters based on past

data to overly constrain the future conditions their

models can predict, keeping in mind that a trans-

formed future suffers from the “no analogue” problem

(J. W. Williams and Jackson 2007): Models trained

on the past struggle with novel futures.
The sense that the future will differ markedly

from the past is signaled by emerging conditions,

like greenhouse gas concentrations in the atmo-

sphere, not observed for millennia, but also by the

quotidian experience of extreme weather and cli-

mate. Such palpable changes are especially difficult

to foretell; the distributions of climate variables will

shift in uncertain ways and could usher in many dif-

ferent “normals.” Even for temperature change,

about which earth scientists are most confident

(Collins et al. 2013; Kirtman et al. 2013), warming

could manifest in many possible future distributions,

with longer or shorter tails (Figure 2), perhaps a shift

to higher temperatures while maintaining the same

relationships between extreme and average events

(Figure 2A), or to a different normal in which the

average persists but the range expands, offering

greater variability and more extremes (Figure 2B).

Perhaps both average (shifting the mean) and vari-

ance (altering the shape of the distribution and rela-

tionship between average and extreme events) could

change (Figure 2C).
Such simple illustrations of statistical distributions

for current and future climate reveal a lot but also

hide much. First, the distributions are typically

graphed as normal curves, neglecting the fact that

many climate variables exhibit skewed distributions.

Climate projections point both to more extreme

high temperatures (Collins et al. 2013) and a skew

toward more intense precipitation events (Kirtman

et al. 2013). Projections also point to increasing

contrasts between wet and dry spells (Kirtman et al.

2013), yielding the awkward notion that global

warming brings both more floods and droughts.

Expectations of bigger changes in extremes than in

means have long been part of the climate literature

(Wigley 2009) but are difficult to translate into

environmental management protocols.

These technical twists are echoed in the popular

alliterative phrase “new normal,” which S. C. Lewis,

King, and Perkins-Kirkpatrick (2017) noted is “widely

used in mainstream media reports to succinctly cate-

gorize observed extreme weather and climate events

as both unusual and influenced, in some regard, by

anthropogenic climate change” (1139). Alliteration is

not always veracity, however, and the contradictory

notion of abnormal conditions coming to be consid-

ered normal works in some ways and not in others. S.

C. Lewis, King, and Perkins-Kirkpatrick (2017), who

sought to define “new normal” in a scientific manner,

admitted that it is “used ambiguously without precise

definition in both scientific literature and public com-

mentary on climate change” (1140). Moreover, they

noted that a “system under the influence of anthropo-

genic warming is nonstationary and exhibits a non-

constant mean,” and thus “in a true statistical sense

‘new’ and ‘normal’ are essentially oxymoronic” (S. C.

Lewis, King, and Perkins-Kirkpatrick 2017, 1141).
To make some sense of the new normal in

the Anthropocene—indeed, to make sense of the

Anthropocene—we must attend to the matter of the

baseline on which any expectation is founded.

Because the new normal is so often (and in contra-

diction to its prima facie meaning) tied to extremes,

we must also evaluate how exceptional events, out-

liers, and atypicality are defined. We must also rec-

ognize that, in environmental management regimes,

baselines and outliers are both epistemic and legal

(Hirsch 2020) and steeped in the coproduction of

science and regulatory law (Jasanoff 2004).

Establishing a baseline is not a straightforward nor

necessarily objective act (Ureta, Lekan, and von

Hardenberg 2020), and the same is true for establish-

ing the range of normal, which is needed to evaluate

the abnormal. Just as the production of baselines is

often framed as objective yet is value-laden and fre-

quently the site of legal battles (Hirsch 2020), so,

too, is distinguishing normal from abnormal.
One of the valuable contributions from STS is

the recognition that data management is always

political (Hacking 1990; Porter 1996; Desrosi�eres
2002; Bowker 2008; Gitelman 2013; Pine and

