Snow-related Measurements in Operational Streamflow Forecasting at NOAA/CBRFC

Stacie Bender, Paul Miller, Brent Bernard, John Lhotak, and Craig Peterson

NOAA/National Weather Service
Colorado Basin River Forecast Center
Salt Lake City, UT

Western Water Assessment
Snowpack Monitoring Workshop

West Jordan, UT
August 11, 2015
Colorado Basin River Forecast Center (CBRFC)

Full staff: 3 mgmt, 9 hydrologists, 1 admin, 1 IT

Operational streamflow forecasts across the Colorado River basin and eastern Great Basin

Operational forecast types:
- short-term streamflow, out 10d in future
- seasonal peak streamflow
- seasonal runoff volume

www.cbrfc.noaa.gov
CBRFC

Colorado Basin River Forecast Center (CBRFC)

Hydrologic regimes:
• snow-dominated to flash flood hydrology
• natural to regulated

500+ streamflow forecast points across 7 states

~1150 modeling units (snow and soil moisture model run on each)

Stakeholders dependent upon snowmelt-driven streamflow forecasts:
• NWS Weather Forecast Offices
• US Bureau of Reclamation
• water conservation districts
• municipalities
• recreational community
• others
Importance of Snow Info

- ~60-80% of precipitation in CBRFC’s area of responsibility (AOR) falls as snow
- Snow (especially water equivalent) is a primary predictor of seasonal runoff volume in much of CBRFC’s AOR
- Snowpack of recent years has exhibited extremes in both directions
 - mostly dry (utral) and, sometimes, wet (generally)
 - sometimes heavy dust deposition, sometimes a clean snowpack surface

CBRFC

Importance of Snow Info

Operational CBRFC Modeling

CBRFC Uses of Surface Observations

CBRFC Uses of Remote Sensing

Future Directions

Questions and Comments

Total precip through April 30:
- Apr 23.6 in.
- May SWE: 23.6 in.

Average (WY81-WY10)

Apr 23.6 in.
Mar 20.0 in.
Feb 17.4 in.
Jan 19.1 in.
Dec 17.4 in.
Nov 17.4 in.
Oct 17.4 in.

Average (81-10) precip thru April 30 vs May 1 SWE at Trial Lake SNOTEL

Map credit: Bryant-Burgess, 2014
Importance of Snow Info

Additional datasets and information about snowpack conditions assists CBRFC hydrologists with more informed forecasting decisions.

Expanding CBRFC’s use of snow-related measurements is key.

Past (through 2009):
Surface-based networks (SNOTEL) only, SNOTEL sites w/ < 30 year period of record

Past (through 2010-2012):
Surface-based networks (SNOTEL) only, **most SNOTEL now w/ 30 yr period of record**

Present and into the future (2013 to present):
Surface-based networks (SNOTEL, CSAS field obs) + Remote sensing (MODIS, VIIRS, ASO) = More complete set of snowpack observations

Note: Remote sensing datasets are NOT intended to replace surface-based observations in CBRFC modeling and forecasting but rather to complement surface-based observations.
Operational CBRFC Modeling

CBRFC’s operational models:
→ Modeling units = elevation bands or zones
→ each “zone” gets its own set of SNOW17 and Sac-SMA parameters via model calibration

EXAMPLE: Weber River headwaters in northern UT (NWS ID = OAWU1)

<table>
<thead>
<tr>
<th>Elevation Zone</th>
<th>Mean Elevation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAWU1HUF (Upper)</td>
<td>10333</td>
</tr>
<tr>
<td>OAWU1HMF (Middle)</td>
<td>9318</td>
</tr>
<tr>
<td>OAWU1HLF (Lower)</td>
<td>7831</td>
</tr>
</tbody>
</table>
Operational CBRFC Modeling

Operational Snow Model at CBRFC: SNOW17

- minimum inputs and computational power needed
- manually calibrated at CBRFC using 1981-2010 historical data
- temperature-index model (air temperature used as proxy for energy/radiation)
- forecasts snowmelt pretty well under near-normal conditions of the calibration period
- *doesn’t* do so hot when conditions deviate from near-normal – manual adjustments needed

Water output from SNOW17 is then input to the soil moisture model (Sac-SMA)
NRCS’s SNOTEL network = primary source of surface-based snowpack information for CBRFC
- 1st-of-month SWE data - used in statistical modeling for seasonal runoff volume forecasting
- SNOTEL precipitation data :
 • Real-time values - used to initially build the simulated snowpack in SNOW17
 • monthly values – used to “update” the snowpack simulated by SNOW17

Additional surface based info:
field observations from the Center for Snow and Avalanche Studies/Colorado Dust-on-Snow Program

Photo (right): Several inches of clean snow above D4 dust layer, as of the morning of April 4, 2014. Courtesy Center for Snow and Avalanche Studies, Colorado Dust-on-Snow Program, Silverton, CO (http://www.codos.org/sbb-4-04-14)
Surface Measurements:
SNOTEL SWE

SNOTEL SWE: used on the 1st of the month for water supply forecasting

Quantitative use:
as a predictor in statistical regression models

Qualitative use:
forecaster awareness of general snowpack conditions (above/below average, median, determine analog years, etc.)

