Modeling with Tree-ring Reconstructions

Ben Harding, AMEC Environment \& Infrastructure

How Frequent is the Drought of Record?

- The obvious inference:
- The drought of record in a 100-year record is the 100-year drought.
- This falls afoul of Mencken's First Law ${ }^{1}$.
- The truth:

There is about a 1 in 3 chance (37\%) that a 100-year record does not contain a drought as severe as the true 100-year drought.
Said another way, there about a 1 in 3 chance that we have not yet experienced a drought as severe as the true 100-year drought.

- There is a 95\% probability that a 100-year record does contain a drought as severe as the true 30-year drought.
- To have a 95% probability that you have a good estimate of the 100-year drought, you need a record 300 years long.
- So...we have to turn to paleo-hydrology.

1. "For every problem, there is a solution that is simple, neat, and wrong." $\sim H$. L. Mencken

Upper Yampa Water Conservancy District

- Domain
-Yampa River Basin
- Objectives

Evaluate water availability and the adequacy of District infrastructure and water rights.
Serve as the basis for possible water rights filings in the future.

What Do We Know About the Past: The Observed Record

Source: CDSS Natural Flows

Annual Flows, Yampa River at Maybell, 1900-2006

The Curve

Flow Frequency Curve

The Dry End (the Fs)

More objectives

- District needs to know the effect of low-frequency events on their system
- E.g. with return intervals longer than c. 30 years
- Effects on many water rights and reservoirs
- Analysis may serve as the basis for a water rights filing

The use of paleo hydrology may have no precedent in Colorado water rights
-The method needs to be concrete and as simple as possible

- Approach
- Direct reconstruction of prehistoric flows
-Forcing a water resources model

Statistics of reconstruction vs. observed

Gray, S. T., J. J. Lukas, and C. A. Woodhouse, 2011. Millennial-Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702-712. DOI: 10.1111/j.1752-1688.2011.00535.x

	Observed	Reconstructed
Maximum	$2,326,651$	$2,003,748$
90th Percentile	$1,738,702$	$1,605,933$
10th Percentile	843,832	888,686
Minimum	497,503	491,935
Mean	$1,280,922$	$1,267,405$
Standard Deviation	378,649	302,230

Yampa at Maybell-More information

Flow Frequency Curve

Yampa River Basin Model

Nowak, K., J. Prairie, B. Rajagopalan, and U. Lall (2010), A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow, Water Resour. Res., 46, W08529, doi:10.1029/2009WR008530.

Limitations of Paleo-Hydrology

- Based on models
- Only explain approximately $60 \%-80 \%$ of the variance of flows
- Different reconstructions will give different results
-Different data (trees or flow)
- Different model structures
-Different model parameters

Effect of reduced variability

Colorado River Water Availability Study

- Domain
- Colorado River Basin
- Objectives

Evaluate water availability
Provide the basis for future analyses
Provide a probabilistic evaluation
Integrate with projected climate

- Approach
-Stochastic re-sequencing of historic flows based on the statistics of reconstructed flows

Prairie, J., K. Nowak, B. Rajagopalan, U. Lall, and T. Fulp. (2008) "A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data." Water Resources Research 2008 Volume 44, W06423

Summary

- Estimates of drought frequen observations are biased low.

Thanks!

Ben Harding

 ben.harding@amec.com- Paleo hydrology allows for more reliable estimates of low-frequency annual events.
Convenient, easy-to-apply disaggregation methods now exist.
- So, water resources modeling is now practical
- Variability is biased low in reconstructions
- Yield estimates for small reservoirs appear to contain error, but perhaps not a consistent bias.