Liboiron 2015; Dillon et al. 2019), and politics are
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heightened in the Anthropocene. In this article,
then, “politics” is not just referring to partisan poli-
tics, power grabs, or intentional actions. We use pol-
itics in a much broader, more encompassing way to

include both those overt actions as well as more
covert and even unintentional politics. Drawing on
the work of STS scholars who explore the politics of

science, we understand politics to mean a process
that is not neutral or inevitable and instead one that
is situated, subjective, and full of small but impor-

tant choices that can be seen as technical but are
often shaped by value-laden assumptions and judg-
ments of scientists.1

Of course, definitions of politics vary across and
among different intellectual communities; even
within geography, subfields interpret politics to mean
many things. We find it useful to distinguish

between the uses of politics, specifically between
Big-P Politics and small-p politics (King and Tadaki
2018). Big-P Politics refers to politicized science,

with most of the politics touching science after its
produced to determine how it is used or whether
people believe it. This type of Big-P Politics is inten-

tional and explicit and usually harnessed to support
the end goals of certain actors. Small-p politics,
however, refers to choices scientists make while

Figure 2. Different temperature distribution shifts. The three graphs show how changes in average, variance, or both alter the amount

of extremes.
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conducting science, including choices of theories,

data collection methods, and statistical analyses.

King and Tadaki (2018) defined small-p politics of

science “as the ways in which scientists make (inten-

tional or unintentional) value-laden choices within

the scientific realm that produce distinct consequen-

ces (social meanings, inequalities, power relations) for

real people and environments” (72). Assumptions and

judgments by scientists about how systems work shape

how they set out to study and track them. Each

choice has trade-offs and cannot be looked at as neu-

tral regardless of intention; these small-p political

choices embedded in science make some things

known and others not. Pine and Liboiron (2015)

insisted that “data—and attendant processes of mea-

surement, database production, stabilization, curation,

maintenance and use—reproduce power dynamics,

knowledge systems, and culturally-based assumptions”

(1). In this way, “the scientific method is inherently
political” (King and Tadaki 2018, 68) and data are

never “raw” (Ribes and Jackson 2013).

Establishing what is normal also establishes what

is an outlier. When these two categories are unset-

tled by shifting and morphing system-level changes,

they often are redefined, and redefining one category

(e.g., normal or abnormal) redefines the other. Both

definitions are dependent, relational, and mutually

constructive.

Outliers can take many forms, are called different

names, and are justified by different logics. Data are

considered “outliers” when they are markedly differ-

ent from the rest of the sample, sometimes based on

statistical metrics like standard deviation cutoffs.

They might then be thrown out. The assumption

here is that outlying data are so different from typi-

cal data that they might be influenced by other vari-

ables or reflect different underlying causes or

patterns. For example, if a dam breaches and results

in flooding, it might be excluded from the hydro-

logic data set for calculating flood frequency because

it reflected an “unnatural” driver or influence.

Outliers could also be categorized as “errors,” assum-

ing they were a product of faulty measurement. For

example, an instrument can produce errors due to

location, monitor drift over time, or malfunction. In

some cases, data are excluded based on less technical

criteria, sometimes simply because the data do not

seem to fit or do not appear normal; sometimes data

are excluded because they are deemed rare or

exceptional.

Examining the production of outliers also requires a

stand on what counts as normal. All of these catego-

ries rely on normal for their own defining criteria.

Although categories of “natural” have long been cri-

tiqued and shown to rely on a false divide (R.

Williams 1977; Cronon 1996; Mansfield et al. 2015;

Cantor 2016; Davis 2016), normal is equally a subjec-

tive category based on similar false dualisms. Normal

requires constructing a boundary between the normal

and abnormal as though there are clear lines rather

than arbitrary elements of normativity. Canguilhem

(2008) argued that normal is a category that “has no

absolute meaning” (132–33), outside of narrow statisti-

cal definition. Yet when applied to data analysis, the

category of normal often is framed as a technical

assessment, especially when statistical demarcations

(e.g., standard deviation) are applied. How to divide

up data into normal and outlier or error, however, is a

judgment that often has political outcomes in terms of,

for example, what in the environment gets monitored,

what conditions are considered acceptable or not, and

when some management intervention is triggered.