Operational CBRFC Modeling

CBRFC Uses of Surface Observations

CBRFC Uses of Remote Sensing

Future Directions

Questions and Comments

Graph:
- Predicted AMJJ Q Volumes vs. Observations for SEVIER - HATCH (HATU1)
- Eqn: \(Y = -33.66 + (0.98) * \text{Apr 1 CVYU1 SW} + (2.69) * \text{Apr 1 MDVU1 SW} \)
- Data: Cal pd vol (1981-2010), Pred vol (2011-present)

Graph:
- Snow Water Equivalent (in) vs. Date
Surface Measurements: SNOTEL Precip

SNOTEL Precipitation Uses:

- **real-time precipitation** - build the SNOW17-simulated snowpack in the deterministic CBRFC hydro model (run daily)

 - **Note:** SNOW17 builds snowpack w/ precip data, not SWE data

- **monthly precipitation** – “update” the SNOW17-simulated snowpack

- **seasonal accumulated precipitation** – statistical models for water supply forecasting
Building the simulated snowpack with real-time SNOTEL precipitation

Each real-time model run involves:
1. Gather point precipitation data from SNOTEL stations.
2. Generate mean areal precipitation value (MAP) for each elevation zone/modeling unit, using the point precipitation data from SNOTEL.
3. Input MAP values to SNOW17.
4. SNOW17 types the precipitation as *snow* or *rain*, depending on T_{air}.
5. SNOW17 (temperature index model) then runs snowpack computations and determines snowpack state.

<table>
<thead>
<tr>
<th>Elevation Zone</th>
<th>SNOTEL Stations Used to Compute MAP Value</th>
</tr>
</thead>
</table>
| OAWU1HUF (Upper) | HFKU1 (Hayden Fork)
TRLU1 (Trial Lake) |
| OAWU1HMF (Middle) | HFKU1 (Hayden Fork)
SMMU1 (Smith & Morehouse) |
| OAWU1HLF (Lower) | SMMU1 (Smith & Morehouse)
NWYU1 (Beaver Divide) |
Surface Measurements: SNOTEL Precip

Building and updating the SNOW17-simulated snowpack

SNOTEL (point) precip → Build mean areal precip (MAP) values for SNOW17 → SNOW17 adds MAP as snow to simulated SWE (or types precip as rain)

Daily model runs use **real-time**, hourly data – jumpy, can add uncertainty to sim. snowpack

So, when QC’d monthly precip obs become available, use those to “**update**” model SWE.

Example Update Date = Feb 10

accumulated full month MAPs (derived from QC’d **monthly** SNOTEL precip) –

+ accumulated MAPs for any partial months (derived from **real time** SNOTEL precip)

= “updated” precipitation accumulation (using Feb 10 as an example)

Model is then run forward in time with the new, “updated” estimate of SWE accumulation.
Remotely-sensed snow datasets currently used by CBRFC:
- Data provider = NASA/JPL
- Satellite (instrument = MODIS) fractional snow-covered area (fSCA)
 - used to adjust SNOW17 model SWE as snowpack dwindles
- Satellite (instrument = MODIS) “dust-on-snow” data
 - used to adjust melt rates in SNOW17

Remotely-sensed snow datasets on the horizon for CBRFC:
- Data provider = NASA/JPL
- Airborne Snow Observatory SWE, fSCA
 - already ongoing in CO
 - will be starting in WY in next 1-2 years
 - not yet in UT
 - CBRFC is just starting with ASO data (have mostly focused on satellite data so far)
- Satellite-based (instrument = VIIRS) fSCA and “dust-on-snow” data
 - VIIRS is the follow-on instrument to MODIS

CBRFC
Importance of Snow Info
Operational CBRFC Modeling
CBRFC Uses of Surface Observations

CBRFC Uses of Remote Sensing
Future Directions
Questions and Comments

Detailed info and more examples in following slides...
MODSCAG fSCA (percent) over southwestern Utah (Coal Creek near Cedar City, NWSID = COAU1), May 12, 2013, as viewed by CBRFC forecasters. The COAU1 basin is outlined in black, with the division between CBRFC elevation zones in red.
May 16, 2013 CBRFC forecast modifications informed by MODSCAG fSCA

Coal Creek, near Cedar City, UT, NWS ID: COAU1/USGS ID: 10242000

Before small SWE adjustment:
After small SWE addition:

