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From: Gillies, Wang and Booth. In Press.



NATIVE Bark Beetle Species That Can Cause Landscape-Wide
Tree Mortality in Northern Rocky Mountain Forests
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Mountain pine beetle
Dendroctonus ponderosae

Douglas fir beetle
Dendroctonus pseudotsugae
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Spruce beetle
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Thresholds Internal controls External controls and releasers

Beetle behavior, physiology
Host defense chemistry

Host entry e

- Resin flow
Aggregation D — Local beetle density ~ ———___ Drought,
¢ Canopy density biotic stresses on host
Induced defenses

Establishment <——  Attack density and rate
Microbial symbionts

¢ Phloem thickness
: 2 Predators, competitors Temperature
Reproduction Microbial symbionts
i Beetle physiology
Beetle density Ecophysiological processes
Stand-mesoscale . Stand heterogeneity <—Stand dynamics
eruption Host availability, density, age Succession, disturbance
Dispersal <
Lan%?SStpig-Aevel P Proximity of suitable stands Geophysical
Landscape heterogeneity barriers
\ Artificially favorable habitats \
Regime shift <—— Altered selection pressures <——— Anthropogenic activities
Access to new hosts

Thresholds and positive feedback processes at multiple scales contribute
to the eruptive, outbreak nature of bark beetle populations. Climate can
have direct and indirect effects on population success at multiple scales.

Raffa et al. 2008, Bioscience




Phloem tissue of living trees is the main

food sourc
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Increased water deficits and drought stress ttree susceptibility to bark
beetles.

McDowell et al 2009, New Phytologist van Mantgem et al 2009, Science



fungi
spores

‘Blue - staining’ fungi provide vital nutrients
to developing mountain pine beetle. Fungi
will be influenced by changing climate.



Temperature can directly influence bark beetle success -

Seasonality — appropriately
timed phenology that is
synchronized among individuals
to facilitate a mass attack on
host trees.




Mountain pine beetle Phenology

Development time and rate are related by:

T(T,A) =

1

r(T,A)

Where 7(T,A)= the modeled average time to
complete the life stage at temperature T.

A = a vector of parameter values of
development rate function r(T,A) :

Time (days)

Development rates are summed (integrated)

over short time steps Af .

Physiological age, a, proportion of the stage
completed from O at the onset to 1 at
completion -

t
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From Regniere, Powell, Bentz and Nealis.
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Temperature can directly influence bark beetle success -

body temperature (°C)

0
N

Seasonality — appropriately
timed phenology that is
synchronized among individuals
to facilitate a mass attack on
host trees.

Mortality due to cold
temperatures



SCP, Max and Min Phloem Temperatures ( °C)

Mountain pine beetle tolerance
to cold is dynamically
dependent on temperature
regime experienced.

Simple low temperature
threshold can not explain the
role of temperature in mountain
pine beetle survival/mortality.
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Date Régniere & Bentz 2007



Spruce beetle Semivoltine

Diapause Diapause
Univoltine

NO-larval diapause  YES-adult diapause

Reproductive Capacity of a

1 year (univoltine) beetle = 2 year (semivoltine) beetle
(Hansen & Bentz 2003)

June July Aug Sept WINTER June July Aug Sept WINTER June July Aug
S

. I
T I
1 year 2 years




Spruce beetle Semivoltine

Diapause Diapause
Univoltine

NO-larval diapause  YES-adult diapause

Proportion Univoltine brood =
f (cumulative hours above 17°C following peak flight biofix)

(Hansen et al. In prep.)
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Future Predictions

Spruce Beetle
Proportion Univoltine

1971-2000

Normals,
CRCM v. 4.2.0
IPPC A2 scenario

Régniere & St-Amant. 2007

Bentz et al 2010, Bioscience
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Future Predictions
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Spruce beetle Semivoltine

Diapause Diapause

Univoltine

NO-larval diapause  YES-adult diapause

Mountain pine beetle univortine

Semivoltine
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Cold Tolerance Model - —1
- Based on lab and field data S EE
« Driven by hourly temperatures ::

Central Idaho-2
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Future Predictions

Mountain pine beetle
Probability of Surviva
Cold Tolerance Model
1971-2000

Normals,
CRCM v. 4.2.0
IPPC A2 scenario

Régniére & St-Amant. 2007

Bentz et al 2010, Bioscience
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Future Predictions

Mountain pine beetle
Probability of Surviva
Cold Tolerance Model
2001-2030

Normals,
CRCM v. 4.2.0
IPPC A2 scenario
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Future Predictions

Mountain pine beetle
Probability of Surviva
Cold Tolerance Model
2071-2100

Normals,
CRCM v. 4.2.0
IPPC A2 scenario
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Mountain pine beetle Phenology

Semivoltine
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West-wide monitoring of mountain pine beetle and weather —
= Set benchmarks for future climate changes
= Evaluate temperature-dependent phenology models

- Phloem temperatures
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Predicted MPB Phloem Temperature C

Observed MPB
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Predicted MPB Lifestages Phloem Temperature C

Observed MPB
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Brood adult

Mountain pine beetle Phenology

Univoltine

b, EMerged
" Brood adult

‘%9 Parent adult
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Common Garden Rearing Experiments
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*Slower total development at more southern
latitudes (warmer) and faster development
at more northern latitudes (colder) potentially ]|
facilitate the same strategy, univoltinism.

Mean Development Time

80 A

17.5 22.5 27.5

Rearing Temperature

*Strong local selection among geographically-separated MPB populations.
Phenotypic plasticity and genetic variability in thermal development thresholds
are influencing latitudinal differences.

* Response to climate change will differ geographically.

From: Bentz, Logan and Vandygriff 2001, Bracewell et al. 2009, Bentz et al. 2011