Outlying: Making and Remaking

Fictional Rarity through

Data Management

The politics of data management (i.e., the stakes

of data decisions) are heightened in the

Anthropocene. If we do not examine our under-

standing of abnormal as environmental systems

transform, we might exclude data telling us about

change, resulting in distorted understandings of the

evolving environment. Here we argue that it is

important to attend to a chain of distortion that

could affect our ability to track change, with conse-

quences that reverberate through science and man-

agement spheres, and that will become more

consequential in the Anthropocene.
In the process of distortion, three key elements

work together in a recursive way (Figure 3). First

comes the boundary work of categorizing normal

and, importantly, the abnormal. Second, outliers

may be excluded, based on their abnormal categori-

zation. Third, this exclusion distorts depictions of

the environment and renders a “false rarity” as the

extremes disappear from the data. That false rarity

can then actually work to help bolster new events to

be excluded from the data set as abnormal as their
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previous peers have been excluded and rendered invis-

ible. Thus, this process is always at work, making and

remaking normal and abnormal environments. We sus-

pect that the speed, scope, and level of distortion will

expand in the Anthropocene. False rarity has staying

power as it is stabilized and maintained, even as it

increasingly differs from the true state of the system.

Many scholars have documented how false understand-

ings and representations take on a life of their own—

for example, Simon (2010) in the case of 100th

meridian and Sayre (2017) for rangeland manage-

ment—and false representations of rarity could harden

through this process, go unquestioned, and find their

way into important legal and management decisions.
Inaccurate understandings of variability are not

necessarily a product of environmental change; even

without environmental change, distorted representa-

tions create messy, problematic, and risky outcomes.

For example, Stakhiv (2011) argued that a standard

statistical distribution used in the design of water

management projects in the United States down-

plays hydrologic extremes, both floods and drought.

He concluded that, although safety buffers have pre-

vented failures, “underdesign” will become more of a

problem in a changing climate. Similarly, false rarity

hides the realities of variability and the potential for

increasing extremes, allowing managers to approve

activities and land uses that can lead to dangerous

outcomes. Even in an environment that is not

changing and where normals are not new, excluding

data as outliers makes it easier and easier to exclude

future data because, in comparison to a revised data

set, new extremes appear even more abnormal.
Here we highlight each of the three elements of the

process just described and examine how they could work

together to distort and hide certain system behavior.

1. Constructing the Abnormal

When written into laws and regulations, catego-

ries for abnormal data become even more powerful

and consequential because they ultimately shape

actions and interventions in environmental systems

(Cantor 2016). Categories of abnormal data shape

how regulatory frameworks understand and manage

environmental systems. Extreme events—the observa-

tions likely to be considered outliers due to their

infrequency—are the most valuable data for risk

assessment and preparedness. As we move toward

expecting greater levels of change, outliers—particu-

larly those enshrined in laws and regulation—will

only amplify the complications of the already difficult

tasks of environmental monitoring and management.

We can see the work done by categorizing certain

environmental events—and their data—as abnormal

in current air quality regulations. The Exceptional

Event Rule (EER), which is part of the Clean Air

Act, allows for “exceptional” air quality events to be

excluded from state regulatory data sets nationwide.

High pollution days can be nullified by removing

those events, and this similarly erases regulatory vio-

lations (i.e., the fines, increased governance, and

costs of not meeting standards). An “exceptional”

event is defined as either conditions that are

unlikely to reoccur again (aligning well with com-

mon understandings of exceptional) or an event that

is natural (regardless of its frequency), like a dust

storm. Of course, natural is a highly debated cate-

gory (R. Williams 1977; Cronon 1996; Mansfield

et al. 2015; Cantor 2016; Davis 2016) because, espe-

cially in setting regulations, its definition often

involves drawing arbitrary boundaries between

nature and society rather than recognizing how most

elements are hybrid. This challenge increases in the

Anthropocene as it becomes even harder to disen-

tangle the two (Harden 2012; Castree 2014; Purdy

2015; Mansfield and Doyle 2017). Further, both

types of events—the truly extreme and the common,

everyday, but bothersome “natural” air quality

events—are important data for apprehending how a

system behaves.
Once events are categorized as exceptional, they

can be removed from regulatory data sets; this has

the potential to hide important environmental risk

as well as the true conditions of poor air quality. For

example, Maricopa County, Arizona (where Phoenix

is located), categorized more than twenty days with

dust as “exceptional” in 2011 alone and explicitly

stated that they would use the rule to avoid nonat-

tainment status (Maricopa Association of

Governments n.d.). Dust storms are caused by

Figure 3. The process of distortion. Categorizing certain data as

abnormal then allows those data to be excluded as outliers, which

in turn produces a false rarity. This process can be recursive as

the false rarity feeds back into how we categorize data.
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environmental factors like increasing aridity but also a