Currently, MODSCAG fSCA is most useful at end of melt as pseudo-binary indicator of snow presence. Probably need more advanced snow model to fully quantitatively use MODSCAG fSCA at CBRFC (snow model research projects are in progress).
Current operational CBRFC forecasting system:
- includes a temperature-index snow model
- allows (and usually requires) manual adjustment to model simulation by forecasters

To address snowmelt potentially accelerated by dust-on-snow, combine information from:
1. Historical analysis
2. Field observations
3. Remote sensing
4. CBRFC forecaster experience and knowledge of future weather possibilities
Historical Analysis

Dust in the snowpack primarily impacts timing of snowmelt (and timing of subsequent snowmelt-driven streamflow peaks)

Analysis shows that a dustier than average snowpack results in center of mass that is observed *earlier* than predicted (esp. SW CO)

Very dusty years coincide with larger streamflow prediction errors

REFERENCE:
Senator Beck Basin CODOS Update for April 4, 2014:

“... dust layer D4 may emerge in the coming week, absorbing solar radiation and accelerating the warming of the underlying snowcover at higher elevations, or enhancing snowmelt rates at lower elevations where the snowcover was already isothermal.”

(CSAS, http://www.codos.org/sbb-4-04-14)
Field Obs + Remote Sensing

MODDRFS Dust Radiative Forcing (W m$^{-2}$)

Photos: D4 emerging in the upper Animas watershed proper (along Hwy 550 south of Red Mountain Pass). Courtesy Center for Snow and Avalanche Studies, Colorado Dust-on-Snow Program, Silverton, CO
• CBRFC relies on a temperature-index snow model
• Forecasters anticipated clear, sunny weather and a period of above normal air temperatures
• Knew that dust layer(s) were present in the snowpack

Potential for accelerated snowmelt rates

Figure: Departures of daily maximum air temperature from mean April maximum temperature for Silverton, CO (NWS ID: SLVC2) for mid April 2014
Manual Adjustments by Forecasters

CBRFC
Importance of Snow Info
Operational CBRFC Modeling
CBRFC Uses of Surface Observations

CBRFC Uses of Remote Sensing
Future Directions
Questions and Comments

Before
“cranking up the melt” – sim Q is too low

Past
Future

Recent Obs Q
Model Sim Q
Official Fcst Q

After
“cranking up the melt” – sim Q matches much better

Past
Future

Recent Obs Q
Model Sim Q
Official Fcst Q

Credit: plots courtesy B. Bernard (CBRFC)
How did we do in this April 2014 case?

Solid line: Mid April 2014 observed streamflow for the Animas R. at Durango, CO

Dotted lines: CBRFC streamflow forecasts *before* manual adjustment

Dashed lines: CBRFC streamflow forecasts *after* manual adjustment

Before informed manual adjustment (dotted): fcsts too low

After informed manual adjustment (dashed): fcsts closer to observed streamflow

Perfect? No.

Though, still an improvement!

Average Forecast Error for Mid April 2014 Case:
(for forecasts valid between 4/11 and 4/17):

<table>
<thead>
<tr>
<th>Lead time (days)</th>
<th>Before adjustment</th>
<th>After adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.4 m³ s⁻¹</td>
<td>-2.6 m³ s⁻¹</td>
</tr>
<tr>
<td>2</td>
<td>-8.3 m³ s⁻¹</td>
<td>-2.7 m³ s⁻¹</td>
</tr>
<tr>
<td>3</td>
<td>-9.2 m³ s⁻¹</td>
<td>-0.7 m³ s⁻¹</td>
</tr>
</tbody>
</table>
MODDRFS-informed manual adjustments to snowmelt rate by CBRFC forecasters are helpful (see previous example) but subjective and time-consuming.

- Need a more efficient, objective method of incorporating MODDRFS “dust-on-snow” data into CBRFC forecasting

Process historical data and identify patterns that quantitatively relate MODDRFS “dust-on-snow” data to mean areal temperatures (MAT) input to SNOW17.

Develop statistical relationship that allows computation of an “adjusted MAT” that is informed by remotely-sensed MODDRFS “dust-on-snow” data

\[\text{MAT}_{\text{adjust}} = \text{MAT}_{\text{orig}} + \left(\frac{M_{\text{mean}}}{10} \right) \times (0.75) \times \text{EGREEN} \]

where, for each “elevation zone”:
- \(\text{MAT}_{\text{adjust}} \) = MODDRFS-informed, adjusted MAT value (input to SNOW17)
- \(\text{MAT}_{\text{orig}} \) = original, unadjusted MAT value (computed from point data)
- \(M_{\text{mean}} \) = mean of MODDRFS values for most recent few days
- \(\text{EGREEN} \) = fraction of elevation zone covered in coniferous vegetation
Choosing a region for initial experiments w/ DRFS-informed SNOW17 MAT-adjustment method