slew of land use practices surrounding the desert city.

Through the use of this rule, the county is attempting

to be in attainment (i.e., meet air quality standards)

for the first time in more than twenty years.
Exclusions based on the EER also can hide

changes in air quality, which are particularly impor-

tant to track because the Anthropocene is likely to

exhibit increased dust (Romm 2011) and smoke

(McKenzie et al. 2014) from elevating temperatures

and aridity. Yet data for those increases will be hid-

den, contradicting the obvious clues in plain sight.

It is through the creation of exceptional events, con-

structing this category of abnormal or outlier, that

the EER underwrites this exclusion and changes the

story coming from the data. Ultimately the EER and

its exclusions of exceptional events are working

against the goals of the Clean Air Act, to protect

human health and public welfare, because they allow

high levels of pollution to go unregulated and hid-

den from analysis (Clifford 2020).

2. Excluding Outliers

Excluding extreme events due to their infre-

quency, or outliers due to their abnormality, can

erase the variability of a system, artificially con-

structing a distribution with little variance and small

standard deviations that renders events or changes

invisible. In a sense, detectable (and maybe danger-

ous) extreme events disappear, at least in the data.

Many and repeated alterations to the data transform

how we understand a system in more than just dis-

cursive ways because distributions are heavily relied

on for studies of risk, regulations of environmental

hazards, and other critical management decisions.
Blinders constructed by data exclusions have

already affected our tracking of the Anthropocene.

For years, scientists missed the growing “ozone hole”

over Antarctica despite technological advancements

in monitoring atmospheric processes and increasing

efforts by the National Aeronautics and Space

Administration to measure and understand earth sys-

tems (von Hobe 2007). Ironically, it was not tech-

nological advancements that made the ozone hole

detectable but instead reverting back to old,

“obsolete” methods (Farman, Gardiner, and

Shanklin 1985). Nor was it the complexity of the

hole that left it invisible but instead data manage-

ment practices, specifically exclusions.

The data exclusions that hid the ozone hole were

not the act of an individual who reviewed the data

and threw them out but instead were built into the

data management algorithms that acted as an inter-

mediary between the instruments collecting data and

the models and scientific assessments using the data.

The algorithms were set to exclude data that fell

outside of what was expected in the system (what

was envisioned as possible). In this case, outliers

took the role of “errors.” Errors are different than

other types of outliers: Instead of theoretically refer-

ring to an accurate depiction of a rare event that is

deemed beyond or outlying typical system function-

ing, they signal a malfunction of the instrument or

incorrect information. Yet the algorithms’ categoriza-

tion of errors highlights the very subjective and dan-

gerous politics of thinking about normal. We often

think of normal as historic (i.e., what happened in

the past) or present (i.e., how systems behave now),

but this forecloses the possibility of how the system

might shift and evolve.
Ironically, the ozone hole was eventually detected

by basic instruments that did not have the automated

exclusions. At first, the scientists observing the hole

(Farman, Gardiner, and Shanklin 1985) faced some

skepticism because their data were collected by less

advanced instruments and it was only once the

National Aeronautics and Space Administration scien-

tists reran their models with the “error” data that the

ozone hole became legible (Stolarski et al. 1986). It

should have been clearly detectable for some time but

was hidden through data exclusions that allowed an

inaccurate representation of the atmosphere to persist.

3. Producing False Rarity and Erasing Variability

Bias against including plausible extreme events in

the planning of projects that could fail given those

events could also make the Anthropocene more dan-

gerous than we expect. The statistics of natural sys-

tem behavior essentially ensure that a place that

experiences a significant range of intensity of natural

events will also experience events several times

larger than, say, those at one or two standard devia-

tions from the mean. The costly implications of

including extremes in project planning might

encourage their neglect or exclusion and also yield a

false sense of their rarity. When included in plans,

extremes usually support larger and more costly haz-

ard protection (e.g., higher sea walls, more robust

The New (Ab)Normal 7



seismic building protections, etc.). Studies of the

2011 Fukushima nuclear power plant disaster found

that the target wave height used for tsunami protec-

tion at the plant was inadequate; even when a his-

toric tsunami comparable to the 2011 event was

recognized by seismologists, it was neglected in the

risk assessment when plant infrastructure was

upgraded in 2002 (Earthquake Engineering Research

Institute 2011; The Fukushima Nuclear Accident

Independent Investigation Commission 2012;

National Research Council 2014; Wheatley,

Sovacool, and Sornette 2017).
A tendency to discount the likelihood of large

events in a project lifetime is another form of data

truncation, one that creates false rarity. Critics of

coastal engineering on U.S. shores argue that large

storm events are more common than models and

plans allow for. Pilkey and Pilkey-Jarvis (2007; see

also Pilkey, Young, and Cooper 2013) contended

that the concept of beach erosion taking place

through slow processes was constructed by treating

coastal storm events as unusual or abnormal, when

in fact they are common. This is especially impor-

tant in beach nourishment projects, the multibillion-

dollar efforts to rebuild beaches, especially on the

U.S. East Coast, after storms and long-term erosion

have worn them (and the residents and tourists that

use them) away. Static numbers reified into models

for calculating key variables, like sand transport

rates, can have the effect of making variability disap-

pear in projections of beach erosion (Young et al.

1995). Pilkey and Pilkey-Jarvis (2007) argued that

when artificial beaches are lost more rapidly than

predicted by the models, the most common excuse is

that the storm that caused the beach loss was unusual

and unexpected. Certainly the unusual storm can

occur, but the label “unusual” is used so frequently

with lost artificial beaches as to imply that the last few

decades have been truly extraordinary in their

storminess. (135)

No beach lasts forever in an era of rising sea level,

and coastal storms able to significantly whittle away

beach width are not rare. Beach nourishment can

slow this loss but not always as well as advertised.

To improve beach project plans, the U.S. Army

Corps of Engineers and others invested significant

modeling efforts to include storms in erosion models

(National Research Council 1995; Thieler et al.

2000). Estimating how likely those storms are over

some project duration remains a big challenge

(Toimil et al. 2020), however, and critics claim that

beach prediction models produce numbers that

might overstate beach stability, tip benefit–cost anal-

yses in favor of nourishment, and hide trends in

beach erosion caused by storms and rising sea level.

Outlying in the Anthropocene

The stakes of false rarity increase in the

Anthropocene. Removing “outliers” or other abnor-

mal data critically shapes our understanding of the

system not only because we miss events but because

historical distributions, and changing distributions

over time, are what we use to understand whether a

system is changing. In other words, removing data

about current extreme events cripples our ability to

detect change and understand future environments.

Moreover, as Pine and Liboiron (2015) reminded us,

“the interplay of inclusion and exclusion makes
things” (3). The normal makes the outlier and vice

versa. Distorted pictures of environmental systems

rely on data exclusions; those alternative data would

rebuke notions of rarity. The consequences of false

understandings about dynamic environmental sys-

tems is that they often lead to management strate-

gies that do not work or work against the stated

goals (Sayre 2017). Data exclusion is an Achilles’

heel in the Anthropocene.
All three of the examples presented exemplify the

consequences of how constructing outliers can pro-

duce a skewed understanding of environmental behav-

ior, particularly inaccurate claims of low variability.

The stakes increase in the Anthropocene because

they are not just associated with missing current sys-

tem behavior but also with delaying recognition of

larger changes and hindering adaptation responses.
Treating dust storms in the U.S. Southwest as

“exceptional” or outliers, despite their frequency and

historical analogues, makes it harder to see signals of

emerging threats. Little imagination is required to

think about how increasing air pollution events like

dust storms or wildfire smoke could be disastrous;

many have called the Dust Bowl the nation’s great-

est “natural” disaster. Yet, we know that the Dust

Bowl was driven at least in part by land use and

allowed to amplify by officials (and farmers) ignoring

signs of increased soil erosion (Worster 2004).