Map credit: Colorado River Commission of NV, available via http://crc.nv.gov/images/colorado_river_basin.gif

Mean 2000-2010 melt period dust forcing, where colors denote the **Central Basin** region, **Eastern Basin** region, and **Northern Basin** region (Bryant-Burgess, 2014)

Nutshell: Larger circles indicate more dust

→ Initial focus area = southwestern Colorado (most impacted by dust events)
- UT and WY are less-impacted by dust events (differences in weather events, dust sources, dust deposition event characteristics…) – will look at UT and WY in more detail in coming weeks
DRFS-informed MAT

Outcomes for example basin in sw CO (Uncompahgre R. – NWS id = UCRC2)

- Water year and seasonal runoff volumes (Apr-Jul) are minimally impacted, regardless of dust conditions in the 2000-2010 period of record
 - Differences of (+/- 3%) in 2000-2010 “control” (without MODDRFS dust info) vs. “experimental” (with MODDRFS dust info) streamflow simulations
 - 2005 and 2009 = similar WY and AMJJ volumes, but different dust conditions

- Timing of melt (and snowmelt-driven streamflow) within the April-July runoff period is altered by incorporation of MODDRFS data into SNOW17 via temperature inputs – timing example on next slide
Example from initial results:
- Uncompahgre River in southwestern CO (NWS ID = UCRC2)
- WY2009 – “heavy dust” year

Sim. Q *without* DRFS-informed MAT adjustment

Control simulation: No MAT adjustment

Simulated flow in May 2009 is too low.

Simulated Q with DRFS-informed MAT adjustment

Application of the DRFS-informed MAT adjustment shifts some of the snowmelt earlier, to May 2009, from June 2009.
Outcomes for example basin in sw CO (Uncompahgre R. – NWS id = UCRC2)

- **Timing** of melt (and snowmelt-driven streamflow) within the April-July runoff period is altered by incorporation of MODDRFS data into SNOW17 via temperature inputs.

2005 (minimal dust) - Experimental runoff timing:
- Slightly less runoff in May
- Slightly more in June and July

2009 (heavy dust) - Experimental runoff timing:
- Much more runoff in May
- Much less in June and July

CBRFC Uses of Remote Sensing

- April: toss-up
- May: exp sim (with MODDRFS data)
- June: ctl sim (no MODDRFS data)
- July: exp sim (with MODDRFS data)

May = most improvement

RMSE (ft^3/s, mean daily)

- May exp = better vs ctl
- May exp = much better vs ctl

2005

- Apr: +0.1 KAF
- May: -1.9 KAF
- Jun: +0.9 KAF
- Jul: +0.9 KAF

2009

- Apr: +0.2 KAF
- May: +12.3 KAF
- Jun: -6.6 KAF
- Jul: -5.5 KAF

Questions and Comments

- Accelerated melt
- Need to check further into other error sources
What’s Next?

For the rest of 2015 (and beyond):

• Work with stakeholders, forecast users, and water managers to share knowledge of snow observations and measurements from perspectives external to CBRFC

• Evaluation of snow model state updating methods (including documentation)
 - SNOTEL-based methods
 - Remote sensing-based methods

• Continue to support expansion of NRCS SNOTEL and other surface-based networks

• Assimilation of additional remote sensing datasets (more MODIS datasets, VIIRS, ASO from NASA/JPL) and associated assim. methods

• Incorporate energy balance snow modeling into CBRFC system
 - K. Andreadis data assimilation and VIC work through JPL
 - Utah State partnership (UEB snow model)

• And other projects
Questions, Comments, and Acknowledgements

CBRFC: www.cbrfc.noaa.gov
Stacie Bender – stacie.bender@noaa.gov
Paul Miller - paul.miller@noaa.gov
Brent Bernard, John Lhotak, Craig Peterson, Michelle Stokes

NASA/JPL: snow.jpl.nasa.gov
Thomas Painter - Thomas.Painter@jpl.nasa.gov
Kostas Andreadis – Konstantinos.M.Andreadis@jpl.nasa.gov
Catalina Oaida – Catalina.Oaida@jpl.nasa.gov
Kat Bormann, Paul Ramirez, Ross Laidlaw, Michael Joyce, Chris Mattmann,
Ann Bryant Burgess (formerly NASA/JPL and Univ of Utah, now ESIP)

Randy Julander and UT Snow Survey Hydrologists - Randy.Julander@ut.usda.gov

CSAS/CODOS: snowstudies.org, codos.org
Chris Landry - clandry@snowstudies.org

WWA: wwa.colorado.edu
Tim Bardsley – wwa.bardsley@gmail.com
Jeff Lukas – lukas@colorado.edu