Discarding “exceptional” events from regulatory

analysis could halt proactive action that might be

able to slow changes or facilitate adaptation.

8 Clifford and Travis



The undetected ozone hole might be one of the

most powerful analogues we have for thinking about

outliers in the Anthropocene. We missed a signifi-

cant change—one that we had data about—and that

slowed our response. We run the same risk of miss-

ing important and likely high-consequence environ-

mental changes in the Anthropocene if we exclude

data that depart from a historical normal. In a time

where we are increasingly automating and outsourc-

ing decisions to algorithms and artificial intelligence,

the ozone hole offers a cautionary note on how

automating exclusions might make emerging risks

less visible.
In the case of beach nourishment, treating severe

storms as outliers in models can handicap analysis

and undermine interventions, particularly if models

overstate the effectiveness of beach nourishment.

Sea level rise and warming oceans that could lead to

worsened storms (Bindoff et al. 2013) mean that the

gap between environmental realities and model out-

puts will only widen and likely lead to greater

“surprises” as beach nourishments endure a dwin-

dling fraction of projected life spans. The

Anthropocene nullifies beaches but not beach simu-

lation models.

Conclusion: Warning Signs

The chances of successful climate adaptation will

improve if we can avoid false depictions of rarity

and monitor the changing environment more accu-

rately. Thus, we need to return to previously asked

questions of normality: How does thinking about the

“new normal” influence our understanding of outliers

and other abnormal data? Conversely, how does

excluding outliers affect our ability to apprehend the

evolving Anthropocene?
An era of accelerating environmental change

raises the stakes of outliers and false rarity. How dis-

tributions will evolve in the Anthropocene remains

uncertain, so our monitoring must be open to sur-

prise, to the abnormal. Early clues of how a system is

changing provide critical information for manage-

ment strategies to respond and protect communities.

Combined, false representations of rarity and

increasing variability have the potential for greater

distortion of system behavior and more likely sur-

prises and unanticipated events, ultimately under-

mining climate adaptation and environmental laws.

We invite others to examine these questions in

other environmental systems. As scholars engaged in

studying this new epoch and tracking transforma-

tion, we need to wrestle with how our own (and

others’) notions of normal and abnormal affect

inquiries into environmental change. Such inquiries

are integral to knowing (or not knowing) environ-

mental change, because change itself is again a

departure from some defined normal state or base-

line. Future work should further examine how out-

liers are produced and excluded, as well as the

consequences of false rarity in risk management,

legal paradigms, and climate adaptation efforts. How

are data boundaries between normal and abnormal

being negotiated? Has false rarity been produced

through debatable exclusions and problematic char-

acterizations? How is this process—and categories of

normal–abnormal, data exclusions, and false rarity—

reproduced and reified in legal and policy spheres?

These questions can provide important insight

into understanding and mitigating risk in the

Anthropocene.
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Note

1. By referring to the situatedness of science, we are
not critiquing science or its findings but illuminating
the decisions, assumptions, and trade-offs in the
process. Scientists and regulators who crunch
numbers and analyze systems make a slew of
decisions in the collection and analysis of data; it is
impossible to make science without such decisions,
but it is also important to note that these decisions
do imbue scientific data and analysis, our
understanding of a system, and decisions about how
to intervene in that system. STS scholars and
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geographers building on this thinking have long
documented how the decisions scientists make
during the production of science are influenced by
neoliberal forces (Lave 2012), available instruments
and technologies (Clarke and Fujimura 1992; Frickel
and Vincent 2007), disciplinary forces (Clarke and
Fujimura 1992; Murphy 2006; Kleinman and
Suryanarayanan 2013), problem orientation (Frickel
et al. 2010), time frame of analysis (Sedell 2019),
and use of categories (Bowker and Star 2000;
Duvall, Butt, and Neely 2018).
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